S. Approximation:
Benefits of depth




Recap

 We have shown several universal approximation results

e Three-layer: O
e Two-layer: O
e One-layer: X

e Thus, two layer is the minimum depth



This lecture

e Question. Why are deeper nets often better than shallower ones?



This lecture

e Answer. In terms of the approximation, deeper nets are more parameter-efficient

o In particular, certain depth separation holds:
e Deep nets can express some function with N neurons

e Shallow nets cannot, with N neurons

o Key question. What function is difficult to be learned by shallow nets?

e We count #neurons here, but anything can be used for separation

e e.g.,norm



Case 1: Wedges



Wedge

e We are interested in the wedge function

A(x)=2-6<x)—4-0<x—l)+2-0(x—1)

2
2X ... x€[0,1/2],
=12-2x - xell/2,1]
0 ... otherwise

o Expressible with a two-layer ReLLU net with 3 neurons



Wedges and Wedges

o Think about the composition
A%(x) = A o A(X)

¢ Question. What would this function look like? %,



Wedges and Wedges and Wedges

e Now, consider the L-time composition
A(x)

e Question. What would this look like? %,



Depths vs. Width

e For this A, we already have some ideas
e« Deep. For k wedges, we can express using O(log k) layers with constant width

e Shallow. For k£ wedges, you need O(k) neurons

e (Can we formally show that this is “necessary”?



Depths vs. Width

o Difficulty. Giving a lower bound for shallow nets
e Upper bound (Achievability)

min £ (s) < t
SES
e Easy, find a good s
o Lower bound (Impossibility)
min£(s) >t
SES

e Difficult; check all s?



Main claim

e Here is what we’ll prove today

Theorem 5.1.

Let L > 2. Letf = AL+2he a ReLU net with 312 + 6 nodes and 212 + 4 layers.
Then, any ReLU net g with < 2“nodes and < L layers cannot approximate 7, i.e.,

1
| f(x) —gx) | dx > —

e What tools can we use?



Tool: Aftfine Pieces



Tool: Counting Affine Pieces

e Idea. We show that shallow nets have small number of atfine pieces

Definition (Affine Pieces).

For any univariate function f : R — R, let N,(f) denote the number of affine pieces of f:

the minimum cardinality of a partition of R, so that fis affine when restricted to each piece.



Figure 1. How many linear regions? This figure shows a two-
dimensional slice through the 784-dimensional input space of
vectorized MNIST, as represented by a fully-connected ReLLU
network with three hidden layers of width 64 each. Colors denote
different linear regions of the piecewise linear network.

Hanin & Rolnick, “Complexity of Linear Regions in Deep Networks,” ICML 2019



Basic properties

e We have the following lemma

Lemma 5.2.

Let functions f, g and a scalar ¢ be given. Then, we have:
e Ny,(0)=1
e Ny(c-f)=N,(f)whenc # 0
o N,(f+c)=N,(f)
o Ny(f+8) SNy + Ny(8)
o Ny(fo8) S Ny(f) - Ny(8)

e Proofidea. Utilize the partitions, and the definition of linearity



Bounding the number of affine regions

o Using the properties, we can show the following lemma.

Lemma 5.1.
Letf: R — R be a ReLU network with L layers, of widths m;, ..., m;.
e Let g : R — R denote the output of some node at layer i. Then, we have
N,(g) <2'- (Hm1>
j<i
e Letm = (my +m,+ --- + my;)/L. Then, we have

Ny(f) <28 - m"

e Idea?



Bounding the number of affine regions

Letf: R — R be a ReLU network with L layers, of widths m, ..., m;.

e Let g : R — R denote the output of some node at layer i. Then, we have

N,(g) <2'- <Hm]>

J<i

e Proofidea. Prove by induction



Bounding the number of affine regions

Letf: R — R be a ReLU network with L layers, of widths m, ..., m;.

e Let g : R — R denote the output of some node at layer i. Then, we have

N,(g) <2'- <Hm]>

J<i

e Letm = (my +m, + --- +m;)/L. Then, we have
No(f) <28 - m~

e Proofidea. With the first claim, suffices to show that

[ [y <t

o Taking log, suffices to show that

! :
— 2, log(m) < log(ri)
e Ring a bell?



Bounding the number of affine regions

e Now we know that shallow nets have an UB on #affine regions

e Question. How do we translate it to a LB on L, approximate error for AL?

e Very neat graphical argument
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Count the triangles and compute the area!
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Case 2: x°



e Wedges were rather special functions

e Question. Do depth separation hold for simple functions as well?

o Answer. Yes—we'll look at the case of x?

2

e Note. A technique for expressing x“ can be used to express xy

1
xy == ()" =" =)



xz-approximating ReLU net

e We start from the fact that

X2=J 2-0(x—>b)db
0

o Recalling the sampling bounds, natural to assume a uniform distribution of neurons

o Approximate this by piecewise linear approximation, with uniform interval

o Let {;}'_, be a sequence of piecewise linear approximations on uniform intervals

e Here, h.(x) interpolates the partition into 2! intervals:

1 2 2!
Si .= O,—,,—,, N
( 2t 2 21>



A-approximators

e Observation. The approximators /; can be expressed in terms of wedges




A-approximators

e Observation. The approximators /; can be expressed in terms of wedges

e More formally, for any x € S\ S,_,, we have, for e = 1/2":
(x —€)* + (x + €)°
2
= x% — ( 2—€x+€x+€2)
1
4
e This does not depend on “which x” (i.e., the same height)

e Thus, making it A-like

h(x)—h._(x) = x> —

l Ai
hix) =x— ) —

Ai
j=1



What we want

e We want to show three claims
e Claim 1. Deep nets can construct /,(x) efficiently
e Claim 2. /i,(x) approximates x? well

o Claim 3. Shallow nets cannot approximate x> well



What we want

e Claim 1. Deep nets can construct /,(x) efficiently

h(x) 1A1 1A2 A
x =x—— — — — 00 mm —
’ 4 42 4i

e Can be constructed as many parallel nets
e Roughly 2i layers

e Roughly 4i neurons



What we want

e Claim 2. /i,(x) approximates x* well

e More concretely, we claim that

sup | A(x) — x?| < 471
x€[0,1]



What we want

e Proofidea.
e Fixsomex € [0,]1]
e We know that x € [jz, (j + 1)7] for some j, where 7 = 1/2

e Then, we can write:

: TR,
h) = (ot + 1)2 U™ = joy




What we want

o Claim 3. Shallow nets cannot approximate x* well

e More concretely, we claim that:
Any ReLU net with < L layers and < N nodes satisty

1
N
L (800 =) dx = o T ONI



What we want

e Proofidea. Use the fact that
(b —a)’

b
min I (x? = (ex + d))* dx =

(¢,d) 130



Next up

o Near-initialization approximation and kernel regime



