
7. Approximation: 
Sampling bounds



Recap
• In the last lecture, we have established that: 
Theorem (informal). 
Under some conditions, we have 

 

for some parameter density . 

• Slightly rephrasing, can be written as: 

 

• :     probability of drawing some neuron 

• :     2nd layer weights 

• Note: There are many different ways to decompose!

g(x) = ∫ ∫ q(w, b) ⋅ 1[w⊤x ≥ b] dw db

q(w, b)

g(x) = ∫ ∫ π(w, b) ⋅ a(w, b) ⋅ 1[w⊤x ≥ b] dw db

π
a



Today
• We sample the neurons to construct a finite-width network 

• Independently draw  neurons  

• Construct 

 

• Claim.  

• DON’T:     Any  will be close to  if  grows                     (way too pessimistic) 

• DO:            There is at least one  that is close to  

• Turns out that how we decompose to  matters

m (wi, bi) ∼ π

f(x) =
m

∑
i=1

1
m

⋅ a(wi, bi) ⋅ 1{w⊤
i x ≥ bi}
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Overview
• Want-to-show:     “There is at least one  that is close to ” 

• We will show this in three steps 

• If  and  are similar in expectation, there exists at least one  that is close to  

• random coding 

• If each neuron has a small variance,  is close to its mean in expectation 

• Maurey’s empirical method 

• We can make neuron variance small by tuning  

• importance sampling

f( ⋅ ) g( ⋅ )

f g f g

f

(π, a)



Random coding



Random coding argument
• Roughly, want to show that 

“If  and  are similar in expectation, there exists at least one  that is close to ” 

Claim. 

Let  be a distribution of functions, from which we can sample. Suppose that we have 

 

Then, there exists at least one  such that 

 

• Proof. Volunteer?

f g f g

ν
𝔼f∼ν[∥f − g∥2] ≤ ε

f* ∈ supp(ν)
∥f* − g∥2 ≤ ε



Random coding argument
• Proof. By contradiction ✏ 

• Trivia. Called “random coding” argument, in information theory 
• due to Shannon / Erdös 
• also known as “probabilistic method”



Maurey’s empirical method 
(a.k.a. Maurey’s sparsification)



Rough claim
• Roughly, we wanted to show: 

“If each neuron has a small variance,  is close to its mean in expectation” 

Lemma (Maurey) 

Let  be a random element in some Hilbert space, supported on the set , and let . 

Let  be i.i.d. draws of . Then, we have 

 

Moreover, there exists  such that 
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Rough claim
Lemma (Maurey) 

Let  be a random element in some Hilbert space, supported on the set , and let . 

Let  be i.i.d. draws of . Then, we have 

 

Moreover, there exists  such that 

 

• Looks way too complicated? 
• Let’s find out and remove the easiest parts so that we can focus on others.

V 𝒮 X = 𝔼V
(V1, …, Vm) V

𝔼 X −
1
m

m

∑
i=1

Vi

2

≤
Var(V)

m
≤

𝔼∥V∥2

m
≤

supU∈𝒮 ∥U∥2

m

U1, …, Um ∈ 𝒮

X −
1
m

m

∑
i=1

Ui

2

≤ 𝔼 X −
1
m

m

∑
i=1

Vi

2



Rough claim
 

• To show this, we can simply proceed as: 
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Rough claim
 

• To show this, we can simply proceed as: 
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Rough claim
 

• To show this, we can simply proceed as: 
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Rough claim
 

• To show this, we can simply proceed as: 
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Why the special name?
• Maurey’s method is quite versatile — if we choose the right , one can show the results like: 

Corollary. 

Let  be a unit ball in . Consider covering this ball with -norm balls with radius . 

Let  be the covering number, i.e., the minimum number of  balls so that the union of 
these balls have  as a subset. 
Then, we have: 

 

• Note. There should be a wrong term here…

V

B1 ℝd ℓ2 ε
N(B1,∥ ⋅ ∥2, ε) ℓ2

B1

log N(B1,∥ ⋅ ∥2, ε) ≤ min {2d log (1 +
1

2ε2d ),
1
ε2

log(1 + 2dε2)}



Importance sampling



TBD
• TBD!


