7. Approximation: Sampling bounds

Recap

• In the last lecture, we have established that:

Theorem (informal).

Under some conditions, we have

$$g(\mathbf{x}) = \iint q(\mathbf{w}, b) \cdot \mathbf{1}[\mathbf{w}^{\mathsf{T}} \mathbf{x} \ge b] \, d\mathbf{w} \, db$$

for some parameter density $q(\mathbf{w}, b)$.

• Slightly rephrasing, can be written as:

$$g(\mathbf{x}) = \iint \pi(\mathbf{w}, b) \cdot a(\mathbf{w}, b) \cdot \mathbf{1}[\mathbf{w}^{\mathsf{T}} \mathbf{x} \ge b] \, d\mathbf{w} \, db$$

- π : probability of drawing some neuron
- a: 2nd layer weights
- Note: There are many different ways to decompose!

Today

- We sample the neurons to construct a finite-width network
 - Independently draw m neurons $(\mathbf{w}_i, b_i) \sim \pi$
 - Construct

$$f(\mathbf{x}) = \sum_{i=1}^{m} \frac{1}{m} \cdot a(\mathbf{w}_i, b_i) \cdot \mathbf{1} \{ \mathbf{w}_i^{\mathsf{T}} \mathbf{x} \ge b_i \}$$

- Claim.
 - DON'T: Any $f(\cdot)$ will be close to $g(\cdot)$ if m grows

(way too pessimistic)

- DO: There is at least one $f(\cdot)$ that is close to $g(\cdot)$
 - Turns out that how we decompose to π , a matters

Overview

- Want-to-show: "There is at least one $f(\cdot)$ that is close to $g(\cdot)$ "
- We will show this in three steps
 - If f and g are similar in expectation, there exists at least one f that is close to g
 - random coding
 - If each neuron has a small variance, f is close to its mean in expectation
 - Maurey's empirical method
 - We can make neuron variance small by tuning (π, a)
 - importance sampling

Random coding

Random coding argument

Roughly, want to show that

"If f and g are similar in expectation, there exists at least one f that is close to g"

Claim.

Let ν be a distribution of functions, from which we can sample. Suppose that we have

$$\mathbb{E}_{f \sim \nu}[\|f - g\|^2] \le \varepsilon$$

Then, there exists at least one $f^* \in \text{supp}(\nu)$ such that

$$||f^* - g||^2 \le \varepsilon$$

• **Proof.** Volunteer?

Random coding argument

• **Proof.** By contradiction \

- Trivia. Called "random coding" argument, in information theory
 - due to Shannon / Erdös
 - also known as "probabilistic method"

Maurey's empirical method (a.k.a. Maurey's sparsification)

Roughly, we wanted to show:

"If each neuron has a small variance, f is close to its mean in expectation"

Lemma (Maurey)

Let V be a random element in some Hilbert space, supported on the set S, and let $X = \mathbb{E}V$.

Let $(V_1, ..., V_m)$ be i.i.d. draws of V. Then, we have

$$\mathbb{E} \left\| X - \frac{1}{m} \sum_{i=1}^{m} \mathbf{V}_i \right\|^2 \le \frac{\operatorname{Var}(\mathbf{V})}{m} \le \frac{\mathbb{E} \|\mathbf{V}\|^2}{m} \le \frac{\sup_{U \in \mathcal{S}} \|U\|^2}{m}$$

Moreover, there exists $U_1, ..., U_m \in \mathcal{S}$ such that

$$\left\| X - \frac{1}{m} \sum_{i=1}^{m} U_i \right\|^2 \le \mathbb{E} \left\| X - \frac{1}{m} \sum_{i=1}^{m} \mathbf{V}_i \right\|^2$$

Lemma (Maurey)

Let V be a random element in some Hilbert space, supported on the set S, and let $X = \mathbb{E}V$.

Let $(V_1, ..., V_m)$ be i.i.d. draws of V. Then, we have

$$\mathbb{E} \left\| X - \frac{1}{m} \sum_{i=1}^{m} \mathbf{V}_i \right\|^2 \le \frac{\operatorname{Var}(\mathbf{V})}{m} \le \frac{\mathbb{E} \|\mathbf{V}\|^2}{m} \le \frac{\sup_{U \in \mathcal{S}} \|U\|^2}{m}$$

Moreover, there exists $U_1, ..., U_m \in \mathcal{S}$ such that

$$\left\| X - \frac{1}{m} \sum_{i=1}^{m} U_i \right\|^2 \le \mathbb{E} \left\| X - \frac{1}{m} \sum_{i=1}^{m} \mathbf{V}_i \right\|^2$$

- Looks way too complicated?
 - Let's find out and remove the easiest parts so that we can focus on others.

$$\mathbb{E} \left\| X - \frac{1}{m} \sum_{i=1}^{m} \mathbf{V}_i \right\|^2 \le \frac{\text{Var}(\mathbf{V})}{m}$$

• To show this, we can simply proceed as:

$$\mathbb{E} \left\| X - \frac{1}{m} \sum \mathbf{V}_i \right\|^2 = \mathbb{E} \left\| \frac{1}{m} \sum (X - \mathbf{V}_i) \right\|^2$$
$$= \frac{1}{m^2} \mathbb{E} \left\| \sum (X - \mathbf{V}_i) \right\|^2$$

$$\mathbb{E} \left\| X - \frac{1}{m} \sum_{i=1}^{m} \mathbf{V}_i \right\|^2 \le \frac{\text{Var}(\mathbf{V})}{m}$$

To show this, we can simply proceed as:

$$\mathbb{E} \left\| X - \frac{1}{m} \sum \mathbf{V}_i \right\|^2 = \mathbb{E} \left\| \frac{1}{m} \sum (X - \mathbf{V}_i) \right\|^2$$

$$= \frac{1}{m^2} \mathbb{E} \left\| \sum (X - \mathbf{V}_i) \right\|^2$$

$$= \frac{1}{m^2} \mathbb{E} \left(\sum (X - \mathbf{V}_i)^2 + \sum_{i \neq j} \langle X - \mathbf{V}_i, X - \mathbf{V}_j \rangle \right)$$

$$\mathbb{E} \left\| X - \frac{1}{m} \sum_{i=1}^{m} \mathbf{V}_i \right\|^2 \le \frac{\text{Var}(\mathbf{V})}{m}$$

To show this, we can simply proceed as:

$$\mathbb{E} \left\| X - \frac{1}{m} \sum \mathbf{V}_i \right\|^2 = \mathbb{E} \left\| \frac{1}{m} \sum (X - \mathbf{V}_i) \right\|^2$$

$$= \frac{1}{m^2} \mathbb{E} \left\| \sum (X - \mathbf{V}_i) \right\|^2$$

$$= \frac{1}{m^2} \mathbb{E} \left(\sum (X - \mathbf{V}_i)^2 + \sum_{i \neq j} \langle X - \mathbf{V}_i, X - \mathbf{V}_j \rangle \right)$$

$$= \frac{1}{m^2} \mathbb{E} \left(\sum (X - \mathbf{V}_i)^2 \right)$$

$$\mathbb{E} \left\| X - \frac{1}{m} \sum_{i=1}^{m} \mathbf{V}_i \right\|^2 \le \frac{\text{Var}(\mathbf{V})}{m}$$

• To show this, we can simply proceed as:

$$\mathbb{E} \| X - \frac{1}{m} \sum \mathbf{V}_i \|^2 = \mathbb{E} \| \frac{1}{m} \sum (X - \mathbf{V}_i) \|^2$$

$$= \frac{1}{m^2} \mathbb{E} \| \sum (X - \mathbf{V}_i) \|^2$$

$$= \frac{1}{m^2} \mathbb{E} \Big(\sum (X - \mathbf{V}_i)^2 + \sum_{i \neq j} \langle X - \mathbf{V}_i, X - \mathbf{V}_j \rangle \Big)$$

$$= \frac{1}{m^2} \mathbb{E} \Big(\sum (X - \mathbf{V}_i)^2 \Big)$$

$$= \frac{1}{m^2} \sum \mathbb{E} (X - \mathbf{V})^2 \qquad = \frac{1}{m} \mathbb{E} (X - \mathbf{V})^2$$

Why the special name?

• Maurey's method is quite versatile — if we choose the right V, one can show the results like:

Corollary.

Let B_1 be a unit ball in \mathbb{R}^d . Consider covering this ball with ℓ_2 -norm balls with radius ε .

Let $N(B_1, \|\cdot\|_2, \varepsilon)$ be the covering number, i.e., the minimum number of ℓ_2 balls so that the union of these balls have B_1 as a subset.

Then, we have:

$$\log N(B_1, \|\cdot\|_2, \varepsilon) \le \min \left\{ 2d \log \left(1 + \frac{1}{2\varepsilon^2 d} \right), \quad \frac{1}{\varepsilon^2} \log(1 + 2d\varepsilon^2) \right\}$$

• Note. There should be a wrong term here...

Importance sampling

TBD

• TBD!