9. Approximation: Near-initial approximation

This slide

- A brief excursion to the behaviors of neural nets near its random initialization
- Motivation. Overparametrized nets stay near its initialization after training
 - Little movement = better generalization guarantee

This slide

- We want to show that:
 - if a neural net is
 - overparameterized
 - near its initialization

then it is can be approximated by its linearization at initialization (thus generalize well?)

- See MJT for
 - Full extension to NTK
 - Universal approximation with NTK

Setup

• We consider a bias-free two-layer net

$$f(\mathbf{x}; \mathbf{W}) = \sum_{i=1}^{m} a_i \cdot \sigma(\mathbf{w}_i^{\mathsf{T}} \mathbf{x})$$

- $\mathbf{x} \in \mathbb{R}^d$
- $\mathbf{w}_i \in \mathbb{R}^d$
- $a_i \in \mathbb{R}$

•
$$\mathbf{W}^{\mathsf{T}} = [\mathbf{w}_1 \,|\, \mathbf{w}_2 \,|\, \cdots \,|\, \mathbf{w}_m] \in \mathbb{R}^{d \times m}$$

- We study this, under the regime where $m \to \infty$
- Assumption. The 2nd layer weights are frozen; we only update \mathbf{w}_i

Initialization

• 2nd layer. Random binary initialization

$$a_i \sim \text{Unif}(\{-1, +1\})$$

• 1st layer. Random Gaussian initialization

$$\mathbf{w}_i \sim \mathcal{N}(0, I_d)$$

- Note. Should be scaled by the factors $1/\sqrt{m}$ and $1/\sqrt{d}$
 - But we skip for now, for simple notations

Taylor approximation

We are interested in the following approximation

$$f_0(\mathbf{x}; \mathbf{W}) := f(\mathbf{x}; \mathbf{W}_0) + \langle \partial_{\mathbf{W}} f(\mathbf{x}; \mathbf{W}_0), \mathbf{W} - \mathbf{W}_0 \rangle$$

- This is a classic 1st order Taylor approximation
 - The differential $\partial_{\mathbf{W}}$ is called the Clarke subdifferential
 - Roughly, the set of all gradient candidates for non-differentiable functions
 - By default, we select the minimum-norm gradient

Taylor approximation

More tediously, we can write the approximation as:

$$f_0(\mathbf{x}; \mathbf{W}) = \sum_{i=1}^m a_i \sigma(\mathbf{w}_{0,i}^\top \mathbf{x}) + \sum_{i=1}^m a_i \sigma'(\mathbf{w}_{0,i}^\top \mathbf{x}) \mathbf{x}^\top (\mathbf{w}_i - \mathbf{w}_{0,i})$$
$$= \sum_{i=1}^m a_i \cdot \left(\sigma(\mathbf{w}_{0,i}^\top \mathbf{x}) - \sigma'(\mathbf{w}_{0,i}^\top \mathbf{x}) \mathbf{w}_{0,i}^\top \mathbf{x} + \sigma'(\mathbf{w}_{0,i}^\top \mathbf{x}) \mathbf{w}_i^\top \mathbf{x} \right)$$

- This is an affine approximation of $f(\mathbf{x}; \mathbf{W})$
 - Affine with respect to W
 - Nonlinear with respect to **x**

Nets near init are almost linear

Claim

• Roughly. Whenever $\mathbf{W} \approx \mathbf{W}_0$, then we have

$$f(\cdot; \mathbf{W}) \approx f_0(\cdot; \mathbf{W})$$

- Smooth activation: easy
- ReLU: difficult

Claim

• Slightly more concretely, we want results like:

Claim (informal)

With a high probability, we have

$$f(\mathbf{x}; \mathbf{W}) - f_0(\mathbf{x}; \mathbf{W}) \le \frac{C \cdot \|\mathbf{W} - \mathbf{W}_0\|^{(\text{pow.})}}{m^{(\text{pow.})}}$$

- Tricky part is that $\|\mathbf{W} \mathbf{W}_0\|$ may have some dependencies on m
 - If it is a Frobenius norm...

Nets near initialization

Proposition 4.1.

Suppose that $\|\mathbf{x}\|_2 \le 1$, and let $\sigma : \mathbb{R} \to \mathbb{R}$ be a β -smooth function. (i.e., gradient is β -Lipschitz)

Then, for any parameters W, W_0 , we have

$$f(\mathbf{x}; \mathbf{W}) - f_0(\mathbf{x}; \mathbf{W}) \le \frac{\beta}{2} ||\mathbf{W} - \mathbf{W}_0||_F^2$$

• If we revive the 2nd layer's scaling factors $1/\sqrt{m}$, we get the desired property.

Proofidea

$$f(\mathbf{x}; \mathbf{W}) - f_0(\mathbf{x}; \mathbf{W}) \le \frac{\beta}{2} ||\mathbf{W} - \mathbf{W}_0||_F^2$$

- Proceed in two steps:
 - **Step 1.** Show that, for β -smooth function, we have:

$$|\sigma(x) - \sigma(x_0) - \sigma'(x_0)(x - x_0)| \le \frac{\beta(x - x_0)^2}{2}$$

• Any volunteer?

Proofidea

$$f(\mathbf{x}; \mathbf{W}) - f_0(\mathbf{x}; \mathbf{W}) \le \frac{\beta}{2} ||\mathbf{W} - \mathbf{W}_0||_F^2$$

- Proceed in two steps:
 - **Step 1.** Show that, for β -smooth function, we have:

$$|\sigma(x) - \sigma(x_0) - \sigma'(x_0)(x - x_0)| \le \frac{\beta(x - x_0)^2}{2}$$

- Any volunteer?
- Taylor's theorem.

$$f(x) = f(a) + f'(a)(x - a) + \int_{a}^{x} f''(t) \frac{(x - t)^{2}}{2} dt$$

Proofidea

$$f(\mathbf{x}; \mathbf{W}) - f_0(\mathbf{x}; \mathbf{W}) \le \frac{\beta}{2} ||\mathbf{W} - \mathbf{W}_0||_F^2$$

$$|\sigma(x) - \sigma(x_0) - \sigma'(x_0)(x - x_0)| \le \frac{\beta(x - x_0)^2}{2}$$

- Step 2. Use the step 1 result, to examine the LHS
 - Recall that we had:

$$f_0(\mathbf{x}; \mathbf{W}) = \sum_{i=1}^m a_i \cdot \left(\sigma(\mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x}) - \sigma'(\mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x}) \mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x} + \sigma'(\mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x}) \mathbf{w}_i^{\mathsf{T}} \mathbf{x} \right)$$

• Also recall that we had:

$$\|\mathbf{x}\|_2 \le 1$$

Extension to ReLU

• For ReLU, things are not that easy...

• Tool. Thankfully, we know that, for ReLU:

$$\sigma(x) = x \cdot \sigma'(x)$$

• Thus, we also have:

$$f_0(\mathbf{x}; \mathbf{W}) = \sum_{i=1}^m a_i \cdot \left(\sigma(\mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x}) - \sigma'(\mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x}) \mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x} + \sigma'(\mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x}) \mathbf{w}_i^{\mathsf{T}} \mathbf{x} \right)$$
$$= \sum_{i=1}^m a_i \cdot \sigma'(\mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x}) \mathbf{w}_i^{\mathsf{T}} \mathbf{x}$$

Extension to ReLU

• Thus, we also have:

$$f(\mathbf{x}; \mathbf{W}) - f_0(\mathbf{x}; \mathbf{W}) = \sum_{i=1}^m a_i \cdot \left(\sigma(\mathbf{w}_i^{\mathsf{T}} \mathbf{x}) - \sigma'(\mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x}) \mathbf{w}_i^{\mathsf{T}} \mathbf{x} \right)$$

$$= \sum_{i=1}^m a_i \cdot \mathbf{w}_i^{\mathsf{T}} \mathbf{x} \left(\sigma'(\mathbf{w}_i^{\mathsf{T}} \mathbf{x}) - \sigma'(\mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x}) \right)$$

$$= \sum_{i=1}^m a_i \cdot \mathbf{w}_i^{\mathsf{T}} \mathbf{x} \left(\mathbf{1} \{ \mathbf{w}_i^{\mathsf{T}} \mathbf{x} \ge 0 \} - \mathbf{1} \{ \mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x} \ge 0 \} \right) \qquad \cdots (\Rightarrow)$$

• Question. How do we bound this \rightleftharpoons ?

Extension to ReLU

$$\sum_{i=1}^{m} a_i \cdot \mathbf{w}_i^{\mathsf{T}} \mathbf{x} \left(\mathbf{1} \{ \mathbf{w}_i^{\mathsf{T}} \mathbf{x} \ge 0 \} - \mathbf{1} \{ \mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x} \ge 0 \} \right) \qquad \cdots (\updownarrow)$$

- Naïve. Maybe use something like Cauchy-Schwarz
 - Will get something like

$$\leq \sqrt{m} \|\mathbf{W}\|_F$$

• Non-diminishing as $m \to \infty$, even after multiplying $1/\sqrt{m}$

• Intuition. Exploit the randomness of the matrix \mathbf{W}_0

Concentration inequality

• The key intuition is formalized in the following lemma.

Lemma 4.2.

Let $\mathbf{u}_i \sim \mathcal{N}(0, I_d)$. Then, for any $\tau > 0$ and $\mathbf{x} \in \mathbb{R}^d$ with $\|\mathbf{x}\| > 0$, we have: $\sum_{i=0}^{m} \mathbf{1} \{ \|\mathbf{u}_i^{\mathsf{T}} \mathbf{x}\| \le \tau \|\mathbf{x}\| \} \le m\tau + \sqrt{m \log(1/\delta)}, \quad \text{with probability at least } 1 - \delta$

• Any useful intuitions?

$$\sum_{i=1}^{m} \mathbf{1} \{ \| \mathbf{u}_i^{\mathsf{T}} \mathbf{x} \| \le \tau \| \mathbf{x} \| \} \le m\tau + \sqrt{m \log(1/\delta)}, \quad \text{with probability at least } 1 - \delta$$

- Define $P_i = \mathbf{1}\{ |\mathbf{u}_i^{\mathsf{T}}\mathbf{x}| \leq \tau ||\mathbf{x}|| \}$.
- Then, proceed in three steps:
 - Step 1. By rotational invariance, we have

$$P_i = \mathbf{1}\{ |\mathbf{u}_{i,1}| \le \tau \}$$

$$\sum_{i=1}^{m} \mathbf{1} \{ \| \mathbf{u}_i^{\mathsf{T}} \mathbf{x} \| \le \tau \| \mathbf{x} \| \} \le m\tau + \sqrt{m \log(1/\delta)}, \quad \text{with probability at least } 1 - \delta$$

- Define $P_i = 1\{ |\mathbf{u}_i^\mathsf{T} \mathbf{x}| \le \tau ||\mathbf{x}|| \}$.
- Then, proceed in three steps:
 - Step 1. By rotational invariance, we have

$$P_i = 1\{ |\mathbf{u}_{i,1}| \le \tau \}$$

• Step 2. Inspecting the Gaussian density, we have:

$$\Pr[P_i = 1] = \int_{-\tau}^{+\tau} \frac{\exp(-z^2/2)}{\sqrt{2\pi}} \, \mathrm{d}z \le \frac{2\tau}{\sqrt{2\pi}} \le \tau$$

$$\sum_{i=1}^{m} \mathbf{1} \{ \| \mathbf{u}_i^{\mathsf{T}} \mathbf{x} \| \le \tau \| \mathbf{x} \| \} \le m\tau + \sqrt{m \log(1/\delta)}, \quad \text{with probability at least } 1 - \delta$$

- Define $P_i = 1\{ |\mathbf{u}_i^\mathsf{T} \mathbf{x}| \le \tau ||\mathbf{x}|| \}$.
- Then, proceed in three steps:
 - Step 1. By rotational invariance, we have

$$P_i = \mathbf{1}\{ \mid \mathbf{u}_{i,1} \mid \leq \tau \}$$

• Step 2. Inspecting the Gaussian density, we have:

$$\Pr[P_i = 1] = \int_{-\tau}^{+\tau} \frac{\exp(-z^2/2)}{\sqrt{2\pi}} \, \mathrm{d}z \le \frac{2\tau}{\sqrt{2\pi}} \le \tau$$

• Step 3. Apply Hoeffding's inequality to get the claim

The result

• Given the previous lemma, we are ready to prove today's main result

Lemma 4.1.

For any radius $B \ge 0$, any fixed $\mathbf{x} \in \mathbb{R}^d$ with $\|\mathbf{x}\| \le 1$, for any $\mathbf{W} \in \mathbb{R}^{m \times d}$ with $\|\mathbf{W} - \mathbf{W}_0\|_F \le B$, we have:

$$\left| f(\mathbf{x}; \mathbf{W}) - f_0(\mathbf{x}; \mathbf{W}) \right| \le m^{\frac{1}{3}} \left(\sqrt{2} B^{\frac{4}{3}} + B \left(\log(1/\delta) \right)^{1/4} \right),$$
 with probability at least $1 - \delta$

- Rough intuitions: Combine two claims
 - With high probability, $\|\mathbf{w}_{0,i}^{\top}\mathbf{x}\|$ won't be small
 - \bullet Reason: Gaussian initialization \mathbf{W}_0 concentrates around its "shell
 - If $\|\mathbf{W} \mathbf{W}_0\|_F$ is small, then $\|\mathbf{w} \mathbf{w}_{0,i}\|$ will be small for many i
 - Putting these together, we know that $\mathbf{w}_i^\mathsf{T} \mathbf{x}$ and $\mathbf{w}_{0,i}^\mathsf{T} \mathbf{x}$ have same signs quite often!

• Concretely, for each index $i \in [m]$, define the subset of indices:

$$S_1 = \left\{ i \in [m] \mid |\mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x}| \le \tau ||\mathbf{x}|| \right\}$$
$$S_2 = \left\{ i \in [m] \mid ||\mathbf{w}_i - \mathbf{w}_{0,i}|| \ge \tau \right\}$$

• Claim. These are the only bad cases — i.e., $\mathbf{w}_i^{\mathsf{T}}\mathbf{x}$ and $\mathbf{w}_{0,i}^{\mathsf{T}}\mathbf{x}$ have different signs

• Concretely, for each index $i \in [m]$, define the subset of indices:

$$S_1 = \left\{ i \in [m] \mid |\mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x}| \le \tau ||\mathbf{x}|| \right\}$$
$$S_2 = \left\{ i \in [m] \mid ||\mathbf{w}_i - \mathbf{w}_{0,i}|| \ge \tau \right\}$$

- Claim. These are the only bad cases i.e., $\mathbf{w}_i^\mathsf{T} \mathbf{x}$ and $\mathbf{w}_{0,i}^\mathsf{T} \mathbf{x}$ have different signs
- Suppose that we have $i \notin S_1 \cup S_2$.
- Suppose that we have $\mathbf{w}_i^\mathsf{T} \mathbf{x} > 0$.
 - As $i \notin S_1$, we know that $\mathbf{w}_{0,i}^{\mathsf{T}}\mathbf{x}$ is either $> \tau \|\mathbf{x}\|$ or $< -\tau \|\mathbf{x}\|$
 - However, we cannot have $< -\tau ||\mathbf{x}||$, as

$$\mathbf{w}_{0,i}^{\mathsf{T}}\mathbf{x} = \mathbf{w}_i^{\mathsf{T}}\mathbf{x} - (\mathbf{w}_i^{\mathsf{T}} - \mathbf{w}_{0,i}^{\mathsf{T}})\mathbf{x} > 0 - \tau \|\mathbf{x}\|$$

• Thus, in this case, we have $\mathbf{w}_{0,i}^{\mathsf{T}}\mathbf{x} > \tau \|\mathbf{x}\|$, meaning that they have a same sign

$$S_1 = \left\{ i \in [m] \middle| |\mathbf{w}_{0,i}^{\mathsf{T}} \mathbf{x}| \le \tau ||\mathbf{x}|| \right\} \qquad S_2 = \left\{ i \in [m] \middle| ||\mathbf{w}_i - \mathbf{w}_{0,i}|| \ge \tau \right\}$$

- Now, let's control the size of $S_1 \cup S_2$
 - By the union bound, we have

$$|S| := |S_1 \cup S_2| \le |S_1| + |S_2|$$

• $|S_1|$: By Lemma 4.2, we know that

$$|S_1| \le m\tau + \sqrt{m\log(1/\delta)}$$
, w.p. at least $1 - \delta$

• $|S_2|$: Notice that

$$B^2 \ge \|\mathbf{W} - \mathbf{W}_0\|_F^2 \ge \sum \mathbf{1}\{i \in S_2\} \cdot \|\mathbf{w}_i - \mathbf{w}_{0,i}\|^2 \ge |S_2| \cdot \tau^2$$

• Thus, we have $|S_2| \leq B^2/\tau^2$

• Combine these two bounds and optimize the sum w.r.t. τ , to get:

$$|S| \le 2m^{2/3}B^{2/3} + \sqrt{m\log(1/\delta)} \le m^{2/3} \left(2B^{2/3} + \sqrt{\log(1/\delta)}\right)$$
 w.p. $1 - \delta$

• Plus this into \(\sqrt{\text{and finish the proof}} \)

Wrappingup

- Takeaway. Wide width = More linearizable
 - If we take an infinite-width limit, perhaps NNs behave just like f_0 ?
 - Motivates NTK
 - NTK will be covered, if we have some time...