Global Convergence in Neural ODEs: Impact of Activation Functions

20252705 박근서, 20252343 임승균

Postech

December 14, 2025

Overview

- 1. Introduction & Motivation
- 2. Gradient Convergence
- 3. NTK Convergence
- 4. SPD Condition
- 5. Global Convergence Analysis

What is Neural ODE?

ResNet (Discrete, L layers):

$$h^{\ell+1} = h^{\ell} + \frac{1}{L} W \phi(h^{\ell}), \quad \ell = 0, 1, \dots, L-1$$

Neural ODE (Continuous, $L \to \infty$):

$$\dot{\boldsymbol{h}}_t = \boldsymbol{W}\phi(\boldsymbol{h}_t), \quad t \in [0, T]$$

Pros: Continuous-depth, memory efficient, flexible time horizon

Cons: Difficult to train, no convergence guarantee

Research Question: ResNet vs Neural ODE

When training Neural ODEs with gradient descent, is **global convergence** guaranteed?

ResNet: Global convergence guranteed

- NTK (Neural Tangent Kernel) theory (Jacot et al., 2018)
- In overparameterized regime, training dynamics \approx kernel regression
- Key: NTK is SPD (Strictly Positive Definite) ⇒ convergence

Neural ODE: Global convergence unknown

- Infinite depth \rightarrow cannot use layer-by-layer induction
- Existing NTK theory does not directly apply

Contribution

- Gradient Convergence: Smooth activation ⇒ gradients are well-defined
- NTK Convergence: Neural ODE's NTK converges to a deterministic kernel
- 3. **SPD Guarantee:** Non-polynomial activation ⇒ NTK is SPD
- 4. First global convergence guarantee for Neural ODEs!

Neural ODE Definition

Model Output:

$$f(\boldsymbol{x};\boldsymbol{\theta}) = \frac{\sigma_v}{\sqrt{n}} \boldsymbol{v}^\top \phi(\boldsymbol{h}_T)$$

Hidden State Dynamics:

$$\mathbf{h}_0 = \frac{\sigma_u}{\sqrt{d}} \mathbf{U} \mathbf{x}, \quad \dot{\mathbf{h}}_t = \frac{\sigma_w}{\sqrt{n}} \mathbf{W} \phi(\mathbf{h}_t), \quad t \in [0, T]$$

Parameters:

- $\theta = \{v, W, U\}$
- $lackbox{lack}{v} \in \mathbb{R}^n$: Output weights
- $lackbox{W} \in \mathbb{R}^{n \times n}$: Hidden dynamics
- $lackbox{\textbf{U}} \in \mathbb{R}^{n \times d}$: Input projection
- \blacksquare n: Width, T: Time horizon, ϕ : Activation function

Key Challenge

Problem: Is the gradient of Neural ODE well-defined?

Existing NTK Theory:

- For finite-depth networks: prove by **induction** over layers
- Neural ODE is continuous → induction doesn't work!

This Paper's Strategy: Approximate with finite-depth ResNet

$$f^{L}(\boldsymbol{x}; \boldsymbol{\theta}) = \frac{\sigma_{v}}{\sqrt{n}} \boldsymbol{v}^{\top} \phi(\boldsymbol{h}^{L}(\boldsymbol{x}))$$

$$\mathbf{h}^{\ell} = \mathbf{h}^{\ell-1} + \kappa \cdot \frac{\sigma_w}{\sqrt{n}} \mathbf{W} \phi(\mathbf{h}^{\ell-1}), \quad \kappa = \frac{T}{L}$$

As $L \to \infty$: ResNet \to Neural ODE

Gradient Convergence

Proposition 2

Question: Does the ResNet gradient converge to the Neural ODE gradient?

Proposition 2

If ϕ is L_1 -Lipschitz and ϕ' is L_2 -Lipschitz:

$$\|\nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}^L - \nabla_{\boldsymbol{\theta}} f_{\boldsymbol{\theta}}\| \le \frac{C}{L}$$

Gradient Convergence

Why Smooth Activation?

Backward ODE (Adjoint Equation):

$$\dot{oldsymbol{\lambda}}_t = -rac{\sigma_w}{\sqrt{n}} \mathsf{diag}(\phi'(oldsymbol{h}_t)) oldsymbol{W}^ op oldsymbol{\lambda}_t$$

Gradient computation requires $\phi'(h_t)$ (derivative of activation).

ResNet Backward Pass:

$$\boldsymbol{\lambda}^{\ell-1} = \boldsymbol{\lambda}^{\ell} + \frac{T}{L} \cdot \operatorname{diag}(\phi'(\boldsymbol{h}^{\ell-1})) \boldsymbol{W}^{\top} \boldsymbol{\lambda}^{\ell}$$

As $L \to \infty$, this sum becomes an integral:

$$\sum_{\ell=1}^{L} \frac{T}{L} \phi'(\mathbf{h}^{\ell}) \longrightarrow \int_{0}^{T} \phi'(\mathbf{h}_{t}) dt$$

Why Do We Need NTK?

Recall: Training Dynamics

$$\boldsymbol{u}^{k+1} - \boldsymbol{y} = (\boldsymbol{I} - \eta \boldsymbol{H}^k)(\boldsymbol{u}^k - \boldsymbol{y})$$

where
$$\boldsymbol{H}_{ij}^k = K_{\boldsymbol{\theta}^k}(\boldsymbol{x}_i, \boldsymbol{x}_j) = \langle \nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}_i), \nabla_{\boldsymbol{\theta}} f(\boldsymbol{x}_j) \rangle$$

For Convergence:

- Need $\lambda_{\min}(\boldsymbol{H}^k) > 0$ throughout training
- In overparameterized regime $(n \to \infty)$: $\mathbf{H}^k \approx \mathbf{H}^0 \approx K_\infty$
- So we need: $\lambda_{\min}(K_{\infty}) > 0$

Key Question

Does K_{∞} even exist for Neural ODE? (infinite depth!)

Building Blocks

Step 1: Width Convergence (Proposition 4)

For fixed depth L, as width $n \to \infty$:

$$K^L_{m{ heta}} \xrightarrow{n o \infty} K^L_{\infty}$$
 (deterministic)

Step 2: Depth Convergence (Lemma 2)

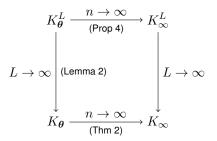
For fixed width n, as depth $L \to \infty$:

$$|K_{\boldsymbol{\theta}}^L - K_{\boldsymbol{\theta}}| \le \frac{C}{L}$$
 (uniform in n)

Step 3: Moore-Osgood Theorem

If both convergences are **uniform**, the limits can be exchanged!

Theorem 2: Double Limit



Theorem 2: Double Limit

Theorem 2

If ϕ is L_1 -Lipschitz and ϕ' is L_2 -Lipschitz:

$$K_{\boldsymbol{\theta}} \xrightarrow{n \to \infty} K_{\infty}$$

The NTK of Neural ODE converges to a deterministic kernel K_{∞} !

Corollary 1: Statement

Corollary 1

If ϕ is Lipschitz, nonlinear, and **non-polynomial**:

$$\lambda_0 = \lambda_{\min}(K_{\infty}) > 0$$

Proof Outline:

- 1. Decompose NTK: $K_{\infty} = K_{\infty}^{v} + K_{\infty}^{W} + K_{\infty}^{U}$
- 2. Show $K_{\infty}^{v} = \sigma_{v}^{2} \cdot \Sigma^{*}$ (NNGP kernel)
- 3. Use Hermite expansion to analyze Σ^*
- 4. Given Condition $\Rightarrow \Sigma^*$ is SPD $\Rightarrow K_{\infty}$ is SPD

Step 1: NTK Decomposition

NTK Definition:

$$K_{\theta}(x, \bar{x}) = \langle \nabla_{\theta} f(x), \nabla_{\theta} f(\bar{x}) \rangle$$

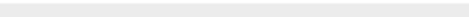
Since $\theta = \{v, W, U\}$:

$$K_{\infty} = \underbrace{\left\langle \frac{\partial f}{\partial v}, \frac{\partial f}{\partial v} \right\rangle}_{K_{\infty}^{v}} + \underbrace{\left\langle \frac{\partial f}{\partial W}, \frac{\partial f}{\partial W} \right\rangle}_{K_{\infty}^{W}} + \underbrace{\left\langle \frac{\partial f}{\partial U}, \frac{\partial f}{\partial U} \right\rangle}_{K_{\infty}^{U}}$$

Each term is positive semi-definite, so:

$$K_{\infty} \ge K_{\infty}^v$$

Key: If K_{∞}^{v} is SPD, then K_{∞} is also SPD!



Step 2: K_{∞}^{v} and NNGP Kernel

Gradient w.r.t. output layer:

$$\frac{\partial f}{\partial v} = \frac{\sigma_v}{\sqrt{n}} \phi(h_T)$$

Therefore:

$$K^{v}(x,\bar{x}) = \frac{\sigma_{v}^{2}}{n} \sum_{i=1}^{n} \phi(h_{T}^{(i)}(x))\phi(h_{T}^{(i)}(\bar{x}))$$

As $n \to \infty$ (Law of Large Numbers):

$$K_{\infty}^{v}(x,\bar{x}) = \sigma_{v}^{2} \cdot \underbrace{\mathbb{E}[\phi(h_{T}(x))\phi(h_{T}(\bar{x}))]}_{\Sigma^{*}(x,\bar{x})}$$

Step 3: Hermite Expansion

Hermite Polynomials: $\{h_n(x)\}_{n=0}^{\infty}$ form an orthonormal basis

- $h_0(x) = 1$, $h_1(x) = x$, $h_2(x) = x^2 1$, ...
- lacksquare Orthonormal: $\mathbb{E}_{z \sim \mathcal{N}(0,1)}[h_n(z)h_m(z)] = \delta_{nm}$

Any function can be expanded:

$$\phi(x) = \sum_{n=0}^{\infty} a_n h_n(x), \quad a_n = \mathbb{E}_{z \sim \mathcal{N}(0,1)}[\phi(z)h_n(z)]$$

Key Property:

For $(u, \bar{u}) \sim \mathcal{N}(0, S^*)$ with correlation ρ :

$$\mathbb{E}[h_n(u)h_m(\bar{u})] = \rho^n \delta_{nm}$$

Step 3: Hermite Expansion

NNGP Kernel:

$$\Sigma^*(x,\bar{x}) = \mathbb{E}[\phi(u)\phi(\bar{u})]$$

Substitute Hermite expansion:

$$\Sigma^* = \mathbb{E}\left[\left(\sum_{n=0}^{\infty} a_n h_n(u)\right) \left(\sum_{m=0}^{\infty} a_m h_m(\bar{u})\right)\right]$$
$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} a_n a_m \underbrace{\mathbb{E}[h_n(u)h_m(\bar{u})]}_{\rho^n \delta_{nm}}$$
$$= \sum_{n=0}^{\infty} a_n^2 \rho^n$$

Step 4: Theorem 11

Theorem 11

 Σ^* is SPD \iff infinitely many $a_n \neq 0$

Proof Idea (⇐):

- $\blacksquare \ \, \mathsf{Suppose} \,\, \Sigma^* c = 0 \,\, \mathsf{for} \,\, \mathsf{some} \,\, c \neq 0$
- Then $c^{\top} \Sigma^* c = \sum_{n=0}^{\infty} a_n^2 (c^{\top} \rho^{\circ n} c) = 0$
- Since $a_n^2 \ge 0$, we need $c^\top \rho^{\circ n} c = 0$ for all n with $a_n \ne 0$
- Infinitely many such constraints on $c\Rightarrow$ only c=0 satisfies all
- Contradiction! So Σ* is SPD.

Conclusion

Non-polynomial ϕ (e.g., Softplus, Tanh, GELU):

- Cannot be written as finite sum of Hermite polynomials
- Infinitely many $a_n \neq 0$
- By Theorem 11: SPD guaranteed!

Conclusion

Non-polynomial activation $\Rightarrow \Sigma^*$ is SPD $\Rightarrow K_{\infty}$ is SPD

Main

Assumption

Assumption 1. Let $\{x_i, y_i\}_{i=1}^N$ be a training set. Assume the following conditions:

- 1. Training set: $x_i \in \mathbb{S}^{d-1}$ and $x_i \neq x_j$ for all $i \neq j$; moreover, $|y_i| = O(1)$.
- 2. **Smoothness:** The activation function ϕ and its derivative ϕ' are L_1 and L_2 -Lipschitz continuous, respectively.
- 3. **Nonlinearity:** The activation ϕ is nonlinear and non-polynomial.

Main

Theorem

Theorem 3.

1. The parameters θ^k stay in a neighborhood of θ^0 , i.e.,

$$\|\boldsymbol{\theta}^k - \boldsymbol{\theta}^0\| \le C \|X\| \sqrt{\frac{L(\boldsymbol{\theta}_0)}{\boldsymbol{\lambda}_0}},$$

2. The loss $L(\theta^k)$ decays exponentially, i.e.,

$$L(\boldsymbol{\theta}^k) \le \left(1 - \frac{\eta \boldsymbol{\lambda}_0}{16}\right)^k L(\boldsymbol{\theta}^0).$$

where $\lambda_0 := \lambda_{\min}(K_{\infty}) > 0$, and the constant C > 0 depends only on $L_1, L_2, \sigma_v, \sigma_w, \sigma_u$, and T.

Covergence Analysis

It is hard to show the proof of Theorem (3) in general case, so we provide the convergence analysis of Neural ODEs defined equation 1 under the gradient descent.

$$f(\boldsymbol{x};\boldsymbol{\theta}) = \frac{\sigma_v}{\sqrt{n}} \boldsymbol{v}^{\top} \phi(\boldsymbol{h}_T)$$
 (1)

Lemma 16

Lemma 16. Assume ϕ and ϕ' are L_1 - and L_2 -Lipschitz continuous and $\lambda_0 := \lambda_{\min}(K_{\theta^0}) > 0$. Suppose we choose the width $n = \Omega \left(\|X\|^4 \|u^0 - y\|^2 / \lambda_0^3 \right)$ and the learning rate $\eta \leq 1/\|X\|^2$.

Then the parameters θ^k stay in the neighborhood of θ^0 , i.e.

$$||v^k - v^0||, ||W_k - W_0||, ||U^k - U^0|| \le C \frac{||X|| ||u^0 - y||}{\lambda_0},$$
 (2)

and the residual decays geometrically:

$$||u^k - y|| \le \left(1 - \frac{\eta \lambda_0}{8}\right)^k ||u^0 - y||,$$
 (3)

where C>0 depends only on $L_1,L_2,\sigma_v,\sigma_w,\sigma_u,T$.

Lemma 17

Lemma 17. Given θ , for all $t \in [0, T]$:

$$||h_t|| \le ||U|| \, ||x|| \, \exp\left(\frac{\sigma t}{\sqrt{n}} ||W||\right),\tag{4}$$

$$\|\lambda_t\| \le \frac{\|v\|}{\sqrt{n}} \exp\left(\frac{\sigma(T-t)}{\sqrt{n}}\|W\|\right).$$
 (5)

Intuition: Hidden state growth controlled by integrating ODE; adjoint decays backward in time. Constants arise from σ scaling and $1/\sqrt{n}$ normalization.

Lemma 18

Lemma 18 (as in paper). For two parameter tuples θ , $\bar{\theta}$ and all $t \in [0,T]$:

$$||h_t - \bar{h}_t|| \le ||\theta - \bar{\theta}|| \cdot ||U|| \, ||W|| \, \exp\left(\frac{\sigma t(||W|| + ||\bar{W}||)}{\sqrt{n}}\right) ||x||,$$
 (6)

$$\|\lambda_t - \bar{\lambda}_t\| \le \|\theta - \bar{\theta}\| \cdot \frac{\|v\| \|W\|}{\sqrt{n}} \exp\left(\frac{\sigma(T - t)(\|W\| + \|\bar{W}\|)}{\sqrt{n}}\right). \tag{7}$$

Intuition: Sensitivity ODEs + Grönwall give linear dependence on parameter perturbation; exponential factor from integrating Jacobians.

Preliminaries and notation

- Predictions vector: $u^k = [f(x_i; \theta^k)]_{i=1}^N$ and labels y.
- Loss function: $L(\theta) := \sum_{i=1}^{N} \frac{1}{2} (f_{\theta}(x_i) y_i)^2$.
- Gradient of f_{θ} :

$$\partial_v f_{\theta}(x) = \frac{\sigma_v}{\sqrt{n}} \phi(h_T)$$

$$\partial_W f_{\theta}(x) = \int_0^T \frac{\sigma_W}{\sqrt{n}} (\phi(h_t) \otimes \lambda_t) dt$$

$$\partial_U f_{\theta}(x) = \frac{\sigma_u}{\sqrt{d}} [x \otimes \lambda(0)]$$

Consider the gradients of loss function $L(\theta)$

$$\frac{\partial L(\theta)}{\partial v} = \sum_{i=1}^{N} \frac{\sigma_v}{\sqrt{n}} \phi(h_T(x_i)) (f_{\theta}(x_i) - y_i),$$

$$\frac{\partial L(\theta)}{\partial W} = \sum_{i=1}^{N} \left[\int_0^T \frac{\sigma_W}{\sqrt{n}} (\phi(h_t(x_i)) \otimes \lambda_t(x_i)) dt \right] (f_{\theta}(x_i) - y_i),$$

$$\frac{\partial L(\theta)}{\partial U} = \sum_{i=1}^{N} \frac{\sigma_u}{\sqrt{d}} [x_i \otimes \lambda(0)(x_i)] (f_{\theta}(x_i) - y_i)$$

Also, the gradient descent

$$\theta^{k+1} = \theta^k - \eta \frac{\partial L(\theta^k)}{\partial \theta}$$

Assume the inductive hypothesis: For all $i \leq k$,

$$||v_i||, ||W_i||, ||U_i|| \le C\sqrt{n}$$
$$||u^i - y|| \le (1 - \eta\alpha_0^2)^i ||u^0 - y||$$

where C>0 is a constant and $\alpha_0:=\sigma_{min}(\frac{\sigma_v}{\sqrt{n}}\Phi^0)$

Closed

Without loss generality, assume $\sigma_v=1, \sigma_w=\sigma, \sigma_u/\sqrt{d}=1$ and $L_1=L_2=1.$

Observe that

$$\left\|\frac{\partial f_{\theta}}{\partial v}\right\| = \left\|\frac{1}{\sqrt{n}}\phi(h_T)\right\| \le \frac{1}{\sqrt{n}}\left\|U\right\| \|x\|e^{\sigma T\|W\|/\sqrt{n}}$$

Closed

Observe that

$$\|\frac{\partial f_{\theta}}{\partial W}\| = \|\int_{0}^{T} \frac{\sigma_{w}}{\sqrt{n}} (\phi(h_{t}(x)) \otimes \lambda_{t}(x)) dt\|$$

$$\leq (\sigma T) \frac{\|U\|}{\sqrt{n}} \frac{\|v\|}{\sqrt{n}} \|x\| e^{\sigma T \|W\|/\sqrt{n}}$$

Closed

Observe that

$$\|\frac{\partial f_{\theta}}{\partial U}\| = \|\frac{\sigma_u}{\sqrt{d}}[x \otimes \lambda(0)(x)]\|$$

$$\leq \|x\| \cdot \frac{\|v\|}{\sqrt{n}} e^{\sigma T \|W\|/\sqrt{n}}$$

Closed

By using the inductive hypothesis, we obtain

$$\begin{split} & \| \frac{\partial f_{\theta}}{\partial v} \| \leq \frac{1}{\sqrt{n}} \| U \| \| x \| e^{\sigma T \| W \| / \sqrt{n}} \leq C e^{C \sigma T} \| x \| \\ & \| \frac{\partial f_{\theta}}{\partial W} \| \leq (\sigma T) \frac{\| U \|}{\sqrt{n}} \frac{\| v \|}{\sqrt{n}} \| x \| e^{\sigma T \| W \| / \sqrt{n}} \leq (\sigma T) C e^{C \sigma T} \| x \| \\ & \| \frac{\partial f_{\theta}}{\partial U} \| \leq \| x \| \cdot \frac{\| v \|}{\sqrt{n}} e^{\sigma T \| W \| / \sqrt{n}} \leq C e^{C \sigma T} \| x \| \end{split}$$

Closed

We can obtain

$$||v^{k+1} - v^{0}|| \leq \eta \sum_{i=0}^{k} ||\frac{\partial L(\theta^{i})}{\partial v}||$$

$$\leq \eta \sum_{i=0}^{k} Ce^{C\sigma T} ||X|| ||u^{i} - y||$$

$$\leq \eta Ce^{C\sigma T} ||X|| \sum_{i=0}^{k} (1 - \eta \alpha_{0}^{2})^{i} ||u^{0} - y||$$

$$\leq Ce^{C\sigma T} ||X|| ||u^{0} - y||/\alpha_{0}^{2}$$

Closed

Similarly,

$$||W^{k+1} - W^{0}|| \leq \eta \sum_{i=0}^{k} ||\frac{\partial L(\theta^{i})}{\partial W}||$$

$$\leq \eta \sum_{i=0}^{k} (\sigma T) C e^{C\sigma T} ||X|| ||u^{i} - y||$$

$$\leq \eta (\sigma T) C e^{C\sigma T} ||X|| \sum_{i=0}^{k} (1 - \eta \alpha_{0}^{2})^{i} ||u^{0} - y||$$

$$\leq (\sigma T) C e^{C\sigma T} ||X|| ||u^{0} - y|| / \alpha_{0}^{2}$$

Closed

Also

$$||U^{k+1} - U^{0}|| \le \eta \sum_{i=0}^{k} ||\frac{\partial L(\theta^{i})}{\partial U}||$$

$$\le \eta \sum_{i=0}^{k} Ce^{C\sigma T} ||X|| ||u^{i} - y||$$

$$\le \eta Ce^{C\sigma T} ||X|| \sum_{i=0}^{k} (1 - \eta \alpha_{0}^{2})^{i} ||u^{0} - y||$$

$$\le Ce^{C\sigma T} ||X|| ||u^{0} - y|| / \alpha_{0}^{2}$$

Closed

If we assume ||x|| = 1 and |y| = 1, then we need to ensure

$$Ce^{C\sigma T} \|X\| \|u^0 - y\|/\alpha_0^2 \le C\sqrt{n}$$
$$(\sigma T)Ce^{C\sigma T} \|X\| \|u^0 - y\|/\alpha_0^2 \le C\sqrt{n}$$

Hence,

$$\begin{split} \|v^{k+1}\| & \leq \|v^{k+1} - v^0\| + \|v^0\| \leq C\sqrt{n} \\ \|W^{k+1}\| & \leq \|W^{k+1} - W^0\| + \|W^0\| \leq C\sqrt{n} \\ \|U^{k+1}\| & \leq \|U^{k+1} - U^0\| + \|U^0\| \leq C\sqrt{n} \end{split}$$

Consistently decreases

Observe that

$$u^{k+1} - y = u^{k+1} - u^k + (u^k - y)$$

$$= \left(\frac{\partial \tilde{u}}{\partial \theta}\right)^{\top} (\theta^{k+1} - \theta^k) + (u^k - y)$$

$$= \left(\frac{\partial \tilde{u}}{\partial \theta}\right)^{\top} (-\eta \frac{\partial u^k}{\partial \theta}) (u^k - y) + (u^k - y)$$

$$= \left[I - \eta \left(\frac{\partial \tilde{u}}{\partial \theta}\right)^{\top} \left(\frac{\partial u^k}{\partial \theta}\right)\right] (u^k - y)$$

$$= \left[I - \eta \left(\frac{\partial u^k}{\partial \theta}\right)^{\top} \left(\frac{\partial u^k}{\partial \theta}\right)\right] (u^k - y) + \eta \left(\frac{\partial u^k}{\partial \theta} - \frac{\partial \tilde{u}}{\partial \theta}\right)^{\top} \frac{\partial u^k}{\partial \theta} (u^k - y)$$

where $\tilde{u}=u(\tilde{\theta})$ and $\tilde{\theta}$ is an interpolation in between θ^k and θ^{k+1}

Consistently decreases

Note that

$$\|\frac{\partial f}{\partial v} - \frac{\partial \hat{f}}{\partial v}\| = \|\frac{1}{\sqrt{n}}\phi(h_T) - \frac{1}{\sqrt{n}}\phi(\bar{h}_T)\|$$

$$\leq \frac{1}{\sqrt{n}}\|h_T - \bar{h}_T\|$$

$$\leq \frac{C}{\sqrt{n}}\|\theta - \bar{\theta}\|e^{C\sigma T}\|x\|$$

Consistently decreases

Similarly,

$$\|\frac{\partial f}{\partial W} - \frac{\partial \hat{f}}{\partial W}\| \leq \frac{\sigma}{\sqrt{n}} \|\int_{0}^{T} \phi(h_{t}) \otimes \lambda_{t} - \phi(\bar{h}_{t}) \otimes \bar{\lambda}_{t} dt\|$$

$$\leq \frac{\sigma}{\sqrt{n}} \int_{0}^{T} \left(\|h_{t} - \bar{h}_{t}\| \|\lambda_{t}\| + \|\bar{h}_{t}\| \|\lambda_{t} - \bar{\lambda}_{t}\| \right) dt$$

$$\leq C \frac{\sigma}{\sqrt{n}} \int_{0}^{T} \|\theta - \bar{\theta}\| e^{C\sigma t} \|x\| \cdot e^{C\sigma(T-t)} dt$$

$$\leq (\sigma T) \frac{C}{\sqrt{n}} \|\theta - \bar{\theta}\| e^{C\sigma T} \|x\|.$$

and
$$\|\frac{\partial f}{\partial U} - \frac{\partial f}{\partial U}\| \le \|x\| \|\lambda_0 - \bar{\lambda}_0\| \le \frac{C}{\sqrt{n}} \|\theta - \bar{\theta}\| e^{C\sigma T} \|x\|.$$

Consistently decreases

Hence, we have

$$\begin{split} \|\frac{\partial f}{\partial \theta} - \frac{\partial \bar{f}}{\partial \theta}\| &= \|\frac{\partial f}{\partial v} - \frac{\partial \bar{f}}{\partial v}\| + \|\frac{\partial f}{\partial W} - \frac{\partial \bar{f}}{\partial W}\| + \|\frac{\partial f}{\partial U} - \frac{\partial \bar{f}}{\partial U}\| \\ &\leq (\sigma T) \frac{C}{\sqrt{n}} \|\theta - \bar{\theta}\| e^{C\sigma T} \|x\|. \end{split}$$

Then

$$\|\frac{\partial u^k}{\partial \theta} - \frac{\partial \tilde{u}}{\partial \theta}\| \le (\sigma T) \frac{C}{\sqrt{n}} \|\theta^k - \tilde{\theta}\| e^{C\sigma T} \|X\|$$
$$\le (\sigma T) \frac{C}{\sqrt{n}} \|\theta^k - \theta^{k+1}\| e^{C\sigma T} \|X\|$$

where we can use the fact $\tilde{\theta} = \alpha \theta^k + (1 - \alpha) \theta^{k+1}$ for some $\alpha \in [0, 1]$.

Consistently decreases

Observe that

$$\|\theta^{k+1} - \theta^k\| = \eta \|\frac{\partial L(\theta^k)}{\partial \theta}\| = \eta \|\left(\frac{\partial u^k}{\partial \theta}\right)^{\top} (u^k - y)\|$$
$$\leq \eta(\sigma T) C e^{C\sigma T} \|X\| \|u^k - y\|.$$

Consistently decreases

Hence, we obtain

$$\left\| \frac{\partial u^k}{\partial \theta} - \frac{\partial \tilde{u}}{\partial \theta} \right\| \leq \eta (\sigma T)^2 \frac{C}{\sqrt{n}} e^{C\sigma T} \|X\|^2 \|u^k - y\|$$

Consistently decreases

using the assumption $\sqrt{n} \geq C(\sigma T)^2 e^{C\sigma T} \|X\|^2 \|u^0 - y\|/\alpha_0^3$,

$$\begin{split} \|\frac{\partial u^{k}}{\partial \theta} - \frac{\partial u^{0}}{\partial \theta}\| &\leq (\sigma T) \frac{C}{\sqrt{n}} \|\theta^{k} - \theta^{0}\| e^{C\sigma T} \|X\| \\ &\leq (\sigma T) \frac{C}{\sqrt{n}} e^{C\sigma T} \|X\| \sum_{i=0}^{k-1} \|\theta^{i+1} - \theta^{i}\| \\ &\leq \eta (\sigma T)^{2} \frac{C}{\sqrt{n}} e^{C\sigma T} \|X\|^{2} \sum_{i=0}^{k-1} \|u^{i} - y\| \\ &\leq \eta (\sigma T)^{2} \frac{C}{\sqrt{n}} e^{C\sigma T} \|X\|^{2} \sum_{i=0}^{k-1} (1 - \eta \alpha_{0}^{2}) \|u^{0} - y\| \\ &\leq \eta (\sigma T)^{2} \frac{C}{\sqrt{n}} e^{C\sigma T} \|X\|^{2} \|u^{0} - y\| / \sigma_{0}^{2} \leqslant \alpha_{0} / 2 \end{split}$$

Consistently decreases

It follows from Weyl's inequality that

$$\sigma_{min}\left(\frac{\partial u^k}{\partial \theta}\right) \ge \sigma_{min}\left(\frac{\partial u^0}{\partial \theta}\right) - \|\frac{\partial u^k}{\partial \theta} - \frac{\partial u^0}{\partial \theta}\| \ge \alpha_0/2$$

and so

$$\lambda_{min} \left[\left(\frac{\partial u^k}{\partial \theta} \right)^{\top} \left(\frac{\partial u^k}{\partial \theta} \right) \right] \ge \alpha_0^2 / 4$$

Consistently decreases

Therefore, we obtain

$$\begin{split} \|u^{k+1} - y\| &\leq [1 - \eta \alpha_0^2 / 4] \|u^k - y\| + \eta^2 (\sigma T)^3 \frac{C}{\sqrt{n}} e^{C\sigma T} \|X\|^3 \|u^k - y\|^2 \\ &\leq \left[1 - \eta \alpha_0^2 / 4 + \eta^2 (\sigma T)^3 \frac{C}{\sqrt{n}} e^{C\sigma T} \|X\|^3 \|u^0 - y\| \right] \|u^k - y\| \\ &= \left[1 - \eta \left(\alpha_0^2 / 4 - \eta (\sigma T)^3 \frac{C}{\sqrt{n}} e^{C\sigma T} \|X\|^3 \|u^0 - y\| \right) \right] \|u^k - y\| \\ &\leq [1 - \eta \alpha_0^2 / 8] \|u^k - y\|, \end{split}$$

where we assume $\sqrt{n} \ge 8C(\sigma T)^3 e^{C\sigma T} \|X\|^3 \|u^0 - y\|/\alpha_0^2$

Therefore, we show that

$$||v^{k+1} - v^{0}||, ||W^{k+1} - W_{0}||, ||U^{k+1} - U^{0}|| \le C \frac{||X|| ||u^{0} - y||}{\lambda_{0}},$$
$$||u^{k+1} - y|| \le \left(1 - \frac{\eta \lambda_{0}}{8}\right)^{k} ||u^{0} - y||,$$

By induction, we prove the Lemma 16.

Conclusion

Assumption 1. Let $\{x_i, y_i\}_{i=1}^N$ be a training set. Assume the following conditions:

- 1. Training set: $x_i \in \mathbb{S}^{d-1}$ and $x_i \neq x_j$ for all $i \neq j$; moreover, $|y_i| = O(1)$.
- 2. **Smoothness:** The activation function ϕ and its derivative ϕ' are L_1 and L_2 -Lipschitz continuous, respectively.
- 3. **Nonlinearity:** The activation ϕ is nonlinear and non-polynomial.

Conclusion

Theorem 3.

1. The parameters θ^k stay in a neighborhood of θ^0 , i.e.,

$$\|\boldsymbol{\theta}^k - \boldsymbol{\theta}^0\| \le C \|X\| \sqrt{\frac{L(\boldsymbol{\theta}_0)}{\boldsymbol{\lambda}_0}},$$

2. The loss $L(\theta^k)$ decays exponentially, i.e.,

$$L(\boldsymbol{\theta}^k) \le \left(1 - \frac{\eta \boldsymbol{\lambda}_0}{16}\right)^k L(\boldsymbol{\theta}^0).$$

where $\lambda_0 := \lambda_{\min}(K_{\infty}) > 0$, and the constant C > 0 depends only on $L_1, L_2, \sigma_v, \sigma_w, \sigma_u$, and T.

