

LoRA-Pro: Are Low-Rank Adapters Properly Optimized?

Zhengbo Wang ^{1,2} Jian Liang ^{2,3†} Ran He ^{2,3} Zilei Wang ¹ Tieniu Tan ^{2,4}

- ¹ University of Science and Technology of China
- ² NLPR & MAIS, Institute of Automation, Chinese Academy of Sciences (CASIA)
- ³ School of Artificial Intelligence, University of Chinese Academy of Sciences
- ⁴ Nanjing University

Proceedings of the International Conference on Learning Representations (ICLR), 2025

Presenter: Minwoo Jang (POSTECH GSAI), Donghyun Lim (POSTECH EE)

TL;DR

Low-Rank Adaptation (LoRA) methods often fail to faithfully mimic fullparameter fine-tuning, causing LoRA-adapted foundation models to converge to suboptimal solutions.

LoRA-Pro attributes this gap to the way gradients are computed and proposes a principled correction of the LoRA gradients.

Contents

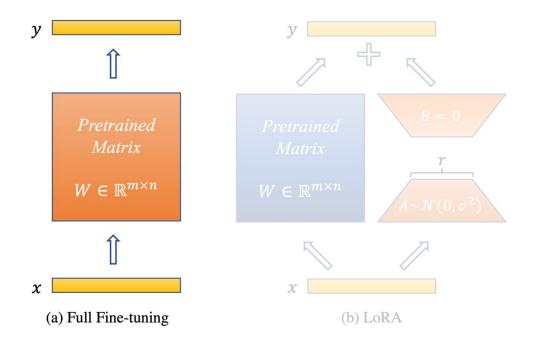
- 1. Introduction
- 2. Problem Formulation
- 3. Method
- 4. Summary

Contents

- 1. Introduction
 - Low-Rank Adaptation (ICLR 2022)
- 2. Problem Formulation
- 3. Method
- 4. Summary

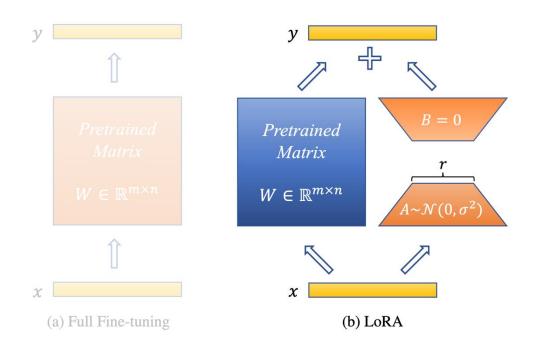
Full Fine-Tuning Vs. Low-Rank Adaptation (LoRA)

- Assume a pre-trained weight matrix $W_0 \in \mathbb{R}^{m \times n}$.
- Full Fine-Tuning: $W \leftarrow W \eta \cdot \Delta W$



Full Fine-Tuning Vs. Low-Rank Adaptation (LoRA)

- Assume a pre-trained weight matrix $W_0 \in \mathbb{R}^{m \times n}$.
- LORA: $W = W_0 + \Delta W = W_0 + \frac{\alpha}{r} \cdot BA$
 - $B \in \mathbb{R}^{m \times r}$, $A \in \mathbb{R}^{r \times n}$ with $r \ll \min\{m, n\}$



Low-Rank Adaptation (LoRA)

- Assume a pre-trained weight matrix $W_0 \in \mathbb{R}^{m \times n}$.
- LORA: $W = W_0 + \Delta W = W_0 + \frac{\alpha}{r} \cdot BA$
 - $B \in \mathbb{R}^{m \times r}$, $A \in \mathbb{R}^{r \times n}$ with $r \ll \min\{m, n\}$
 - Here, α denotes the scaling factor.
 - In practice, when comparing different LoRA ranks r, practitioners often keep the learning rate fixed and adjust α instead, typically choosing it proportional to r so that the effective scaling $\frac{\alpha}{r}$ remains roughly constant.
 - From now on, we denote $W = W_0 + s \cdot BA$, where $s \coloneqq \frac{\alpha}{r}$.

Contents

- 1. Introduction
- 2. Problem Formulation
 - Back-propagation with LoRA
- 3. Method
- 4. Summary

Back-propagation (Full Fine-Tuning)

• Let $W \in \mathbb{R}^{m \times n}$ be the (pre-trained) weight matrix.

lacktriangle The first-order change in the loss L is

$$dL = \left\langle \frac{\partial L}{\partial W}, dW \right\rangle_{F},$$

where $L(W + dW) \approx L(W) + dL$

• For simplicity, we omit the learning rate and consider a GD step

$$dW = -\frac{\partial L}{\partial W}$$
.

Back-propagation (Full Fine-Tuning)

• Define $g \coloneqq \frac{\partial L}{\partial W}$. Then, we obtain

$$dL = \left\langle \frac{\partial L}{\partial W}, dW \right\rangle_F = \left\langle \frac{\partial L}{\partial W}, -\frac{\partial L}{\partial W} \right\rangle_F = \left\langle g, -g \right\rangle_F = -\|g\|_F^2 \le 0$$

since the squared Frobenius norm is always non-negative.

- We parameterize the weight as $W = W_0 + s \cdot BA$.
 - Here, $B \in \mathbb{R}^{m \times r}$, $A \in \mathbb{R}^{r \times n}$ with $r \ll \min\{m, n\}$.
- Taking differentials, we have dW = sB(dA) + s(dB)A.

• Let $g \coloneqq \frac{\partial L}{\partial w}$, then the first-order change in the loss is

$$dL = \langle g, dW \rangle_F = \langle g, sB(dA) + s(dB)A \rangle_F$$

= $s\langle g, B(dA) \rangle_F + s\langle g, (dB)A \rangle_F$
= $\langle sB^T g, dA \rangle_F + \langle sgA^T, dB \rangle_F$.

$$dL = \langle sB^T g, dA \rangle_F + \langle sgA^T, dB \rangle_F$$

By the definition of gradient, we also have

$$dL = \left(\frac{\partial L}{\partial A}, dA\right)_F + \left(\frac{\partial L}{\partial B}, dB\right)_F$$

which implies that $\frac{\partial L}{\partial A} = sB^Tg$ and $\frac{\partial L}{\partial B} = sgA^T$.

These two identities will be used later, not now.

$$dL = \langle sB^T g, dA \rangle_F + \langle sgA^T, dB \rangle_F$$

By the definition of gradient, we also have

$$dL = \left\langle \frac{\partial L}{\partial A}, dA \right\rangle_F + \left\langle \frac{\partial L}{\partial B}, dB \right\rangle_F.$$

For simplicity, we omit the learning rate and consider a GD step

$$dA = -\frac{\partial L}{\partial A}, \qquad dB = -\frac{\partial L}{\partial B}$$

■ Define $g_{LoRA}^{B} \coloneqq \frac{\partial L}{\partial B}$ and $g_{LoRA}^{A} \coloneqq \frac{\partial L}{\partial A}$. Then, we obtain

$$\begin{split} dL &= \left| \frac{\partial L}{\partial A}, dA \right|_F + \left| \frac{\partial L}{\partial B}, dB \right|_F = \left| \frac{\partial L}{\partial A}, -\frac{\partial L}{\partial A} \right|_F + \left| \frac{\partial L}{\partial B}, -\frac{\partial L}{\partial B} \right|_F \\ &= \left| \left\langle g_{LoRA}^A, -g_{LoRA}^A \right\rangle_F + \left\langle g_{LoRA}^B, -g_{LoRA}^B \right\rangle_F \\ &= -\left\| \left| g_{LoRA}^A \right\|_F^2 - \left\| g_{LoRA}^B \right\|_F^2 \le 0 \end{split}$$

since the squared Frobenius norm is always non-negative.

Connection between Full Fine-Tuning and LoRA

What we've calculated before:

$$g_{LoRA}^{B} := \frac{\partial L}{\partial B} = sgA^{T}, \qquad g_{LoRA}^{A} := \frac{\partial L}{\partial A} = sB^{T}g, \qquad g := \frac{\partial L}{\partial W}$$

$$dA = -\frac{\partial L}{\partial A} = -g_{LoRA}^{A}, \qquad dB = -\frac{\partial L}{\partial B} = -g_{LoRA}^{B}$$

• Now, again noting that $W = W_0 + s \cdot BA$,

$$dW = sB(dA) + s(dB)A = s(-g_{LoRA}^B)A + sB(-g_{LoRA}^A)$$
$$= -(sg_{LoRA}^BA + sBg_{LoRA}^A)$$

Connection between Full Fine-Tuning and LoRA

$$dW = \frac{\partial W}{\partial A}dA + \frac{\partial W}{\partial B}dB = -(s \cdot Bg^A + s \cdot g^B A)$$

- Changes in A and B are inherently linked to changes in matrix W:
 - LoRA optimization, i.e., updating B with g^B and A with g^A , respectively, is equivalent to the full fine-tuning with $\tilde{g} \coloneqq s \cdot g^B A + s \cdot B g^A$.

Connection between Full Fine-Tuning and LoRA

$$dW = \frac{\partial W}{\partial A}dA + \frac{\partial W}{\partial B}dB = -(s \cdot Bg^A + s \cdot g^B A)$$

- Changes in A and B are inherently linked to changes in matrix W:
 - LoRA optimization, i.e., updating B with g^B and A with g^A , respectively, is equivalent to the full fine-tuning with $\tilde{g} \coloneqq s \cdot g^B A + s \cdot B g^A$.

Definition 1 (Equivalent Gradient). *In the context of LoRA optimization, we define the equivalent gradient as,*

$$\tilde{g} \triangleq sBg^A + sg^B A,$$

where s is the scaling factor, and g^A and g^B are gradients with respect to A and B, respectively.

Q) When using \tilde{g} , how much information is lost?

Lemma. Assume $B \in \mathbb{R}^{m \times r}$, $A \in \mathbb{R}^{r \times n}$ and $g^B \in \mathbb{R}^{m \times r}$, $g^A \in \mathbb{R}^{r \times n}$ represent matrices and their corresponding gradients in LoRA optimization. We demonstrate that the equivalent gradient:

 $\tilde{g} = sg^B A + sBg^A, \tag{17}$

where s > 0 is the scaling factor, has matrix rank at most 2r.

Note:

- In this Lemma, "rank" stands for the $\underline{\text{matrix rank}}$ dealt with in Linear Algebra, not the rank r defined for the parameter size of LoRA.
- The full gradient g can have at most $\min\{m,n\} \gg r$ matrix rank.
- Takeaways: Equivalent gradient has low rank.

Q) When using \tilde{g} , how much information is lost?

Lemma. Assume $B \in \mathbb{R}^{m \times r}$, $A \in \mathbb{R}^{r \times n}$ and $g^B \in \mathbb{R}^{m \times r}$, $g^A \in \mathbb{R}^{r \times n}$ represent matrices and their corresponding gradients in LoRA optimization. We demonstrate that the equivalent gradient:

 $\tilde{g} = sg^B A + sBg^A, \tag{17}$

where s > 0 is the scaling factor, has matrix rank at most 2r.

- Proof) Note that for any two matrices X and Y such that the product and sum are well-defined, the following holds:
 - rank(X + Y) ≤ rank(X) + rank(Y)
 - $rank(XY) \le min\{rank(X), rank(Y)\}$

Q) When using \tilde{g} , how much information is lost?

Lemma. Assume $B \in \mathbb{R}^{m \times r}$, $A \in \mathbb{R}^{r \times n}$ and $g^B \in \mathbb{R}^{m \times r}$, $g^A \in \mathbb{R}^{r \times n}$ represent matrices and their corresponding gradients in LoRA optimization. We demonstrate that the equivalent gradient:

 $\tilde{g} = sg^B A + sBg^A, \tag{17}$

where s > 0 is the scaling factor, has matrix rank at most 2r.

■ Proof) Hence, using $r \ll \min\{m, n\}$, we can conclude that $\operatorname{rank}(\tilde{g}) = \operatorname{rank}(sg^BA + sBg^A) \leq \operatorname{rank}(g^BA) + \operatorname{rank}(Bg^A)$ $\leq \min\{\operatorname{rank}(g^B), \operatorname{rank}(A)\} + \min\{\operatorname{rank}(B), \operatorname{rank}(g^A)\}$ $\leq r + r = 2r. \quad \blacksquare$

Contents

- 1. Introduction
- 2. Problem Formulation
- 3. Method
 - How to minimize $\|\tilde{g} g\|_F^2$?
- 4. Summary

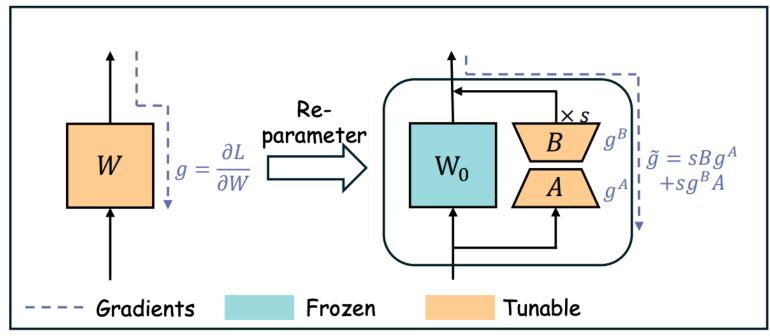
Goal: To minimize $\|\tilde{g} - g\|_F^2$

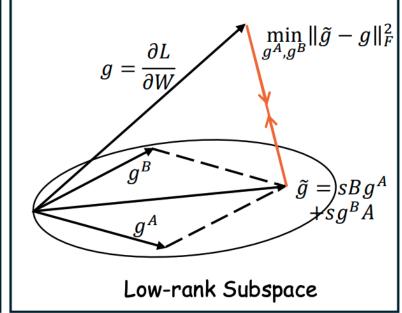
- What LoRA is supposed to do:
 - Update W directly with the full gradient g, as the same with full fine-tuning.

- What LoRA actually does:
 - Update B and A with the equivalent gradient $\tilde{g} \coloneqq s \cdot g^B A + s \cdot B g^A$, which may lose some information contained in g. (See Lemma: $\operatorname{rank}(\tilde{g}) \leq 2r$.)
- lacktriangle Goal of LoRA-Pro: Treat g^B and g^A as design variables, so that

$$\min_{\{g^A, g^B\}} \|\tilde{g} - g\|_F^2 \quad \text{s.t.} \quad dL \le 0$$

c.f.) Calculating g^B and $g^A \equiv \text{Projection}$





Q) How to solve the optimization problem?

Theorem 2.1. Assume matrices $B \in \mathbb{R}^{m \times r}$, $A \in \mathbb{R}^{r \times n}$ are both full rank. For the objective $\min_{g^A, g^B} \|\tilde{g} - g\|_F^2$, the optimal solutions are given by:

$$g^{A} = \frac{1}{s}(B^{T}B)^{-1}B^{T}g + XA = \frac{1}{s^{2}}(B^{T}B)^{-1}g_{lora}^{A} + XA,$$
 (8)

$$g^{B} = \frac{1}{s} [I - B(B^{T}B)^{-1}B^{T}]gA^{T}(AA^{T})^{-1} - BX$$
(9)

$$= \frac{1}{s^2} [I - B(B^T B)^{-1} B^T] g_{lora}^B (AA^T)^{-1} - BX.$$
 (10)

Here, $X \in \mathbb{R}^{r \times r}$ represents an arbitrary matrix.

Proof. See Appendix B.2.

Takeaways: There exists an optimal closed-form solution!

■ Define $L \coloneqq \|\tilde{g} - g\|_F^2 = \|sg^BA + sBg^A - g\|_F^2$. Then, it suffices to check the points where $\frac{\partial L}{\partial g^A} = 0$ and $\frac{\partial L}{\partial g^B} = 0$.

$$\frac{\partial L}{\partial a^A} = 2sB^T(sBg^A + sg^BA - g) = 2s(sB^TBg^A + sB^Tg^BA - B^Tg) = 0$$

$$B^T B g^A = \frac{1}{s} B^T g - B^T g^B A$$

• :
$$g^A = \frac{1}{s} (B^T B)^{-1} B^T g - (B^T B)^{-1} B^T g^B A$$

• Since B is full-rank, B^TB is invertible.

$$\frac{\partial L}{\partial a^B} = 2(sBg^A + sg^BA - g)sA^T = 2s(sBg^AA^T + sg^BAA^T - gA^T) = 0$$

$$g^B A A^T = \frac{1}{S} g A^T - B g^A A^T$$

- : $g^B = \frac{1}{s}gA^T(AA^T)^{-1} Bg^AA^T(AA^T)^{-1}$
 - Since A is full-rank, AA^T is invertible.

• Define $L\coloneqq \|\tilde{g}-g\|_F^2 = \|sg^BA+sBg^A-g\|_F^2$. Then, it suffices to check the points where $\frac{\partial L}{\partial g^A}=0$ and $\frac{\partial L}{\partial g^B}=0$.

$$\frac{\partial L}{\partial g^B} = 2(sBg^A + sg^BA - g)sA^T \qquad \Rightarrow \qquad g^B = \frac{1}{s}gA^T(AA^T)^{-1} - Bg^AA^T(AA^T)^{-1}$$

• Define $L\coloneqq \|\tilde{g}-g\|_F^2 = \|sg^BA+sBg^A-g\|_F^2$. Then, it suffices to check the points where $\frac{\partial L}{\partial g^A}=0$ and $\frac{\partial L}{\partial g^B}=0$.

$$\frac{\partial L}{\partial g^B} = 2(sBg^A + sg^B A - g)sA^T \qquad \Rightarrow \qquad g^B = \frac{1}{s}gA^T(AA^T)^{-1} - Bg^A A^T(AA^T)^{-1}$$

Combining these two, we obtain

$$g^{A} = \frac{1}{s} (B^{T}B)^{-1}B^{T}g - (B^{T}B)^{-1}B^{T} \left[\frac{1}{s} gA^{T} (AA^{T})^{-1} - Bg^{A}A^{T} (AA^{T})^{-1} \right] A$$
$$= \frac{1}{s} (B^{T}B)^{-1}B^{T}g - \frac{1}{s} (B^{T}B)^{-1}B^{T}gA^{T} (AA^{T})^{-1}A + g^{A}A^{T} (AA^{T})^{-1}A.$$

$$g^{A} = \frac{1}{s} (B^{T}B)^{-1}B^{T}g - \frac{1}{s} (B^{T}B)^{-1}B^{T}gA^{T}(AA^{T})^{-1}A + g^{A}A^{T}(AA^{T})^{-1}A$$

$$g^{A} - g^{A}A^{T}(AA^{T})^{-1}A = \frac{1}{s}(B^{T}B)^{-1}B^{T}g - \frac{1}{s}(B^{T}B)^{-1}B^{T}gA^{T}(AA^{T})^{-1}A$$

$$g^{A}[I - A^{T}(AA^{T})^{-1}A] = \frac{1}{s}(B^{T}B)^{-1}B^{T}g[I - A^{T}(AA^{T})^{-1}A]$$

$$g^{A} = \frac{1}{s} (B^{T}B)^{-1}B^{T}g - \frac{1}{s} (B^{T}B)^{-1}B^{T}gA^{T}(AA^{T})^{-1}A + g^{A}A^{T}(AA^{T})^{-1}A$$

$$g^{A} - g^{A}A^{T}(AA^{T})^{-1}A = \frac{1}{s}(B^{T}B)^{-1}B^{T}g - \frac{1}{s}(B^{T}B)^{-1}B^{T}gA^{T}(AA^{T})^{-1}A$$

$$g^{A}[I - A^{T}(AA^{T})^{-1}A] = \frac{1}{s}(B^{T}B)^{-1}B^{T}g[I - A^{T}(AA^{T})^{-1}A]$$

$$g^{A} = \frac{1}{s} (B^{T}B)^{-1}B^{T}g - \frac{1}{s} (B^{T}B)^{-1}B^{T}gA^{T}(AA^{T})^{-1}A + g^{A}A^{T}(AA^{T})^{-1}A$$

$$g^{A} - g^{A}A^{T}(AA^{T})^{-1}A = \frac{1}{s}(B^{T}B)^{-1}B^{T}g - \frac{1}{s}(B^{T}B)^{-1}B^{T}gA^{T}(AA^{T})^{-1}A$$

$$g^{A}[I - A^{T}(AA^{T})^{-1}A] = \frac{1}{s}(B^{T}B)^{-1}B^{T}g[I - A^{T}(AA^{T})^{-1}A]$$

• Since $P_A \coloneqq I - A^T (AA^T)^{-1}A$ is a projection matrix with rank (n-r) and $AP_A = 0$, the general solution for this equation is

$$g^A = \frac{1}{S} (B^T B)^{-1} B^T g + XA, \qquad X \in \mathbb{R}^{r \times r} .$$

$$g^{A} = \frac{1}{s} (B^{T}B)^{-1}B^{T}g + XA, \qquad X \in \mathbb{R}^{r \times r}$$

$$g^{B} = \frac{1}{s} gA^{T} (AA^{T})^{-1} - Bg^{A}A^{T} (AA^{T})^{-1}$$

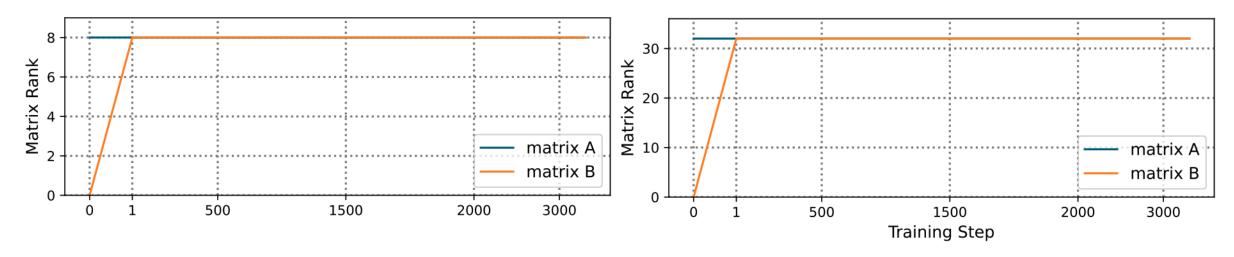
$$= \frac{1}{s} gA^{T} (AA^{T})^{-1} - B\left[\frac{1}{s} (B^{T}B)^{-1}B^{T}g + XA\right]A^{T} (AA^{T})^{-1}$$

$$= \frac{1}{s} [I - B(B^{T}B)^{-1}B^{T}]gA^{T} (AA^{T})^{-1} - BXAA^{T} (AA^{T})^{-1}$$

- Finally, substituting $g_{LoRA}^B \coloneqq \frac{\partial L}{\partial B} = sgA^T$ and $g_{LoRA}^A \coloneqq \frac{\partial L}{\partial A} = sB^Tg$,
 - $g^A = \frac{1}{s^2} (B^T B)^{-1} g^A_{LORA} + XA$
 - $g^B = \frac{1}{s^2} [I B(B^T B)^{-1} B^T] g^B_{LoRA} (AA^T)^{-1} BX$

c.f.) Justification for the Full-Rank Assumption

- Theorem 2.1. assumes that both $B \in \mathbb{R}^{m \times r}$ and $A \in \mathbb{R}^{r \times n}$ are full-rank.
- ullet Moreover, the Lemma implies that if g is not full-rank, the information loss might not that be significant.



Note: B is initialized as O.

Q) How to solve the optimization problem?

Theorem 2.2. When updating matrices A and B using the closed-form solution from Theorem 2.1, we proceed as follows:

$$A \leftarrow A - \gamma g^A \tag{11}$$

$$B \leftarrow B - \gamma g^B, \tag{12}$$

where $\gamma \geq 0$ denotes the learning rate. Our method ensures a decrease in the loss, akin to the standard gradient descent algorithm, expressed by:

$$dL = -\gamma \{ \langle g_{lora}^A, \frac{1}{s^2} (B^T B)^{-1} g_{lora}^A \rangle_F + \langle g_{lora}^B, \frac{1}{s^2} [I - B(B^T B)^{-1} B^T] g_{lora}^B (AA^T)^{-1} \rangle_F \} \le 0.$$
(13)

Proof. See Appendix B.3.

■ Takeways: The solution from LoRA-Pro guarantees $dL \leq 0$! Great!

Q) How to solve the optimization problem?

Theorem 2.2. When updating matrices A and B using the closed-form solution from Theorem 2.1, we proceed as follows:

$$A \leftarrow A - \gamma g^A \tag{11}$$

$$B \leftarrow B - \gamma g^B, \tag{12}$$

where $\gamma \geq 0$ denotes the learning rate. Our method ensures a decrease in the loss, akin to the standard gradient descent algorithm, expressed by:

$$dL = -\gamma \{ \langle g_{lora}^A, \frac{1}{s^2} (B^T B)^{-1} g_{lora}^A \rangle_F + \langle g_{lora}^B, \frac{1}{s^2} [I - B(B^T B)^{-1} B^T] g_{lora}^B (AA^T)^{-1} \rangle_F \} \le 0.$$
(13)

Proof. See Appendix B.3.

• First, we will show that dL is in the following form:

- Note that $dA=-\gamma g^A$, $dB=-\gamma g^B$, $\frac{\partial L}{\partial A}=g_{LoRA}^A$ and $\frac{\partial L}{\partial B}=g_{LoRA}^B$.
- Moreover, from Theorem 2.1., we've found the followings:
 - $g^A = \frac{1}{s^2} (B^T B)^{-1} g^A_{LORA} + XA$
 - $g^B = \frac{1}{S^2} [I B(B^T B)^{-1} B^T] g^B_{LoRA} (AA^T)^{-1} BX$
- lacktriangle By plugging g^A and g^B into the following equation

$$dL = \left\langle \frac{\partial L}{\partial A}, dA \right\rangle_F + \left\langle \frac{\partial L}{\partial B}, dB \right\rangle_F = -\gamma \left\langle g_{LoRA}^A, g^A \right\rangle_F - \gamma \left\langle g_{LoRA}^B, g^B \right\rangle_F$$

$$\begin{split} dL &= -\gamma \left\langle g_{LoRA}^A, g^A \right\rangle_F - \gamma \left\langle g_{LoRA}^B, g^B \right\rangle_F \\ &= -\gamma \left\langle g_{LoRA}^A, \frac{1}{s^2} (B^T B)^{-1} g_{LoRA}^A \right\rangle_F \\ &- \gamma \left\langle g_{LoRA}^A, XA \right\rangle_F \\ &- \gamma \left\langle g_{LoRA}^B, \frac{1}{s^2} [I - B(B^T B)^{-1} B^T] g_{LoRA}^B (AA^T)^{-1} \right\rangle_F \\ &+ \gamma \left\langle g_{LoRA}^B, BX \right\rangle_F \end{split}$$

$$dL = -\gamma \langle g_{LoRA}^{A}, g^{A} \rangle_{F} - \gamma \langle g_{LoRA}^{B}, g^{B} \rangle_{F}$$

$$= -\gamma \langle g_{LoRA}^{A}, \frac{1}{s^{2}} (B^{T}B)^{-1} g_{LoRA}^{A} \rangle_{F}$$

$$-\gamma \langle g_{LoRA}^{A}, XA \rangle_{F}$$

$$-\gamma \langle g_{LoRA}^{B}, \frac{1}{s^{2}} [I - B(B^{T}B)^{-1}B^{T}] g_{LoRA}^{B} (AA^{T})^{-1} \rangle_{F}$$

$$+\gamma \langle g_{LoRA}^{B}, BX \rangle_{F}$$

Since

$$\begin{split} \gamma \left\langle g_{LoRA}^{B}, BX \right\rangle_{F} - \gamma \left\langle g_{LoRA}^{A}, XA \right\rangle_{F} &= \gamma \left(\left\langle g_{LoRA}^{B}, BX \right\rangle_{F} - \left\langle g_{LoRA}^{A}, XA \right\rangle_{F} \right) \\ &= \gamma \left(\left\langle B^{T} g_{LoRA}^{B}, X \right\rangle_{F} - \left\langle g_{LoRA}^{A} A^{T}, X \right\rangle_{F} \right) \\ &= \gamma \left\langle B^{T} g_{LoRA}^{B} - g_{LoRA}^{A} A^{T}, X \right\rangle_{F} \\ &= \gamma \left\langle B^{T} s g A^{T} - s B^{T} g A^{T}, X \right\rangle_{F} \\ &= \gamma s \left\langle B^{T} g A^{T} - B^{T} g A^{T}, X \right\rangle_{F} = 0 \;, \end{split}$$

we can conclude that

$$dL = -\gamma \left[\left\langle g_{LoRA}^A, \frac{1}{S^2} (B^T B)^{-1} g_{LoRA}^A \right\rangle_E + \left\langle g_{LoRA}^B, \frac{1}{S^2} [I - B(B^T B)^{-1} B^T] g_{LoRA}^B (AA^T)^{-1} \right\rangle_E \right].$$

$$dL = -\gamma \left[\left\langle g_{LoRA}^{A}, \frac{1}{s^{2}} (B^{T}B)^{-1} g_{LoRA}^{A} \right\rangle_{F} + \left\langle g_{LoRA}^{B}, \frac{1}{s^{2}} [I - B(B^{T}B)^{-1}B^{T}] g_{LoRA}^{B} (AA^{T})^{-1} \right\rangle_{F} \right]$$

- Next, we will show that $dL \leq 0$.
 - Part 1: Both $(B^TB)^{-1}$ and $(AA^T)^{-1}$ are positive definite.
 - Part 2: $[I B(B^TB)^{-1}B^T]$ is positive semi-definite.
 - Part 3: $\left\langle g_{LoRA}^{A}, \frac{1}{s^2} (B^T B)^{-1} g_{LoRA}^{A} \right\rangle_F \ge 0$
 - Part 4: $\left\langle g_{LoRA}^{B}, \frac{1}{s^2} [I B(B^T B)^{-1} B^T] g_{LoRA}^{B} (AA^T)^{-1} \right\rangle_F \ge 0$

■ Part 1: Both $(B^TB)^{-1}$ and $(AA^T)^{-1}$ are positive definite (PD).

• Consider any non-zero vector $x \in \mathbb{R}^r$. Then, since B is full-rank, $\langle x, B^T B x \rangle = \langle B x, B x \rangle = \|B x\|^2 > 0$.

• Since B^TB is PD, so is $(B^TB)^{-1}$.

■ Part 1: Both $(B^TB)^{-1}$ and $(AA^T)^{-1}$ are positive definite (PD).

- Consider any non-zero vector $x \in \mathbb{R}^r$. Then, since B is full-rank, $\langle x, B^T B x \rangle = \langle B x, B x \rangle = \|B x\|^2 > 0$.
- Since B^TB is PD, so is $(B^TB)^{-1}$.
- In a similar way, we can say that $(AA^T)^{-1}$ is PD, because $\langle x, AA^Tx \rangle = \langle A^Tx, A^Tx \rangle = ||A^Tx||^2 > 0$.

- Part 2: $[I B(B^TB)^{-1}B^T]$ is positive semi-definite (PSD).
- Claim: $P := B(B^TB)^{-1}B^T$ is a projection matrix.
 - [Symmetricity] $(B(B^TB)^{-1}B^T)^T = B((B^TB)^{-1})^T B^T = B(B^TB)^{-1}B^T$
 - [Idempotence] $(B(B^TB)^{-1}B^T)^2 = (B(B^TB)^{-1}B^T)^T B(B^TB)^{-1}B^T$ = $B(B^TB)^{-1}B^T B(B^TB)^{-1}B^T$ = $B(B^TB)^{-1}B^T$

- Part 2: $[I B(B^TB)^{-1}B^T]$ is positive semi-definite (PSD).
- Consider any non-zero vector $x \in \mathbb{R}^m$. Then, since $P^T = P$ and $P^2 = P$. $\langle x, (I - B(B^T B)^{-1} B^T) x \rangle = \langle x, (I - P) x \rangle = \langle Px + (I - P) x, (I - P) x \rangle$ $=\langle Px.(I-P)x\rangle + \langle (I-P)x.(I-P)x\rangle$ $= x^T P^T (I - P) x + \|(I - P) x\|_F^2$ $= x^T P(I-P)x + ||(I-P)x||_F^2$ $= x^{T}(P - P^{2})x + \|(I - P)x\|_{F}^{2}$ $= \|(I-P)x\|_F^2 \ge 0$.

■ Part 3:
$$\left\langle g_{LoRA}^{A}, \frac{1}{s^2} (B^T B)^{-1} g_{LoRA}^{A} \right\rangle_F \ge 0$$

• Since $(B^TB)^{-1}$ is PD, there exists an invertible matrix U which satisfies $(B^TB)^{-1} = UU^T$ by the Cholesky Decomposition. Therefore,

$$\left\langle g_{LoRA}^{A}, \frac{1}{s^{2}} (B^{T}B)^{-1} g_{LoRA}^{A} \right\rangle_{F} = \frac{1}{s^{2}} \left\langle g_{LoRA}^{A}, UU^{T} g_{LoRA}^{A} \right\rangle_{F}$$

$$= \frac{1}{s^{2}} \left\langle U^{T} g_{LoRA}^{A}, U^{T} g_{LoRA}^{A} \right\rangle_{F}$$

$$= \frac{1}{s^{2}} \left\| U^{T} g_{LoRA}^{A} \right\|_{F}^{2} \ge 0.$$

■ Part 4:
$$\left\langle g_{LoRA}^{B}, \frac{1}{s^2} [I - B(B^T B)^{-1} B^T] g_{LoRA}^{B} (AA^T)^{-1} \right\rangle_F \ge 0$$

• Since $(AA^T)^{-1}$ is PD and $[I - B(B^TB)^{-1}B^T]$ is PSD, there exist invertible matrices U, V, which satisfy $(AA^T)^{-1} = U^TU$ and $[I - B(B^TB)^{-1}B^T] = VV^T$, respectively, by the Cholesky Decomposition. Therefore,

$$\left\langle g_{LoRA}^{B}, \frac{1}{s^{2}} [I - B(B^{T}B)^{-1}B^{T}] g_{LoRA}^{B} (AA^{T})^{-1} \right\rangle_{F} = \frac{1}{s^{2}} \left\langle g_{LoRA}^{A}, VV^{T} g_{LoRA}^{A} UU^{T} \right\rangle_{F}$$

$$= \frac{1}{s^{2}} \left\langle V^{T} g_{LoRA}^{A} U, V^{T} g_{LoRA}^{A} U \right\rangle_{F}$$

$$= \frac{1}{s^{2}} \left\| V^{T} g_{LoRA}^{A} U \right\|_{F}^{2} \ge 0.$$

Theorem 2.2. When updating matrices A and B using the closed-form solution from Theorem 2.1, we proceed as follows:

$$A \leftarrow A - \gamma g^A \tag{11}$$

$$B \leftarrow B - \gamma g^B, \tag{12}$$

where $\gamma \geq 0$ denotes the learning rate. Our method ensures a decrease in the loss, akin to the standard gradient descent algorithm, expressed by:

$$dL = -\gamma \{ \langle g_{lora}^A, \frac{1}{s^2} (B^T B)^{-1} g_{lora}^A \rangle_F + \langle g_{lora}^B, \frac{1}{s^2} [I - B(B^T B)^{-1} B^T] g_{lora}^B (AA^T)^{-1} \rangle_F \} \le 0.$$
(13)

Proof. See Appendix B.3.

• Therefore, we can conclude that $dL \leq 0$ when using Lora-Pro.

Q) Which one should we use for $X \in \mathbb{R}^{r \times r}$?

Theorem 2.1. Assume matrices $B \in \mathbb{R}^{m \times r}$, $A \in \mathbb{R}^{r \times n}$ are both full rank. For the objective $\min_{g^A, g^B} \|\tilde{g} - g\|_F^2$, the optimal solutions are given by:

$$g^{A} = \frac{1}{s} (B^{T}B)^{-1}B^{T}g + XA = \frac{1}{s^{2}} (B^{T}B)^{-1}g_{lora}^{A} + XA, \tag{8}$$

$$g^{B} = \frac{1}{s} [I - B(B^{T}B)^{-1}B^{T}]gA^{T}(AA^{T})^{-1} - BX$$
(9)

$$= \frac{1}{s^2} [I - B(B^T B)^{-1} B^T] g_{lora}^B (AA^T)^{-1} - BX. \tag{10}$$

Here, $X \in \mathbb{R}^{r \times r}$ represents an arbitrary matrix.

Proof. See Appendix B.2.

A) The optimal X can be found via Sylvester Equation.

Theorem 2.3. Consider the optimization problem,

$$\min_{X} \|g^{A} - g_{lora}^{A}\|_{F}^{2} + \|g^{B} - g_{lora}^{B}\|_{F}^{2}, \tag{14}$$

where g^A and g^B are the optimal solutions as stated in Theorem 2.1. The optimal X can be determined by solving the Sylvester equation:

$$B^{T}BX + XAA^{T} = -\frac{1}{s^{2}}(B^{T}B)^{-1}g_{lora}^{A}A^{T}$$
(15)

which has a unique solution X provided that B^TB and $-AA^T$ do not have any shared eigenvalues.

Proof. See Appendix B.4.

We will skip the details of how to solve this type of Sylvester equation.

• Let's denote
$$L = \|g^A - g_{LoRA}^A\|_F^2 + \|g^B - g_{LoRA}^B\|_F^2$$
.

- Then, we want to find X which satisfies $\frac{\partial L}{\partial X} = 0$.
- Note that we've found from Theorem 2.1. that
 - $g^A = \frac{1}{s^2} (B^T B)^{-1} g^A_{LORA} + XA$
 - $g^B = \frac{1}{S^2} [I B(B^T B)^{-1} B^T] g^B_{LoRA} (AA^T)^{-1} BX .$
- Moreover, we have $g_{LoRA}^A = sB^Tg$ and $g_{LoRA}^B = sgA^T$.

$$L = \left\| \frac{1}{s^2} (B^T B)^{-1} g_{LoRA}^A - s B^T g + X A \right\|_F^2$$

$$+ \left\| \frac{1}{s^2} [I - B(B^T B)^{-1} B^T] s g A^T (A A^T)^{-1} - s g A^T - B X \right\|_F^2$$

$$= \|C_A + X A\|_F^2 + \|C_B - B X\|_F^2.$$

$$\frac{\partial L}{\partial X} = 2(C_A + XA)A^T - 2B^T(C_B - BX) = 2(C_A A^T + XAA^T - B^T C_B + B^T BX)$$

$$\Rightarrow B^T B X + X A A^T = B^T C_B - C_A A^T$$
.

Summary of LoRA-Pro

- Compute standard LoRA gradients g_{LoRA}^{B} and g_{LoRA}^{A} .
- Using Theorem 2.1., get the optimal g^B and g^A analytically.
 - Which minimize the gap between \tilde{g} and g.
- Using Theorem 2.3, find the optimal X via Sylvester Equation.
 - Which minimizes the gap between g^A , g^B and g^A_{LoRA} , g^B_{LoRA} , respectively.
- Back-propagate with g^B and g^A to update B and A, respectively.

Contents

- 1. Introduction
- 2. Problem Formulation
- 3. Method
- 4. Summary

Summary

- Pros
 - High performance gain
 - With theoretical backgrounds & low computational cost
 - Easy to implement
 - Input: g_{LoRA}^{B} and g_{LoRA}^{A}
 - Output: g^B and g^A

```
# Step 2:- run optimizer and upscaling simultaneously
for i, group in enumerate(self.bit16_groups):
    self.timers(OPTIMIZER_GRADIENTS_TIMER).start()
    self.global_step += 1
    partition_id = dist.get_rank(group=self.real_dp_process_group[i])

self.lorapro_full_adjustment(partition_id)

if self.cpu_offload:
    single_grad_partition = self.single_partition_of_fp32_groups[i].grad
    self.unscale_and_clip_grads([single_grad_partition], scaled_global_grad_norm)

self.timers(OPTIMIZER_GRADIENTS_TIMER).stop()
    self.timers(OPTIMIZER_STEP_TIMER).start()
    self._optimizer_step(i)
```

Summary

- Cons
 - LoRA-Pro underperforms on some tasks full fine-tuning struggles on.
 - It aims to mimics full fine-tuning.

	MT-Bench	GSM8K	HumanEval
Full FT	5.30±0.11	59.36±0.85	35.31±2.13
LoRA	5.61±0.10	42.08±0.04	14.76±0.17
PiSSA	5.30±0.02	44.54±0.27	16.02±0.78
rsLoRA	5.25±0.03	45.62±0.10	16.01±0.79
LoRA+	5.71±0.08	52.11±0.62	18.17±0.52
DoRA	5.97±0.02	53.07±0.75	19.75±0.41
AdaLoRA	5.57±0.05	50.72±1.39	17.80±0.44
LoRA-GA	5.95±0.16	53.60±0.30	19.81±1.46
LoRA-GA (rank=32)	5.79±0.09	55.12±0.30	20.18±0.19
LoRA-GA (rank=128)	6.13±0.07	55.07±0.18	23.05±0.37
LoRA-Pro	5.86±0.06	54.23±0.79	22.76±0.35
LoRA-Pro (rank=32)	6.01±0.05	55.14±1.73	28.05±0.00
LoRA-Pro (rank=128)	5.68±0.14	56.48±0.23	34.55±2.46

Q & A

Thank you.

Pseudo-code of LoRA-Pro with SGD

Algorithm 1 LoRA-Pro with SGD optimizer

Require: Given initial learning rate γ , scaling factor s.

- 1: Initialize time step $t \leftarrow 0$, low-rank matrices $A_0 \in \mathbb{R}^{r \times n}$ and $B_0 \in \mathbb{R}^{m \times r}$
- 2: repeat
- 3: $t \leftarrow t + 1$
- 4: $g_{lora}^A, g_{lora}^B \leftarrow \text{SelectBatch}(A_{t-1}, B_{t-1})$ \triangleright Select batch and return the corresponding gradients
- 5: $A, B \leftarrow A_{t-1}, B_{t-1}$ \triangleright Obtain the low-rank matrices A and B
- 6: $X \leftarrow \text{SolveSylvester}(B^T B X + X A A^T = -\frac{1}{s^2}(B^T B)^{-1} g_{lora}^A A^T) > Compute X by solving the sylvester equation$
- 7: $g^A = \frac{1}{s^2} (B^T B)^{-1} g^A_{lora} + XA$ \Rightarrow Adjust the gradients of LoRA with Theorem 2.1
- 8: $g^B = \frac{1}{s^2} [I B(B^T B)^{-1} B^T] g^B_{lora} (AA^T)^{-1} BX$
- 9: $A_t \leftarrow A_{t-1} \gamma g^A$
- 10: $B_t \leftarrow B_{t-1} \gamma g^B$
- 11: **until** stopping criterion is met
- 12: **return** optimized parameters A_t and B_t

Experiments on Natural Language Understanding (T5-Base)

Target Modules: Q, K, V, Out, FC1, FC2

•
$$r = 8 / \alpha = 16 / s = \frac{\alpha}{r}$$

Method	MNLI	SST2	CoLA	QNLI	MRPC	Average
Full FT	86.33±0.00	94.75±0.21 94.04±0.11	80.70±0.24	93.19±0.22	84.56±0.73	87.91
LoRA	85.30±0.04		69.35±0.05	92.96±0.09	68.38±0.01	82.08
PiSSA	85.75±0.07	94.07±0.06	74.27±0.39	93.15±0.14	76.31±0.51	84.71
rsLoRA	85.73±0.10	94.19±0.23	72.32±1.12	93.12±0.09	52.86±2.27	79.64
LoRA+	85.81±0.09	93.85±0.24	77.53±0.20	93.14±0.03	74.43±1.39	84.95
LoRA-GA	85.70±0.09	94.11±0.18	80.57±0.20	93.18±0.06	85.29±0.24	87.77
DoRA	85.67±0.09	94.04±0.53	72.04±0.94	93.04±0.06	68.08±0.51	82.57
AdaLoRA	85.45±0.11	93.69±0.20	69.16±0.24	91.66±0.05	68.14±0.28	81.62
LoRA-Pro	86.03±0.19	94.19±0.13	81.94±0.24	93.42±0.05	86.60±0.14	88.44

Experiments on Language Generation (Llama-2-7B)

•
$$r = 8 / \alpha = 16 / s = \frac{\alpha}{\sqrt{r}}$$

	MT-Bench	GSM8K	HumanEval
Full FT	5.30±0.11	59.36±0.85	35.31±2.13
LoRA	5.61±0.10	42.08±0.04	14.76±0.17
PiSSA	5.30±0.02	44.54±0.27	16.02±0.78
rsLoRA	5.25±0.03	45.62±0.10	16.01±0.79
LoRA+	5.71±0.08	52.11±0.62	18.17±0.52
DoRA	5.97±0.02	53.07±0.75	19.75±0.41
AdaLoRA	5.57±0.05	50.72±1.39	17.80±0.44
LoRA-GA	5.95±0.16	53.60±0.30	19.81±1.46
LoRA-GA (rank=32)	5.79±0.09	55.12±0.30	20.18±0.19
LoRA-GA (rank=128)	6.13±0.07	55.07±0.18	23.05±0.37
LoRA-Pro	5.86±0.06	54.23±0.79	22.76±0.35
LoRA-Pro (rank=32)	6.01±0.05	55.14±1.73	28.05±0.00
LoRA-Pro (rank=128)	5.68±0.14	56.48±0.23	34.55±2.46

Experiments on Image Classification (CLIP-ViT-B/16)

•
$$r = 8 / \alpha = 16$$

LoRA adaptors are attached to the visual backbone only.

Method	Cars	DTD	EuroSAT	GTSRB	RESISC45	SUN397	SVHN	Average
Zero-shot	63.75	44.39	42.22	35.22	56.46	62.56	15.53	45.73
Full FT	84.23±0.06	77.44±0.19	98.09±0.03	94.31±0.28	93.95±0.0	75.35±0.10	93.04±0.18	88.06
LoRA	72.81±0.13	73.92±0.38	96.93±0.07	92.40±0.10	90.03±0.14	70.12±0.18	88.02±0.07	83.46
rsLoRA	82.38±0.20	78.03±0.76	98.06±0.08	95.04±0.11	93.96±0.18	75.38±0.24	92.74±0.18	87.94
LoRA+	72.87±0.18	74.07±0.45	97.01±0.02	92.42±0.18	89.96±0.11	70.17±0.15	88.08±0.05	83.51
DoRA	73.72±0.06	73.72±0.33	96.95±0.01	92.38±0.17	90.03±0.08	70.20±0.19	88.23±0.05	83.48
LoRA-GA	85.18±0.41	77.50±0.12	98.05±0.27	95.28±0.10	94.43±0.19	75.44±0.06	93.68±0.35	<u>88.51</u>
LoRA-Pro	85.87±0.08	78.64±0.25	98.46±0.03	95.66±0.05	94.75±0.21	76.42±0.14	94.63±0.20	89.20

Ablation Study for the Choice of X

choice of X	MT-Bench	GSM8K	HumanEval
Zero Sylvester (Thm. 2.3) Symmetry (Eq. (16))	5.76±0.02	53.83±1.16	22.96±1.96
	5.86±0.06	54.23±0.79	22.76±0.35
	5.63±0.12	54.46±0.88	22.56±1.06

$$X = -\frac{1}{2s}B(B^TB)^{-1}B^TgA(A^TA)^{-1}A = -\frac{1}{2s^2}B(B^TB)^{-1}B^Tg_{lora}^B(A^TA)^{-1}A.$$
 (16)

Justification for Training Costs

Table 5: We compare LoRA, LoRA-Pro, and Full Fine-Tuning in terms of memory cost, training time, and performance on the MT-Bench, GSM8K, and HumanEval datasets. Memory cost is measured using a single A6000 GPU with a batch size of 1. Training time is recorded on the WizardLM dataset using 8 A100 GPUs with DeepSpeed ZeRO-2 stage optimization.

	Memory Cost	Training Time	MT-Bench	GSM8K	HumanEval
Full FT	> 48 GB	2h 33min	5.30±0.11	59.36±0.85	35.31±2.13
LoRA	22.26 GB	1h 22min	5.61±0.10	42.08±0.04	14.76±0.17
LoRA-GA	22.60 GB	1h 25min	5.95±0.16	53.60±0.30	19.81±1.46
LoRA-Pro	23.05 GB	1h 23min	5.86±0.06	54.23±0.79	22.76±0.35