7. Approximation: Sampling bounds (cont'd)

Recap

- Deriving sampling-based approximation bounds for neural networks
 - Part 1. GT is an ∞ -width two-layer threshold network
 - Part 2. Sampling m neurons give you a good approximation
- In part 1, we showed that

Theorem (informal).

Under some conditions, we have

$$g(\mathbf{x}) = \iint q(\mathbf{w}, b) \cdot \mathbf{1}[\mathbf{w}^{\mathsf{T}} \mathbf{x} \ge b] \, d\mathbf{w} \, db$$

for some parameter density $q(\mathbf{w}, b)$.

Recap

• For part 2, we have studied a powerful tool:

Lemma (Maurey)

Let V be a random element in some Hilbert space, supported on the set S, and let $X = \mathbb{E}V$.

Let $(V_1, ..., V_m)$ be i.i.d. draws of V. Then, we have

$$\mathbb{E} \left\| X - \frac{1}{m} \sum_{i=1}^{m} \mathbf{V}_i \right\|^2 \le \frac{\operatorname{Var}(\mathbf{V})}{m} \le \frac{\mathbb{E} \|\mathbf{V}\|^2}{m} \le \frac{\sup_{U \in \mathcal{S}} \|U\|^2}{m}$$

Moreover, there exists $U_1, ..., U_m \in \mathcal{S}$ such that

$$\left\| X - \frac{1}{m} \sum_{i=1}^{m} U_i \right\|^2 \le \mathbb{E} \left\| X - \frac{1}{m} \sum_{i=1}^{m} \mathbf{V}_i \right\|^2$$

Why is Maurey great?

• Maurey's method is quite versatile — if we choose the right V, one can show the results like:

Corollary.

Let B_1 be a unit ball in \mathbb{R}^d . Consider covering this ball with ℓ_2 -norm balls with radius ε .

Let $N(B_1, \|\cdot\|_2, \varepsilon)$ be the covering number, i.e., the minimum number of ℓ_2 balls so that the union of these balls have B_1 as a subset.

Then, we have:

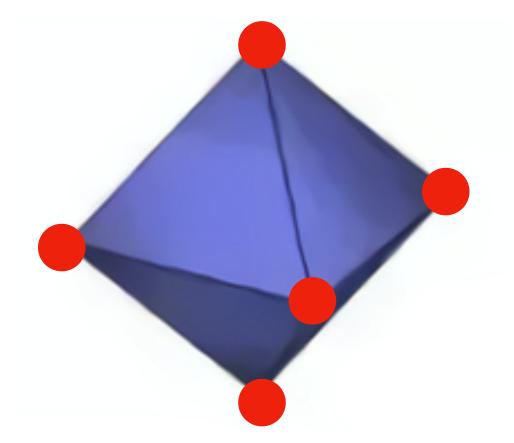
$$\log N(B_1, \|\cdot\|_2, \varepsilon) \le \min \left\{ 2d \log \left(1 + \frac{1}{2\varepsilon^2 d} \right), \quad \frac{1}{\varepsilon^2} \log(1 + 2d\varepsilon^2) \right\}$$

• Note. There should be a wrong term here...

- Select an arbitrary $X \in B_1$
- Define a d-dimensional random vector

$$\mathbf{V} = \begin{cases} sgn(x_i)e_i & \text{w.p. } |x_i| \\ 0 & \text{w.p. } 1 - ||x||_1 \end{cases}$$

- Then, we know that
 - $\mathbb{E}[\mathbf{V}] = X$
 - V is supported on the origin & critical points (total 2d+1 points)
 - Call this set \mathcal{S}



• By Maurey, exists some $U_1, ..., U_m \in \mathcal{S}$ such that

$$\left\| X - \frac{1}{m} \sum_{i=1}^{m} U_i \right\|_{2}^{2} \le \frac{\sup_{U \in \mathcal{S}} \|U\|_{2}^{2}}{m} = \frac{1}{m}$$

- We'll set $m = 1/\varepsilon^2$
- Now, examine the number of distinct values that

$$\bar{U} = \frac{1}{m} \sum_{i=1}^{m} U_i$$

can have, regardless of the choice of X

• Any volunteer?

• WLOG, we can count the number of distinct values for

$$\sum_{i=1}^{m} U_i$$

Define

$$m_j^+ = \sum_{i=1}^m \mathbf{1}\{U_i = +e_j\}, \qquad m_j^- = \sum_{i=1}^m \mathbf{1}\{U_i = -e_j\}, \qquad m_0 = \sum_{i=1}^m \mathbf{1}\{U_i = \mathbf{0}\}$$

• Then, this satisfies

$$m_0 + \sum_{j=1}^d (m_j^+ + m_j^-) \le m, \qquad 0 \le m_0, m_j^+, m_j^- \le m$$

- We'll count the number of all m_j^+, m_j^- that satisfies the above
 - This will be an upper bound of the original quantity considered as we dropped a constraint that either m_j^+ or m_j^- should be zero

$$\sum_{j=1}^{d} (m_j^+ + m_j^-) \le m, \qquad 0 \le m_j^+, m_j^- \le m$$

- This is like placing m identical balls in 2d + 1 rooms
 - Rooms: $m_0, m_1^+, m_1^-, \cdots$
 - Balls: U_1, \ldots, U_m
- The total number of choices is

$$\binom{2d+m}{m} = \binom{2d+m}{2d}$$

• Apply the binomial upper bound $\binom{n}{k} \le (n \cdot e/k)^k$ to get the results

- From Maurey, we have that:
 - There exists some neurons $f_1, ..., f_m$ such that:

$$\left\| g - \frac{1}{m} \sum_{i=1}^{m} f_i \right\|^2 \le \frac{\text{Var(neuron)}}{m}$$

where Var(neuron) denotes the variance of neuron drawn from g

• Question. How do we minimize the variance of neurons, by decomposing

$$q(\mathbf{w}, b) = \pi(\mathbf{w}, b) \cdot a(\mathbf{w}, b)$$

for the GT density

$$g(\mathbf{x}) = \iint q(\mathbf{w}, b) \cdot \mathbf{1}[\mathbf{w}^{\mathsf{T}} \mathbf{x} \ge b] \, d\mathbf{w} \, db$$

- Consider a simplified version of our question fix x
 - GT can be written as:

$$g = \int \pi(z) \cdot \frac{q(z)}{\pi(z)} \cdot \eta(z) \, \mathrm{d}z$$

- $z = (\mathbf{w}, b)$ Parameterization of each neuron
- $\pi(z)$ Sampling probability
- $q(z)/\pi(z)$ 2nd layer weight
- $\eta(z)$ 1st layer outputs

Want to solve.

$$\min_{\pi} \operatorname{Var}_{z \sim \pi} \left(\frac{q(z)}{\pi(z)} \eta(z) \right)$$

• Any volunteer?

• Solution. Select

$$\pi(z) \propto |q(z)| \cdot \eta(z)$$

• Proof.

Combining the tools: Univariate case

- Consider the univariate case
 - We have a GT network

$$g(x) = \int_0^1 g'(b) \cdot \mathbf{1}[x \ge b] \, \mathrm{d}b$$

- We want to:
 - Come up with a good sampling distribution $\pi(b)$
 - Provide a clean bound on the approximation error

$$g(x) = \int_0^1 g'(b) \cdot \mathbf{1}[x \ge b] \, \mathrm{d}b$$

• The importance sampling tells us that we should use the sampling distribution:

$$\pi(b) \propto |g'(b)| \cdot \mathbf{1}\{x \ge b\}$$

- However, there is a term about *x*
 - Our sampling should be input-independent

• Solution. Simply ignore it and use

$$\pi(b) \propto |g'(b)|$$

May not be ideal, but good enough

- The sampling scheme becomes:
 - Draw $b_1, ..., b_m$ using

$$\pi(b) = \frac{|g'(b)|}{\int |g'(b)| \, \mathrm{d}b} =: \frac{|g'(b)|}{G'}$$

• The finite-width network will be

$$f(x) = \sum_{i=1}^{m} \frac{G'}{m} \cdot \operatorname{sgn}(g'(b_i)) \cdot \mathbf{1} \{x \ge b_i\}$$

• The second layer weights are simply ± 1

• The variance is upper-bounded by a term proportional to:

$$\frac{(G')^2}{m}$$

- That is, this guarantee accounts for the flatness of the GT function
 - Exercise. Check this

Multivariate case

- Similar logic, but much dirtier
 - Read the textbook for details
 - Similar dependency on:

$$\frac{\left(\int \|\widetilde{\nabla g}\| dw\right)^2}{m}$$

Next up

- Near-initialization approximation and kernel regime
- Benefits of depth