FEATURE AVERAGING: AN IMPLICIT BIAS OF GRADIENT DESCENT LEADING TO NON-ROBUSTNESS IN NEURAL NETWORKS

DL THEORY PRESENTATION

유병호, 하상범

POSTECH

December 10, 2025

Part I

INTRODUCTION & PROBLEM SETUP

INTRODUCTION

- ► In class, we learned that a two-layer ReLU network trained by gradient descent ends to learn the feature directions of the data.
- ► This paper goes one step further: it shows that gradient descent does not simply learn individual features, but actually performs *feature averaging* across all clusters within the same label.
- ► In this talk, we will examine how this averaging phenomenon emerges naturally from the training dynamics.

We need two components to fully specify the learning problem:

- ▶ Input & Output Data Distribution: Defines how labeled samples (x, y) are generated from an underlying cluster structure.
- ▶ **Neural Network Learner:** Specifies the architecture and training dynamics of the model used to learn from the data.

INPUT & OUTPUT DATA DSITRUBTION

Definition 2.1 (Multi-Cluster Data Distribution)

Given k vectors $\mu_1, \ldots, \mu_k \in \mathbb{R}^d$, called the cluster features, and a partition of [k] into two disjoint sets $J_{\pm} = (J_+, J_-)$, we define $D(\{\mu_j\}_{j=1}^k, J_{\pm})$ as a data distribution on $\mathbb{R}^d \times \{-1, 1\}$, where each data point (x, y) is generated as follows:

- 1. Draw a cluster index $j \sim \text{Unif}([k])$;
- 2. Set y = +1 if $j \in J_+$; otherwise $j \in J_-$ and set y = -1;
- 3. Draw $x := \mu_i + \xi$, where $\xi \sim \mathcal{N}(0, I_d)$.

For convenience, we write D instead of $D(\{\mu_j\}_{j=1}^k, J_{\pm})$ when these are clear from context. For $s \in \{\pm 1\}$, we write J_s to denote J_+ if s = +1 and J_- if s = -1.

► Example: $j \sim \text{Unif}([k]) \rightarrow y = \text{sign}(j \in J_+) \rightarrow x = \mu_j + \xi$, where $\xi \sim \mathcal{N}(0, I_d)$.

INPUT & OUTPUT DATA DSITRUBTION

Assumption 1 (Orthogonal Equinorm Cluster Features)

The cluster features $\{\mu_j\}_{j=1}^k$ satisfy $\|\mu_j\| = \sqrt{d}$ for all $j \in [k]$, and $\mu_i \perp \mu_j$ for all $i \neq j$.

Assumption 2 (Nearly Balanced Classification)

The partition J_{\pm} satisfies $c^{-1} \leq \frac{|J_{+}|}{|J_{-}|} \leq c$ for some constant $c \geq 1$.

These assumptions simplify the geometry: orthogonality isolates clusters in feature space, and near balance prevents trivial labeling bias, enabling clean theoretical analysis of optimization and generalization.

INPUT & OUTPUT DATA DSITRUBTION

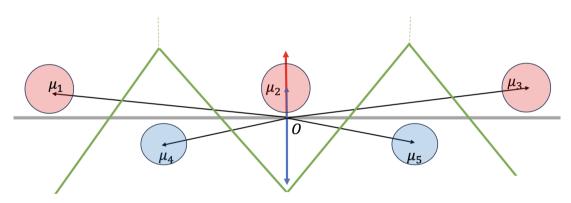


Figure. Cluster-based data distribution used in our analysis.

NEURAL NETWORK LEARNER

Definition 2.2 (Two-Layer Neural Network Learner)

We consider a two-layer ReLU network

$$f_{\theta}(x) = \sum_{j=1}^{2m} a_j \, \sigma(\langle w_j, x \rangle + b_j), \qquad \sigma(z) := \max\{0, z\},$$

where only the first-layer parameters (w_i, b_i) are trainable.

The second-layer weights are fixed and satisfy

$$a_j = \frac{1}{m} \text{ for } j \leq m, \qquad a_j = -\frac{1}{m} \text{ for } j > m.$$

First *m* neurons correspond to the positive group and the remaining *m* neurons to the negative group.

NEURAL NETWORK LEARNER

Definition 2.3 (Training Objective and Gradient Descent)

Given training data $\{(x_i, y_i)\}_{i=1}^n$ drawn from D, the empirical loss is

$$\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i f_{\theta}(x_i)), \qquad \ell(z) := \log(1 + \exp(-z)).$$

We train the network by gradient descent:

$$\theta^{(t+1)} = \theta^{(t)} - \eta \nabla_{\theta} \mathcal{L}(\theta^{(t)}),$$

where $\eta > 0$ is the step size.

Definition 2.4 (Neuron Activation Indicator)

For each sample x_i and neuron j, define the activation indicator

$$S_{i,j}^{(t)} := \mathbf{1}\Big(\langle w_j^{(t)}, x_i \rangle + b_j^{(t)} \geq 0\Big).$$

NEURAL NETWORK LEARNER

Definition 2.5 (Clean Accuracy)

For a given data distribution D over $\mathbb{R}^d \times \{-1,1\}$, the clean accuracy of a neural network $f_\theta : \mathbb{R}^d \to \mathbb{R}$ on D is defined as

$$\mathrm{Acc}_{D}^{\mathrm{clean}}(f_{\theta}) := \mathbb{P}_{(x,y) \sim D}[\operatorname{sgn}(f_{\theta}(x)) = y].$$

Definition 2.6 (Robust Accuracy.)

In this work, we focus on the ℓ_2 -robustness. The ℓ_2 δ -robust accuracy of f_θ on D is defined as

$$\mathrm{Acc}_{D}^{\mathrm{robust}}(f_{\theta}; \delta) := \mathbb{P}_{(x,y) \sim D} \big[\forall \rho \in B_{\delta} : \mathrm{sgn}(f_{\theta}(x + \rho)) = y \big],$$

where $B_{\delta} := \{ \rho \in \mathbb{R}^d : \|\rho\| \le \delta \}$ is the ℓ_2 -ball of radius δ .

A network f_{θ} is said to be δ -robust if

$$\mathrm{Acc}_{D}^{\mathrm{robust}}(f_{\theta};\delta) \geq 1 - \varepsilon(d)$$

for some function $\varepsilon(d) \to 0$ as $d \to \infty$.

WHAT WE HAVE SO FAR

- ▶ We have fully specified the learning problem:
 - A structured multi-cluster data distribution.
 - A two-layer ReLU neural network with fixed second-layer signs.
- These components define both the geometry of the data and the dynamics of the learner.
- Next: Using this setup, we analyze how gradient descent behaves and what representations the network learns.

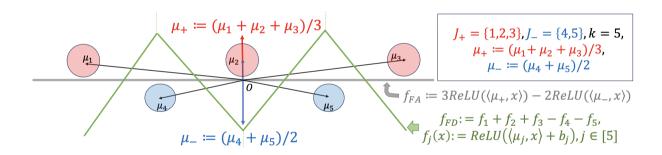
Part II

NETWORK LEARNER PROVABLY LEARNS FEATURE-AVERAGING SOLUTION

FEATURE AVERAGING VS FEATURE DECOUPLING

- ► Two possible representation behaviors:
 - **Feature Averaging:** The network collapses multiple clusters of the same label into a single averaged feature direction.
 - **Feature Decoupling:** The network learns separate directions for individual clusters, preserving fine-grained structure.
- In our setting, gradient descent on the binary-labeled model naturally leads to feature averaging.
- ► This behavior is simple but can severely limit robustness— which we will formalize on the next slides.

FEATURE AVERAGING VS FEATURE DECOUPLING



FEATURE AVERAGING NETWORK: DEFINITION

Definition 1.1 (Feature-Averaging Network)

We define $f_{FA}(x)$ as the following function:

$$f_{\mathrm{FA}}(\mathbf{x}) := |\mathbf{J}_{+}| \cdot \mathsf{ReLU}\left(\langle \mu_{+}, \mathbf{x} \rangle\right) - |\mathbf{J}_{-}| \cdot \mathsf{ReLU}\left(\langle \mu_{-}, \mathbf{x} \rangle\right),$$

where $\mu_+ := \frac{1}{|J_+|} \sum_{j \in J_+} \mu_j$ is the average of cluster centers in the positive class, and similarly $\mu_- := \frac{1}{|J_-|} \sum_{j \in J_-} \mu_j$ is that for the negative class.

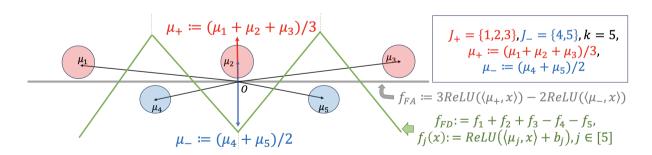
We say that a two-layer ReLU network $f_{\theta}(x)$ is a feature-averaging network iff $f_{\theta}(x) = C \cdot f_{FA}(x)$ for some C > 0.

FEATURE AVERAGING NETWORK: DEFINITION

Remark: The feature-averaging network fails to robustly classify perturbed data for a radius larger than $\Omega(\sqrt{d/k})$: in particular, consider the attack vector ρ that aligns with the negative direction of the averaged features, i.e.,

$$\rho \propto -\sum_{j\in J_+} \mu_j + \sum_{j\in J_-} \mu_j.$$

One can easily check that with $\|\rho\| = \delta = \Omega(\sqrt{d/k})$, the attack is successful, i.e., $\operatorname{sgn}(f_{\operatorname{FA}}(x+\rho)) = \operatorname{sgn}(f_{\operatorname{FA}}(x))$ due to the linearity of $f_{\operatorname{FA}}(x+\rho)$ over ρ .



WHY DOES FEATURE AVERAGING REDUCE ROBUSTNESS?

- In the positive class, we have multiple cluster features μ_j , which are orthogonal and satisfy $\|\mu_i\| = \sqrt{d}$.
- ▶ The Feature Averaging Network ignores the individual clusters and uses only the averaged feature

$$\mu_+ = \frac{1}{|J_+|} \sum_{j \in J_+} \mu_j.$$

▶ Because the μ_i 's are orthogonal, averaging spreads out their energy:

$$\|\mu_+\|^2 = \frac{1}{|J_+|^2} \sum_{j \in J_+} \|\mu_j\|^2 = \frac{d}{|J_+|} \quad \Rightarrow \quad \|\mu_+\| = \sqrt{\frac{d}{|J_+|}}.$$

- ▶ Thus, each original cluster feature has magnitude \sqrt{d} , but their average has only $\sqrt{d/k}$ magnitude.
- ▶ A smaller margin means that a perturbation of size $\|\rho\| \approx \sqrt{d/k}$ can flip the prediction, since

$$f(x + \rho) \approx f(x) + \langle \mu_+, \rho \rangle.$$

HYPER PARAMETER SETTING

Assumption 3 (Choices of Hyper-Parameters)

We assume that:

$$d = \Omega(k^{10})$$
 $c = \Theta(1)$ $n \in [\Omega(k^7), \exp(O(\log^2(d)))]$ $m = \Theta(k)$ $\eta = O(d^{-2})$ $\sigma_b^2 = \sigma_w^2 = O(\eta k^{-5}).$

Discussion. We choose these hyper-parameters to place the network in the feature-learning regime:

- \triangleright (i) **Data Dimension** d:d must be much larger than k so cluster features are orthogonal;
- ▶ (ii) **Sufficient Smaples** *n* : *n* must be large enough to observe every cluster;
- ▶ (iii) **Number of hidden neurons** m : width $m = \Theta(k)$ ensures the model can represent k clusters;
- \blacktriangleright (iv) small η and initialization prevent activation flips and keep the dynamics stable.

MAIN CLAIM

Theorem 1 (Main Claim)

In the setting of training a two-layer ReLU network on the binary classification problem for some $\gamma = o(1)$, after $\Omega(\eta^{-1}) \leq T \leq \exp(\widetilde{O}(k^{1/2}))$ iterations, with probability at least $1 - \gamma$, the neural network satisfies the following properties:

1. Gradient descent leads the network to the feature-averaging regime: there exists a time-variant coefficient $\lambda(T) \in [\Omega(1), +\infty)$ such that for all $s \in \{\pm 1\}$ and $r \in [m]$, the weight vector satisfies

$$w_{s,r}^{(T)} - \lambda(T) \sum_{j \in J_s} \|\mu_j\|^{-2} \mu_j \leq o(d^{-1/2}),$$

and the bias terms are sufficiently small, i.e., $b_{s,r}^{(T)} \leq o(1)$.

2. The clean accuracy is nearly perfect:

$$\mathrm{Acc}_{D}^{\mathrm{clean}}(f_{\theta(T)}) \geq 1 - \exp(-\Omega(\log^2 d)).$$

3. Consequently, the network is non-robust: for perturbation radius $\delta = \Omega(\sqrt{d/k})$, the δ -robust accuracy is nearly zero:

$$\mathrm{Acc}_{D}^{\mathrm{robust}}(f_{\theta(T)}; \delta) \leq \exp(-\Omega(\log^2 d)).$$

PRELIMINARIES: WEIGHT DECOMPOSITION

Lemma 1 (Weight Decomposition)

During the training dynamics, there exists the following coefficient sequences $\lambda_{s,r,j}^{(t)}$ and $\sigma_{s,r,i}^{(t)}$ for each $s \in \{-1, +1\}, r \in [m], j \in J, i \in I$ such that

$$w_{s,r}^{(t)} = w_{s,r}^{(0)} + \sum_{j \in J} \lambda_{s,r,j}^{(t)} \frac{\mu_j}{\|\mu_j\|^2} + \sum_{i \in I} \sigma_{s,r,i}^{(t)} \frac{\xi_i}{\|\xi_i\|^2}.$$

Lemma 2 (Updates of Coefficients)

For each $s \in \{-1, +1\}$, $r \in [m]$, $j \in [k]$, $i \in [n]$ and time $t \ge 0$, the following update equations hold:

$$\lambda_{s,r,j}^{(t+1)} = \lambda_{s,r,j}^{(t)} - \frac{s\eta}{nm} \sum_{i \in I_i} \frac{\ell_i'(t)}{\|\mu_j\|^2} \mathbf{1} \Big[r \in \mathcal{S}_{s,i}^{(t)} \Big],$$

$$\sigma_{\mathsf{s},\mathsf{r},i}^{(t+1)} = \sigma_{\mathsf{s},\mathsf{r},i}^{(t)} - \frac{\mathsf{s}\eta}{\mathsf{n}\mathsf{m}} \frac{\ell_i'(t)}{\|\xi_i\|^2} \, \mathbf{1} \Big[r \in \mathcal{S}_{\mathsf{s},i}^{(t)} \Big] \,,$$

where $\ell'_i(t) := \ell'(y_i f_{\theta(t)}(x_i))$ denotes the point-wise loss derivative and $I_j := \{i : x_i \text{ lies in cluster } j\}$.

PRELIMINARIES: WEIGHT DECOMPOSITION

Proof of Lemma 1.

By the update equation in gradient descent, we know that

$$w_{s,r}^{(t+1)} = w_{s,r}^{(t)} - \frac{s\eta}{nm} \sum_{i \in I} \ell_i'(t) \, x_i \, \mathbf{1} \Big[\langle w_{s,r}^{(t)}, x_i \rangle + b_{s,r}^{(t)} \geq 0 \Big] \, .$$

First, we construct a set of $\{\hat{\lambda}_{s,t,i}^{(t)}\}$ and $\{\hat{\sigma}_{s,t,i}^{(t)}\}$ according to the following recursive formulas:

$$\hat{\lambda}_{s,r,j}^{(t+1)} = \hat{\lambda}_{s,r,j}^{(t)} - \frac{s\eta}{nm} \cdot \sum_{i \in I_r} \frac{\ell_i'(t)}{\|\mu_i\|^2} \mathbf{1} \left[\langle w_{s,r}^{(t)}, x_i \rangle + b_{s,r}^{(t)} \ge 0 \right], \tag{1}$$

$$\hat{\sigma}_{s,r,i}^{(t+1)} = \hat{\sigma}_{s,r,i}^{(t)} - \frac{s\eta}{nm} \cdot \frac{\ell_i'(t)}{\|\xi_i\|^2} \mathbf{1} \left[\langle w_{s,r}^{(t)}, x_i \rangle + b_{s,r}^{(t)} \ge 0 \right], \tag{2}$$

with initialization

$$\hat{\lambda}_{s,r,j}^{(0)} = 0, \qquad \hat{\sigma}_{s,r,j}^{(0)} = 0.$$
 (3)

Now, we prove by induction on t that $\{\hat{\lambda}_{s,r,j}^{(t)}\}$ and $\{\hat{\sigma}_{s,r,i}^{(t)}\}$ constructed as above satisfy that

$$\mathbf{w}_{s,r}^{(t)} = \mathbf{w}_{s,r}^{(0)} + \sum_{i \in I} \hat{\lambda}_{s,r,j}^{(t)} \frac{\mu_j}{\|\mu_j\|^2} + \sum_{i \in I} \hat{\sigma}_{s,r,i}^{(t)} \frac{\xi_i}{\|\xi_i\|^2}.$$
 (4)

PRELIMINARIES: WEIGHT DECOMPOSITION

Proof of Lemma 1.

$$w_{s,r}^{(t+1)} = w_{s,r}^{(t)} - \frac{s\eta}{nm} \sum_{i \in I} \ell_i'(t) x_i \mathbf{1} \Big[\langle w_{s,r}^{(t)}, x_i \rangle + b_{s,r}^{(t)} \ge 0 \Big]$$
 (5)

$$= w_{s,r}^{(t)} - \frac{s\eta}{nm} \sum_{i \in I} \ell_i'(t) \left(\mu_{c(i)} + \xi_i \right) \mathbf{1} \left[\langle w_{s,r}^{(t)}, x_i \rangle + b_{s,r}^{(t)} \ge 0 \right]$$
 (6)

$$= w_{s,r}^{(t)} - \frac{s\eta}{nm} \left(\sum_{j \in J} \mu_j \sum_{i \in I_j} \ell_i'(t) \mathbf{1} \left[\langle w_{s,r}^{(t)}, x_i \rangle + b_{s,r}^{(t)} \ge 0 \right] + \sum_{i \in I} \xi_i \ell_i'(t) \mathbf{1} \left[\langle w_{s,r}^{(t)}, x_i \rangle + b_{s,r}^{(t)} \ge 0 \right] \right). \tag{7}$$

Hence,

$$w_{s,r}^{(t+1)} = w_{s,r}^{(0)} + \sum_{j \in J} \frac{\mu_j}{\|\mu_j\|^2} \left(\hat{\lambda}_{s,r,j}^{(t)} - \frac{s\eta}{nm} \sum_{i \in I_j} \frac{\ell_i'(t)}{\|\mu_j\|^2} \mathbf{1} \left[\langle w_{s,r}^{(t)}, x_i \rangle + b_{s,r}^{(t)} \ge 0 \right] \right)$$
(8)

$$+\sum_{i\in I}\frac{\xi_{i}}{\|\xi_{i}\|^{2}}\left(\hat{\sigma}_{s,r,i}^{(t)}-\frac{s\eta}{nm}\frac{\ell_{i}'(t)}{\|\xi_{i}\|^{2}}\mathbf{1}\Big[\langle w_{s,r}^{(t)},x_{i}\rangle+b_{s,r}^{(t)}\geq0\Big]\right) \tag{9}$$

$$= w_{s,r}^{(0)} + \sum_{i \in I} \hat{\lambda}_{s,r,j}^{(t+1)} \frac{\mu_j}{\|\mu_j\|^2} + \sum_{i \in I} \hat{\sigma}_{s,r,i}^{(t+1)} \frac{\xi_i}{\|\xi_i\|^2}.$$
 (10)

PROOF STEP 1: ACTIVATION STABILITY

A key step in the dynamics is that the activation patterns of neurons remain stable during early training.

Lemma 3 (Activation Stability)

For all $t \leq T_0$, with high probability,

$$S_{+1,i}^{(t)} = [m], \quad \forall i \in I_+, \quad \text{and} \quad S_{-1,i}^{(t)} = [m], \quad \forall i \in I_-.$$

Expanded form of the activation sets:

$$S_{\mathbf{s},i}^{(t)} = \left\{ r \in [m] : \underbrace{\langle w_{\mathbf{s},r}^{(t)}, x_i \rangle + b_{\mathbf{s},r}^{(t)}}_{\mathsf{ReLU \, pre-activation}} \geq 0
ight\}.$$

Thus the lemma above states that:

$$\forall i \in I_+, \ \forall r \in [m], \ \langle w_{+1,r}^{(t)}, x_i \rangle + b_{+1,r}^{(t)} \ge 0$$
 and $\forall i \in I_-, \ \forall r \in [m], \ \langle w_{-1,r}^{(t)}, x_i \rangle + b_{-1,r}^{(t)} \ge 0.$

- ▶ Therefore, every positive neuron activates on every positive sample, and similarly for the negative.
- ► Consequently, the indicator in Lemma 4 becomes

$$\mathbf{1}[r \in \mathcal{S}_{s,i}^{(t)}] = 1$$
 whenever $y_i = s$,

which greatly simplifies the coefficient dynamics.

PROOF STEP 1: ACTIVATION STABILITY

A key step in the dynamics is that the activation patterns of neurons remain stable during early training.

Lemma 4 (Updates of Coefficients (changed by Lemma 3))

For each $s \in \{-1, +1\}$, $r \in [m]$, $j \in [k]$, $i \in [n]$ and time $t \ge 0$, the following update equations hold:

$$\lambda_{s,r,j}^{(t+1)} = \lambda_{s,r,j}^{(t)} - \frac{s\eta}{nm} \sum_{i \in I_i} \frac{\ell_i'(t)}{\|\mu_j\|^2},$$

$$\sigma_{\mathbf{s},\mathbf{r},i}^{(t+1)} = \sigma_{\mathbf{s},\mathbf{r},i}^{(t)} - \frac{\mathbf{s}\eta}{\mathbf{n}\mathbf{m}} \frac{\ell_i'(t)}{\|\xi_i\|^2},$$

where $\ell'_i(t) := \ell'(y_i f_{\theta(t)}(x_i))$ denotes the point-wise loss derivative and $I_i := \{i : x_i \text{ lies in cluster } j\}$.

PROOF STEP 2: MARGIN BALANCE WITHIN EACH LABEL

Lemma 5 (Margin Balance)

For any i, i' with $y_i = y_{i'} = s$, we have

$$rac{\ell_i'(t)}{\ell_{i'}'(t)} = 1 \pm o(1)$$
 for all $t \leq T_0$.

Thus all samples from the same label contribute approximately equally to the coefficient updates. Combined with the balanced cluster sizes $|I_i| \approx n/k$, this yields

$$\sum_{i\in I_j}\ell_i'(t)=\frac{n}{k}\,\ell_s'(t)(1\pm o(1))\qquad\text{for all }j\in J_s.$$

PROOF STEP 3: EMERGENCE OF FEATURE AVERAGING

A more refined derivation of why the coefficients $\lambda_{s,r,j}^{(t)}$ become nearly identical for all clusters $j \in J_s$.

(A) Nearly identical updates within a label class.

Since each cluster $j \in J_s$ contains approximately n/k samples (by Assumption 2), we obtain

$$\sum_{i\in I_j}\ell_i'(t)=\frac{n}{k}\ell_s'(t)(1\pm o(1)).$$

Substituting this into the update rule of Lemma 4 gives

$$egin{aligned} \lambda_{s,r,j}^{(t+1)} &= \lambda_{s,r,j}^{(t)} - rac{s\eta}{nm} \sum_{i \in I_j} rac{\ell_i'(t)}{\|\mu_j\|^2} & \forall j \in J_s. \ \lambda_{s,r,j}^{(t+1)} &= \lambda_{s,r,j}^{(t)} - rac{s\eta}{k\|\mu_j\|^2} \, \ell_s'(t) (1 \pm o(1)), & \forall j \in J_s. \end{aligned}$$

Thus the increments $\lambda_{s,r,j}^{(t+1)} - \lambda_{s,r,j}^{(t)}$ are uniform across all clusters in J_s .

PROOF STEP 3: EMERGENCE OF FEATURE AVERAGING

(B) Convergence of coefficients to a common value.

Since all clusters in J_s receive asymptotically identical updates, the difference between any pair of coefficients evolves as

$$\lambda_{\mathbf{s},\mathbf{r},i}^{(t+1)} - \lambda_{\mathbf{s},\mathbf{r},i'}^{(t+1)} = \left(\lambda_{\mathbf{s},\mathbf{r},i}^{(t)} + \Delta \lambda_i^{(t)}\right) - \left(\lambda_{\mathbf{s},\mathbf{r},i'}^{(t)} + \Delta \lambda_{i'}^{(t)}\right).$$

By Step 3(A), the updates satisfy

$$\Delta \lambda_j^{(t)} = \Delta \lambda_{j'}^{(t)} (1 \pm o(1)), \qquad \Delta \lambda_j^{(t)} - \Delta \lambda_{j'}^{(t)} = o(1),$$

hence

$$\lambda_{s,r,j}^{(t+1)} - \lambda_{s,r,j'}^{(t+1)} = (\lambda_{s,r,j}^{(t)} - \lambda_{s,r,j'}^{(t)})(1 \pm o(1)).$$

Iterating over $t = 0, 1, \dots, T_0$ shows that these differences contract to o(1), which implies

$$\lambda_{s,r,j}^{(T)} = \lambda_s(T) \|\mu_j\|^{-2} \pm o(1), \quad \forall j \in J_s,$$

for a common scalar $\lambda_s(T) \in [\Omega(1), \infty)$.

PROOF STEP 3: EMERGENCE OF FEATURE AVERAGING

(C) Substitution into the weight decomposition.

Plugging the above estimate into the decomposition of Lemma 1 and using the fact that the noise coefficients contribute only $o(d^{-1/2})$, we obtain

$$w_{s,r}^{(T)} = \lambda_s(T) \sum_{j \in J_s} \|\mu_j\|^{-2} \mu_j + o(d^{-1/2}).$$

Hence every neuron in label group s aligns with the averaged cluster feature

$$\mu_{\mathbf{s}}^{\operatorname{avg}} = \sum_{j \in J_{\mathbf{s}}} \|\mu_j\|^{-2} \mu_j.$$

This establishes the emergence of the feature-averaging regime.

CLEAN ACCURACY OF THE FEATURE-AVERAGING NETWORK

Theorem 2

There exist values of b_+ and b_- such that the feature-averaging network $f_{\theta_{avg}}$ achieves 1 - o(1) standard accuracy over D.

Proof.

Recall that in the feature-averaging regime,

$$\mathbf{w}_{+} = \sum_{j \in J_{+}} \mu_{j}, \qquad \mathbf{w}_{-} = \sum_{j \in J_{-}} \mu_{j}, \qquad \mathbf{f}_{\theta_{\mathrm{avg}}}(\mathbf{x}) = \sum_{j \in J_{+}} \langle \mu_{j}, \mathbf{x} \rangle - \sum_{j \in J_{-}} \langle \mu_{j}, \mathbf{x} \rangle.$$

Now substitute the sample representation $x = \alpha \mu_i + \xi$ for a point in positive cluster i, and choose $b_+ = b_- = 0$. Then, with high probability,

$$f_{\theta_{\text{avg}}}(\mathbf{x}) \ge \langle \mu_i, \alpha \mu_i \rangle + \sum_{j \in J_+ \setminus \{i\}} \langle \mu_j, \xi \rangle - \sum_{j \in J_-} \langle \mu_j, \xi \rangle.$$

Since
$$\langle \mu_i, \alpha \mu_i \rangle = \Theta(d), \qquad |\langle \mu_j, \xi \rangle| \leq O(\Delta) = O\Big(\sigma \sqrt{d} \ln d\Big),$$
 we obtain $f_{\theta_{\mathrm{avg}}}(x) \geq \Theta(d) - O(k\Delta) = \Theta(d) - O\Big(k\sigma \sqrt{d} \ln d\Big) \geq 0.$ Thus $f_{\theta_{\mathrm{avg}}}$ correctly classifies (x,y) with high probability.

CLEAN ACCURACY AND ROBUST ACCURACY OF THE FEATURE-AVERAGING NETWORK

Theorem 3

Consequently, the network is non-robust. For a perturbation radius $\delta = \Omega\left(\frac{pd}{k}\right)$, the δ -robust accuracy satisfies $\mathrm{Acc}_{\mathcal{D}}^{\mathrm{robust}}(f_{\theta}(T), \delta) \leq \exp(-\Omega(\log^2 d))$.

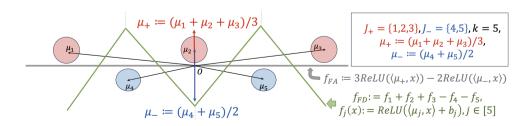
FEATURE AVERAGING NETWORK

FEATURE AVERAGING NETWORK: DEFINITION

Remark: The feature-averaging network fails to robustly classify perturbed data for a radius larger than $\Omega(\sqrt{d/k})$: in particular, consider the attack vector ρ that aligns with the negative direction of the averaged features, i.e.,

$$\rho \propto -\sum_{j \in J_+} \mu_j + \sum_{j \in J_-} \mu_j.$$

One can easily check that with $\|\rho\| = \delta = \Omega(\sqrt{d/k})$, the attack is successful, i.e., $\operatorname{sgn}(f_{\operatorname{FA}}(x+\rho)) = \operatorname{sgn}(f_{\operatorname{FA}}(x))$ due to the linearity of $f_{\operatorname{FA}}(x+\rho)$ over ρ .



Part III

FINE-GRAINED SUPERVISION IMPROVES ROBUSTNESS

SET UP

Training Set

First, Sample a training set $\mathcal{S} := \{(x_i, y_i)\}_{i=1}^n \subseteq \mathbb{R}^d \times \{\pm 1\}$ from \mathcal{D} , along with the cluster labels $\{\tilde{y}_i\}_{i=1}^n$ for all data points. Then a k-class neural network classifier is trained on $\tilde{\mathcal{S}} := \{(x_i, \tilde{y}_i)\}_{i=1}^n \subseteq \mathbb{R}^d \times [k]$.

Multi-Class Network Classifier

Train the following two-layer neural network: $\boldsymbol{F}_{\theta}(x) := (f_1(x), f_2(x), \dots, f_k(x)) \in \mathbb{R}^k$, where $f_j(x) := \frac{1}{h} \sum_{r=1}^h \text{ReLU}(\langle \boldsymbol{w}_{j,r}, \boldsymbol{x} \rangle), \ \theta := (w_{1,1}, w_{1,2}, \dots, w_{k,h}) \in \mathbb{R}^{khd}$, $h = \Theta(1)$ is the width of each sub-network.

 $\mathbf{F}_{\theta}(x)$ are converted to probabilities, namely $p_j(x) := \frac{\exp(f_j(x))}{\sum_{i=1}^k \exp(f_i(x))}$ for $j \in [k]$. For predicting the binary label, $\mathbf{F}_{\theta}(x) := \sum_{i \in J} p_i(x) - \sum_{i \in J} p_i(x)$.

► Training Objective

Using cross-entropy loss : $\mathcal{L}_{CE}(\theta) := -\frac{1}{n} \sum_{i=1}^{n} \log p_{\widetilde{y}_i}(x_i)$ Gradient descent: $\theta^{(t+1)} = \theta^{(t)} - \eta \nabla_{\theta} \mathcal{L}_{CE}(\boldsymbol{F}_{\theta^{(t)}})$ At initialization, $w_{i,r}^{(0)} \sim \mathcal{N}(0, \sigma_w^2 I_d)$ for some $\sigma_w > 0$.

MAIN CLAIM

Theorem 4 (Main Claim)

In the setting of training a two-layer ReLU network on the multiple classification problem for some $\gamma = o(1)$, after $\Omega(\eta^{-1}k^8) \leq T \leq \exp(\widetilde{O}(k^{1/2}))$ iterations, with probability at least $1 - \gamma$, the neural network satisfies the following properties:

1. The network converges to the feature-decoupling regime:

The network converges to the feature-decoupling regime: there exists a time-variant coefficient $\lambda^{(T)} \in [\Omega(\log k), +\infty)$ such that for all $j \in [k]$, $r \in [h]$, the weight vector $\mathbf{w}_{j,r}^{(T)}$ can be approximated as

$$\left\| w_{j,r}^{(T)} - \lambda^{(T)} \| \mu_j \|^{-2} \mu_j \right\| \leq o(d^{-1/2}).$$

2. The clean accuracy is nearly perfect:

$$\mathrm{Acc}_{clean}^{\mathcal{D}}(F_{\mu(T)}^{binary}) \geq 1 - \exp(-\Omega(\log^2 d)).$$

3. The corresponding binary classifier achieves optimal robustness:

for perturbation radius $\delta = O(\sqrt{d})$, the δ -robust accuracy is also nearly perfect, i.e., $Acc_{robust}^{\mathcal{D}}(F_{\theta(T)}^{binary}; \delta) \geq 1 - \exp(-\Omega(\log^2 d))$.

PRELIMINARIES

Lemma 6

Assuming the inductive hypotheses hold before time step t, for all $r \in [h], s, j \in J$, we have

$$\left| \langle \mathbf{w}_{s,r}^{(t)}, \boldsymbol{\mu}_j \rangle - \lambda_{s,r,j}^{(t)}
ight| \leq rac{\epsilon}{6}.$$

Lemma 7

Assuming the inductive hypotheses hold before time step t, for $i \in I$, $s \in J$, $s \neq c(i)$, $r \in [m]$, we have

$$|\lambda_{s,r,c(i)}^{(t)}| \le \epsilon, |\sigma_{s,r,i}^{(t)}| \le 2\epsilon.$$

PRELIMINARIES

Lemma 8

For all $s \in J$, $r \in [h]$, We have

$$\sqrt{d} \left\| \mathbf{w}_{s,r}^{(T)} - \lambda^{(T)} \mu_s \| \mu_s \|^{-2} \right\| = o(1).$$

Lemma 9

Let $\xi \sim \mathcal{N}(0, I_d)$. Then, with probability at least $1 - 2nd^{-\ln(d)/2}$, for all $s \in J$, $r \in [h]$ we have

$$|\langle \mathbf{w}_{s,r}^{(T)}, \boldsymbol{\xi} \rangle| \leq \frac{\epsilon}{6}.$$

PRELIMINARIES

Lemma 10

For all
$$j \in J$$
, $r \in [h]$, we have $\frac{\ln(T\eta)}{4} \le \lambda_{j,r,j}^{(T)} \le 4\ln(T+1)$.

Lemma 11

$$\begin{split} |\lambda^{(T)} - \lambda_{j,r,j}^{(T)}| &\leq 204k^2 \epsilon \lambda^{(T)}, \\ \lambda^{(T)} &\leq 4 \ln(T+1), \\ \lambda^{(T)} &\geq \frac{\ln(T\eta)}{4} \geq 2 \ln(k) = \Omega(\log(k)). \end{split}$$

Lemma 12

$$\epsilon = \max\left\{\frac{2\ln(\frac{n}{k})}{\sqrt{\frac{n}{k}} - \ln(\frac{n}{k})}, \frac{k^2\Delta}{d}, \frac{k^2}{n}\right\}. \ \epsilon = o(k^{-2.5}) \ \text{according to our hyper-parameter settings.}$$

PROOF OF THEOREM 4

For items 1 and 2 of Theorem 4, the proof process is identical to that of Feature Averaging.

Theorem 5

For perturbation radius $\delta = O(\sqrt{d})$, the δ -robust accuracy is also nearly perfect

Proof.

By lemma 8, we know that
$$\sqrt{d} \| \boldsymbol{w}_{s,r}^{(T)} \| \leq \lambda^{(T)} + o(1) \leq 2\lambda^{(T)}$$
. Then for any perturbation ρ with $\rho \leq \frac{\sqrt{d}}{10}$. $(:: \| \boldsymbol{w}_{s,r}^{(T)} \| \| \rho \| \leq \frac{\lambda^{(T)}}{5})$ We know that

$$\begin{split} \langle \boldsymbol{w}_{j,r}^{(T)}, \boldsymbol{x} + \boldsymbol{\rho} \rangle &= \langle \boldsymbol{w}_{j,r}^{(T)}, \boldsymbol{\mu}_{\boldsymbol{i}} \rangle + \langle \boldsymbol{w}_{j,r}^{(T)}, \boldsymbol{\xi} \rangle + \langle \boldsymbol{w}_{j,r}^{(T)}, \boldsymbol{\rho} \rangle \\ &\geq \lambda_{j,r,j}^{(T)} - \frac{\epsilon}{6} - \frac{\epsilon}{6} - \| \boldsymbol{w}_{j,r}^{(T)} \| \| \boldsymbol{\rho} \| \text{ (:: Lemma 6,9)} \\ &\geq \frac{3\lambda^{(T)}}{4} \text{ (:: Lemma 10,11,12)} \end{split}$$

PROOF OF THEOREM 4

Proof.

For $s \in J$, $s \neq j$, we know that

$$\begin{split} \langle \boldsymbol{w}_{s,r}^{(T)}, \boldsymbol{x} + \boldsymbol{\rho} \rangle &= \langle \boldsymbol{w}_{s,r}^{(T)}, \boldsymbol{\mu_i} \rangle + \langle \boldsymbol{w}_{s,r}^{(T)}, \boldsymbol{\xi} \rangle + \langle \boldsymbol{w}_{s,r}^{(T)}, \boldsymbol{\rho} \rangle \\ &\leq \lambda_{s,r,j}^{(T)} + \frac{\epsilon}{6} + \frac{\epsilon}{6} + \| \boldsymbol{w}_{s,r}^{(T)} \| \| \boldsymbol{\rho} \| \text{ ($\cdot \cdot :$ Lemma 6,9)} \\ &\leq \epsilon + \frac{\epsilon}{3} + \frac{\lambda^{(T)}}{5} \text{ ($\cdot \cdot :$ Lemma 7)} \\ &\leq \frac{3\lambda^{(T)}}{4} - \ln(k) \text{ ($\cdot \cdot :$ Lemma 10,11,12)} \end{split}$$

Thus we know that $f_j(\mathbf{x} + \mathbf{\rho}) \geq \frac{3\lambda^{(T)}}{4}$ and $f_s(\mathbf{x} + \mathbf{\rho}) \leq \frac{3\lambda^{(T)}}{4} - \ln(k)$.

PROOF OF THEOREM 4

Proof.

let $G(\mathbf{x})$ denote the numerator of $F_{\mathbf{e}^{(T)}}^{binary}(\mathbf{x})$, where denominator is $\sum_{s \in J} e^{f_s(\mathbf{x})}$. We know

$$\operatorname{sgn}(F_{\boldsymbol{\theta}^{(T)}}^{binary}) = \operatorname{sgn}(G).$$

Let us first consider the case where $G(x) \ge 0$.

Thus we have

$$egin{aligned} G(oldsymbol{x}+oldsymbol{
ho}) &= \sum_{j\in J_+} \exp\left(f_j(oldsymbol{x}+oldsymbol{
ho})
ight) - \sum_{j\in J_-} \exp\left(f_j(oldsymbol{x}+oldsymbol{
ho})
ight) \ &\geq \exp\left(3\lambda^{(T)}/4
ight) - \sum_{j\in J_-} \exp\left(3\lambda^{(T)}/4 - \ln(k)
ight) \ &\geq 0. \end{aligned}$$

That is to say $sgn(G(\mathbf{x} + \rho)) = sgn(G(\mathbf{x}))$,

which means $F_{\theta^{(T)}}^{binary}$ is robust under any perturbation with radius smaller than $\frac{\sqrt{d}}{10}$.

Part IV

EXPERIMENTS

DATASET

Synthetic Dataset

- Generate synthetic data following the approach described in Input & Output Data Distribution.
- Hyperparameters:

$$k = 10, d = 3072, m = 5, n = 1000, \alpha = \sigma = 1, \eta = 0.001, \sigma_w = \sigma_b = 10^{-5}, T = 100.$$

The first 5 clusters are labeled as positive and the remaining 5 as negative.

► CIFAR-10

- Merge the first 5 classes into one (positive) class.
- Merge the remaining 5 classes into the other (negative) class.
- Use the standard 10-class CIFAR-10 classification as the multi-class (10-way) task for comparison.

METHOD: THE METHOD OF CONSTRUCTING NEURAL NETWORKS

- ▶ Use a ResNet18 model pre-trained on CIFAR-10.
- Replace the original final layer with a two-layer ReLU network:

$$f_j(z) = \frac{1}{h} \sum_{r=1}^h \mathrm{ReLU}(\langle w_{j,r}, z \rangle), \quad j \in [10],$$

where z is the hidden representation of the penultimate layer.

- ▶ Only the last two layers of the whole network are trained; the pre-trained backbone is frozen.
- Set the width of the first layer to 30 hidden units (h = 3 neurons per class), so that the accuracy of the pre-trained model is not compromised.
- ► For the binary network with 15 positive and 15 negative neurons, we equally divide them into 5 positive and 5 negative classes to ensure a fair comparison, so that both models share the same form

$$F := (f_1, f_2, \dots, f_{10}) \in \mathbb{R}^{10},$$

and each sub-network f_i corresponds to a weight vector w_i .

METHOD: EXPLANATION OF SYMBOLS REQUIRED FOR REGIME INTERPRETATION

Inspired by the theoretical study of neuron collapse (Papyan et al., 2020), define the class feature

 $\mu_i :=$ average penultimate-layer output of class $i, i \in [10]$.

 \triangleright For 10-class classification, define the equivalent weight of sub-network f_i as

$$w_j := \frac{1}{h} \sum_{r=1}^h w_{j,r},$$

RESULT

► Feature-averaging & Feature-decoupling regime

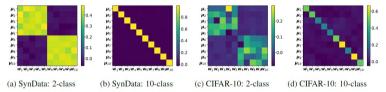


Figure 2: Illustration of feature averaging and feature decoupling on synthetic dataset (a,b) and CIFAR-10 dataset (c,d). Figure (a) and Figure (c) correspond to models trained using 2-class labels, and Figure (b) and Figure (d) correspond to models trained using 10-class labels, respectively. Each element in the matrix, located at position (i, j), represents the average cosine value of the angle between the feature vector \boldsymbol{u}_i of the i-th feature and the equivalent weight vector \boldsymbol{w}_i of the $f_i(\cdot)$.

► Robustness improvement

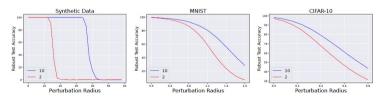


Figure 3: **Verifying robustness improvement:** We compare adversarial robustness between model trained by 2-class labels (red line) and model trained by 10-class labels (blue line) on synthetic data (the left), MNIST (the middle) and CIFAR-10 (the right).

References I