
7. Approximation: 
Sampling bounds (cont’d)



Recap
• Deriving sampling-based approximation bounds for neural networks 

• Part 1. GT is an -width two-layer threshold network 

• Part 2. Sampling  neurons give you a good approximation 

• In part 1, we showed that 

Theorem (informal). 
Under some conditions, we have 

 

for some parameter density .

∞
m

g(x) = ∫ ∫ q(w, b) ⋅ 1[w⊤x ≥ b] dw db

q(w, b)



Recap
• For part 2, we have studied a powerful tool: 

Lemma (Maurey) 

Let  be a random element in some Hilbert space, supported on the set , and let . 

Let  be i.i.d. draws of . Then, we have 

 

Moreover, there exists  such that 
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Why is Maurey great?
• Maurey’s method is quite versatile — if we choose the right , one can show the results like: 

Corollary. 

Let  be a unit ball in . Consider covering this ball with -norm balls with radius . 

Let  be the covering number, i.e., the minimum number of  balls so that the union of 
these balls have  as a subset. 
Then, we have: 

 

• Note. There should be a wrong term here…
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Proof idea
• Select an arbitrary  

• Define a dimensional random vector 

 

• Then, we know that 

•  

•  is supported on the origin & critical points    (total 2d+1 points) 

• Call this set 
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Proof idea
• By Maurey, exists some  such that 

 

• We’ll set  

• Now, examine the number of distinct values that 

 

 can have, regardless of the choice of  

• Any volunteer? 🙋
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Proof idea
• WLOG, we can count the number of distinct values for 

 

• Define 

 

• Then, this satisfies 

 

• We’ll count the number of all  that satisfies the above 

• This will be an upper bound of the original quantity considered — 
as we dropped a constraint that either  or  should be zero
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Proof idea
 

• This is like placing  identical balls in  rooms 

• Rooms:  

• Balls:      

• The total number of choices is 

 

• Apply the binomial upper bound  to get the results
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Importance sampling



Importance sampling
• From Maurey, we have that: 

• There exists some neurons  such that: 

 

where  denotes the variance of neuron drawn from  

• Question. How do we minimize the variance of neurons, by decomposing 

 
for the GT density 
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q(w, b) = π(w, b) ⋅ a(w, b)

g(x) = ∫ ∫ q(w, b) ⋅ 1[w⊤x ≥ b] dw db



Importance sampling
• Consider a simplified version of our question — fix  

• GT can be written as: 

 

•       Parameterization of each neuron 

•                  Sampling probability 

•         2nd layer weight 

•                  1st layer outputs
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Importance sampling
• Want to solve. 

 

• Any volunteer? 🙋
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Importance sampling
• Solution. Select 

 

• Proof. ✏
π(z) ∝ |q(z) | ⋅ η(z)



Combining the tools: 
Univariate case



Summing up: Univariate case
• Consider the univariate case 

• We have a GT network 

 

• We want to: 

• Come up with a good sampling distribution  

• Provide a clean bound on the approximation error
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Summing up: Univariate case
 

• The importance sampling tells us that we should use the sampling distribution: 

 

• However, there is a term about  

• Our sampling should be input-independent 

• Solution. Simply ignore it and use 

 

• May not be ideal, but good enough
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Summing up: Univariate case
• The sampling scheme becomes: 

• Draw  using 

 

• The finite-width network will be 

 

• The second layer weights are simply 
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Summing up: Univariate case
• The variance is upper-bounded by a term proportional to: 

 

• That is, this guarantee accounts for the flatness of the GT function 
• Exercise. Check this
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Multivariate case
• Similar logic, but much dirtier 

• Read the textbook for details 
• Similar dependency on: 
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Next up
• Near-initialization approximation and kernel regime 
• Benefits of depth


