
8. Approximation: 
Benefits of depth



Recap
• We have shown several universal approximation results 

• Three-layer: O 
• Two-layer:    O 
• One-layer:    X 

• Thus, two layer is the minimum depth



This lecture
• Question. Why are deeper nets often better than shallower ones?



This lecture
• Question. Why are deeper nets often better than shallower ones? 

• Answer. In terms of the approximation, deeper nets are more parameter-efficient 

• In particular, certain depth separation holds: 
• Deep nets can express some function with N neurons 
• Shallow nets cannot, with N neurons 

• Key question. What function is difficult to be learned by shallow nets? 

• We count #neurons here, but anything can be used for separation 
• e.g., norm



Case 1: Wedges



Wedge
• We are interested in the wedge function ✏ 

 

                             

• Expressible with a two-layer ReLU net with 3 neurons

Δ(x) = 2 ⋅ σ(x) − 4 ⋅ σ(x −
1
2 ) + 2 ⋅ σ(x − 1)

=
2x ⋯ x ∈ [0,1/2],
2 − 2x ⋯ x ∈ [1/2,1]
0 ⋯ otherwise



Wedges and Wedges
• Think about the composition 

 

• Question. What would this function look like? ✏

Δ2(x) = Δ ∘ Δ(x)



Wedges and Wedges and Wedges
• Now, consider the -time composition 

 

• Question. What would this look like? ✏

L
ΔL(x)



Depths vs. Width
• For this , we already have some ideas 

• Deep. For  wedges, we can express using  layers with constant width 

• Shallow. For  wedges, you need  neurons 

• Can we formally show that this is “necessary”?

Δ
k O(log k)

k O(k)



Depths vs. Width
• Difficulty. Giving a lower bound for shallow nets 

• Upper bound (Achievability) 

 

• Easy, find a good  

• Lower bound (Impossibility) 

 

• Difficult; check all ?

min
s∈S

ℓ(s) ≤ t

s

min
s∈S

ℓ(s) ≥ t

s



Main claim
• Here is what we’ll prove today 

Theorem 5.1. 

Let . Let  be a ReLU net with  nodes and  layers. 

Then, any ReLU net  with  nodes and  layers cannot approximate , i.e., 

 

• What tools can we use?

L ≥ 2 f = ΔL2+2 3L2 + 6 2L2 + 4
g ≤ 2L ≤ L f

∫[0,1]
| f(x) − g(x) | dx ≥

1
32



Tool: Affine Pieces



Tool: Counting Affine Pieces
• Idea. We show that shallow nets have small number of affine pieces 

Definition (Affine Pieces). 

For any univariate function , let  denote the number of affine pieces of : 

the minimum cardinality of a partition of , so that  is affine when restricted to each piece.

f : ℝ → ℝ NA( f ) f
ℝ f



Hanin & Rolnick, “Complexity of Linear Regions in Deep Networks,” ICML 2019



Basic properties
• We have the following lemma 

Lemma 5.2. 

Let functions  and a scalar  be given. Then, we have: 

•  

•  when  

•  

•  

•  

• Proof idea. Utilize the partitions, and the definition of linearity

f, g c
NA(0) = 1
NA(c ⋅ f ) = NA( f ) c ≠ 0
NA( f + c) = NA( f )
NA( f + g) ≤ NA( f ) + NA(g)
NA( f ∘ g) ≤ NA( f ) ⋅ NA(g)



Bounding the number of affine regions
• Using the properties, we can show the following lemma. 

Lemma 5.1. 

Let  be a ReLU network with  layers, of widths . 

• Let  denote the output of some node at layer . Then, we have 

 

• Let . Then, we have 

 

• Idea?

f : ℝ → ℝ L m1, …, mL

g : ℝ → ℝ i

NA(g) ≤ 2i ⋅ (∏
j<i

mj)
m̄ = (m1 + m2 + ⋯ + mL)/L

NA( f ) ≤ 2L ⋅ m̄L



Bounding the number of affine regions
Let  be a ReLU network with  layers, of widths . 

• Let  denote the output of some node at layer . Then, we have 

 

• Proof idea. Prove by induction

f : ℝ → ℝ L m1, …, mL

g : ℝ → ℝ i

NA(g) ≤ 2i ⋅ (∏
j<i

mj)



Bounding the number of affine regions
Let  be a ReLU network with  layers, of widths . 

• Let  denote the output of some node at layer . Then, we have 

 

• Let . Then, we have 

 

• Proof idea. With the first claim, suffices to show that 

 

• Taking log, suffices to show that 

 

• Ring a bell?

f : ℝ → ℝ L m1, …, mL

g : ℝ → ℝ i

NA(g) ≤ 2i ⋅ (∏
j<i

mj)
m̄ = (m1 + m2 + ⋯ + mL)/L

NA( f ) ≤ 2L ⋅ m̄L

∏mj ≤ m̄L

1
L ∑ log(mj) ≤ log(m̄)



Bounding the number of affine regions
• Now we know that shallow nets have an UB on #affine regions 

• Question. How do we translate it to a LB on  approximate error for ? 

• Very neat graphical argument
L1 ΔL



ΔL

1

0



ΔL

g1

0



1

ΔL

g1

0

1/2



1

ΔL

g1

0

1/2
✓ ✓ ✓

✓ ✓ ✓

Count the triangles and compute the area!



Case 2: x2



x2

• Wedges were rather special functions 

• Question. Do depth separation hold for simple functions as well? 

• Answer. Yes—we’ll look at the case of  

• Note. A technique for expressing  can be used to express  

x2

x2 xy

xy =
1
2 ((x + y)2 − x2 − y2)



-approximating ReLU netx2

• We start from the fact that 

 

• Recalling the sampling bounds, natural to assume a uniform distribution of neurons 
• Approximate this by piecewise linear approximation, with uniform interval 

• Let  be a sequence of piecewise linear approximations on uniform intervals 

• Here,  interpolates the partition into  intervals: 

x2 = ∫
∞

0
2 ⋅ σ(x − b) db

{hi}n
i=1

hi(x) 2i

Si := (0,
1
2i

,
2
2i

, …,
2i

2i )



-approximatorsΔ
• Observation. The approximators  can be expressed in terms of wedgeshi

h0 = x h1 = h0 −
1
4

Δ h2 = h1 −
1
42

Δ2



-approximatorsΔ
• Observation. The approximators  can be expressed in terms of wedges 

• More formally, for any , we have, for : 

 

                           

                                                    

• This does not depend on “which x” (i.e., the same height) 

• Thus, making it -like 

hi

x ∈ Si∖Si−1 ϵ = 1/2i

hi(x) − hi−1(x) = x2 −
(x − ϵ)2 + (x + ϵ)2

2
= x2 − (x2 − ϵx + ϵx + ϵ2)
= −

1
4i

Δ

hi(x) = x −
i

∑
j=1

Δi

4i



What we want
• We want to show three claims 

• Claim 1. Deep nets can construct  efficiently 

• Claim 2.  approximates  well 

• Claim 3. Shallow nets cannot approximate  well

hi(x)

hi(x) x2

x2



What we want
• Claim 1. Deep nets can construct  efficiently 

 

• Can be constructed as many parallel nets 

• Roughly  layers 

• Roughly  neurons

hi(x)

hi(x) = x −
1
4

Δ1 −
1
42

Δ2 − ⋯ −
Δi

4i

2i
4i



What we want
• Claim 2.  approximates  well 

• More concretely, we claim that 
hi(x) x2

sup
x∈[0,1]

|hi(x) − x2 | ≤ 4−i−1



What we want
• Claim 2.  approximates  well 

• More concretely, we claim that 

 

• Proof idea.  

• Fix some  

• We know that  for some , where  

• Then, we can write: 

hi(x) x2

sup
x∈[0,1]

|hi(x) − x2 | ≤ 4−i−1

x ∈ [0,1]
x ∈ [ jτ, ( j + 1)τ] j τ = 1/2i

hi(x) = ( jτ)2 +
(( j + 1)τ)2 − ( jτ)2

τ
⋅ (x − jτ)



What we want
• Claim 3. Shallow nets cannot approximate  well 

• More concretely, we claim that: 
Any ReLU net with  layers and  nodes satisfy 

x2

≤ L ≤ N

∫
1

0
(g(x) − x2)2 dx ≥

1
5760 ⋅ (2N/L)4L



What we want
• Claim 3. Shallow nets cannot approximate  well 

• More concretely, we claim that: 
Any ReLU net with  layers and  nodes satisfy 

 

• Proof idea. Use the fact that 

x2

≤ L ≤ N

∫
1

0
(g(x) − x2)2 dx ≥

1
5760 ⋅ (2N/L)4L

min
(c,d) ∫

b

a
(x2 − (cx + d))2 dx =

(b − a)5

180



Next up
• Near-initialization approximation and kernel regime


