7. Approximation:
Sampling bounds (cont’d)



Recap

o Deriving sampling-based approximation bounds for neural networks

e Part 1. GT is an oco-width two-layer threshold network

e Part 2. Sampling m neurons give you a good approximation
e In part 1, we showed that

Theorem (informal).

Under some conditions, we have
g(X) = qu(w, b)-1[w'x > b] dw db

for some parameter density g(w, b).



Recap

e For part 2, we have studied a powertul tool:

Lemma (Maurey)

Let V be a random element in some Hilbert space, supported on the set &, and let X =

Let (Vy,...,V, ) beiid. draws of V. Then, we have
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Moreover, there exists U, ..., U, € & such that
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Why 1s Maurey great?

e Maurey’s method is quite versatile — if we choose the right V, one can show the results like:

Corollary.
Let B, be a unit ball in R%. Consider covering this ball with #Z,-norm balls with radius .

Let N(By,|| - |l,, €) be the covering number, i.e., the minimum number of £, balls so that the union of
these balls have B, as a subset.

Then, we have:
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e Note. There should be a wrong term here...




Proof idea

e Select an arbitrary X € B,

e Define a d—dimensional random vector
{sgn(xi)ei w.p. | x;|
V =
0 w.p. I —|[x]|;

e Then, we know that

e E|V]=X

e V is supported on the origin & critical points (total 2d+1 points)

e Call this set &




Proof idea

e By Maurey, exists some Uy, ..., U, € & such that
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e We'lllsetm = 1/¢e?

e Now, examine the number of distinct values that
1 m
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can have, regardless of the choice of X

e Any volunteer? &



Proof idea

e WLOG, we can count the number of distinct values for

2 U
i=1
e Define
mt= Y HU;j=+¢}, mi=) HU=-¢}, my=) 1{U;=0}
i=1 i=1 i=1
e Then, this satisfies

d
my + Z (mj+ + mj_) < m, 0 < my, mj+, m; < m

j=1

o We'll count the number of all mj+, m; that satisfies the above

e This will be an upper bound of the original quantity considered —

as we dropped a constraint that either ijr or m;~ should be zero



Proof idea

d
Z (m;r +m) < m, 0< mj+, m- <m
j=1

e This is like placing m identical balls in 2d + 1 rooms
e Rooms: mgy, m;",my, -+

e Balls: U,,...,U,

e The total number of choices is
2d +m B 2d + m
m B 2d

. Apply the binomial upper bound (Z) < (n - e/k)* to get the results



Importance sampling



Importance sampling

e From Maurey, we have that:

e There exists some neurons fi, ..., f,, such that:
2

| i f Var(neuron)

<

m

where Var(neuron) denotes the variance of neuron drawn from g

e Question. How do we minimize the variance of neurons, by decomposing
q(W,b) = n(w,b) - a(w, b)
for the GT density

2(X) = ”q(w, b) - 1[w'x > b] dw db



Importance sampling

e Consider a simplified version of our question — fix x
e GT can be written as:

g = Jﬂ(Z) 4@ -1(z) dz

7(2)
e 7= (w,b) Parameterization of each neuron

o 11(2) Sampling probability
e g(2)/n(2) ond layer weight
e 1(2) 1st layer outputs



Importance sampling

e Want to solve.

min Var,_ ( 90 n(z))

T ﬂ(Z)
e Any volunteer? &



Importance sampling

e Solution. Select

n(z) < |q(z)| - n(z)
e Proof. ©,



Combining the tools:
Univariate case



Summing up: Univariate case

e (Consider the univariate case
e We have a GT network

|
g(x) = J g'(b) - 1[x > b] db
0

e We want to:
e Come up with a good sampling distribution 7 (b)

o Provide a clean bound on the approximation error



Summing up: Univariate case

|
g(x) = J g'(b) - 1[x > b] db
0

e The importance sampling tells us that we should use the sampling distribution:
n(b) x |g'(D)| - 1{x = D]
e However, there is a term about x

e Our sampling should be input-independent

o Solution. Simply ignore it and use

m(b) x | g'(b)|
 May not be ideal, but good enough



Summing up: Univariate case

e The sampling scheme becomes:

e Draw by, ..., b, using
(b (b
() \g/( ) _ \g(,)\
| 1g'(b)|db G
e The finite-width network will be
flx) = ) — - sgn(g'(h)) - 1{x > b,)

m
=1

e The second layer weights are simply £ 1



Summing up: Univariate case

e The variance is upper-bounded by a term proportional to:
(G')’

m

o That is, this guarantee accounts for the flatness of the GT function
o Exercise. Check this




Multivariate case

e Similar logic, but much dirtier
e Read the textbook for details

e Similar dependency on:

([ Vglaw)

m




Next up

o Near-initialization approximation and kernel regime
o Benefits of depth



