
6. Approximation: 
GT as an infinite-width net



Recap
• Last few lectures, we have covered basic universal approximation results 

• Key idea. Neural nets can express the basis of other functions 
• Pulses 
• Fourier basis 

• Sometimes, we managed to prove explicit bounds on the #neurons needed 
• Unfortunately, when invoking Stone-Weierstrass, no explicit bound



Today
• Play with a powerful tool: sampling! 

• Widely used in the analysis of algorithms 

• Rough sketch 

• Ground truth :    An infinite-width neural network 

• Neural net       :    A neural net constructed by sampling the GT neurons 

• As the number of samples (i.e., neurons) increase, we have 

,       at some rate 

• Analyze this to get finite-width guarantees

g( ⋅ )
f( ⋅ )

f( ⋅ ) → g( ⋅ )



Today
• Key Questions 

• Q1. How do we express  as an infinite-width neural net? 

• Q2. How do we analyze the convergence rate of ? 

• Today, we’ll cover Q1, and do warm-up for Q2

g( ⋅ )
f( ⋅ ) → g( ⋅ )



Formalization
• First, we’ll formalize the concept of (uncountably) infinite-width two-layer net 

• Unfortunately, we’ll stick to threshold nets only 

• We will show that: 

 

• Here, we have: 

•        specifies each neuron — unique 1st layer parameters 

•      is the corresponding second layer weight 

•      is the probability density over the neurons 

• Remark. This is an exact equality, not an approximation

g(x) = ∫ π(w, b) ⋅ a(w, b) ⋅ 1{w⊤x ≥ b} dw db

(w, b)
a(w, b)
π(w, b)



Formalization
• From this distribution of neurons, we will sample the neurons to build a finite-width net 

• Step 1. Draw the neurons: 

 

• Step 2. Build 

 

• If , we have certain convergence 

• Later, we’ll study good tools to quantify the convergence

(wi, bi) ∼ π(w, b)

f(x) =
1
m

m

∑
i=1

a(wi, bi) ⋅ 1{w⊤
i x ≥ bi}

m → ∞



GT as an infinite-width net



Univariate case
• First, let’s convince ourselves that any GT  is an infinite-width two-layer threshold net 

• Let us first consider the easy case: univariate 

Proposition 3.1. 

Suppose that we have a univariate function over a compact domain, . 
Suppose further that . Then, for , we have 

 

• Any proof ideas?

g( ⋅ )

g : [0,1] → ℝ
g(0) = 0 x ∈ [0,1]

g(x) = ∫
1

0
g′￼(b) ⋅ 1[x ≥ b] db



Proof idea
• Recall the “fundamental theorem of calculus”



Univariate case
• Let’s take another look at what we proved: 

 

• This is an infinite-width two-layer threshold network, with 

• 1st layer weights            

• biases                                                (the only parameter) 

• 2nd layer weights          

• probability density       

g(x) = ∫
1

0
g′￼(b) ⋅ 1[x ≥ b] db

w = 1
b
a(b) = g′￼(b)
π(b) = Unif([0,1])



Flashback
 

• Recall that, several lecture ago, we considered a neural net construction 

 

• This can also be viewed as a version of sampling: 
• Using a uniform grid — instead of uniform distribution 
• Using differentials     — instead of derivatives 

• In this sense, what we are working on today is extending this idea further for a general technique

g(x) = ∫
1

0
g′￼(b) ⋅ 1[x ≥ b] db

f(x) =
m

∑
i=1

(g(bi) − g(bi−1)) ⋅ 1[x ≥ bi]



Multivariate case
• How do we extend this to a multivariate input case? 

• Ultimately, we want to prove something like: 

Claim (informal) 
Under some conditions, we have 

 

• Here, for simplicity, we are using a merged form 

 

• Given some , we can always come up with  where  is a valid probability density

g(x) = ∫ ∫ q(w, b) ⋅ 1{w⊤x ≥ b} dw db

q(w, b) = π(w, b) ⋅ a(w, b)
q (π, a) π



Multivariate case
• Unfortunately, this is not very easy… 

• Can you think of a good multivariate analogue of FTC? 
(there is one for the line integral, which is meh) 

• Handling various “directions” is the key challenge 

• Tool. Fourier transform and complex numbers 
• Will follow the exposition of “new” MJT notes



Preliminaries: 
Fourier Transform



Notations and assumptions
• Notation. For a complex number, the absolute value  denotes the  norm, i.e., 

 

Definition (Integrable) 

A function  is called integrable whenever it satisfies 

 

• We will write  

• Will be our running assumption 

| ⋅ | ℓ2

|b + ci | = b2 + c2

g : ℝd → ℝ

∫ℝd

|g(x) |dx < ∞

g ∈ L1



Fourier Transform
Definition (Fourier Transform) 

The Fourier transform  of an integrable function  is defined as 

 

• If you are not familiar with this form, recall that (one of) the Euler’s formula says: 

 

• That is, the Fourier transform is simply extracting the frequency components of  

• Two sinusoids with different frequencies are orthogonal 
• In multivariate case, the frequencies will have “directions” in addition to magnitudes

g̃ : ℝd → ℂ g : ℝd → ℝ

g̃(w) = ∫ℝd

exp(−2πiw⊤x) ⋅ g(x) dx

exp(ix) = cos(x) + i ⋅ sin(x)

g(x)



Properties
• Here are some well-known properties of the Fourier transform: 

• Inversion. If , then 

 

• Derivatives. Given some , we have 

 

• Real parts. Let  denote the real part of a complex number. 
                         Then, for an integrable complex function , we have: 

g̃ ∈ L1

g(x) = ∫ exp(2πiw⊤x) ⋅ g̃(w) dw

w ∈ ℝd

2π∥w∥ ⋅ | g̃(w) | = ∥ ∇̃g∥

ℜ[b + ic] = b
h : ℝd → ℂ

ℜ [∫ℝd

h(x) dx] = ∫ℝd

ℜ[h(x)] dx



</preliminaries>



Inverse Fourier Transforms
• Notice that the inverse Fourier transform can be readily viewed as an infinite-width net 

 

• Indeed, this is the case where 

•                     is the neuron density (multiplied by 2nd layer weights) 

•      is the activation function 

•                            there is no bias!

g(x) = ∫ℝd

exp(2πiw⊤x) ⋅ g̃(w) dw

g̃(w)
t = exp(2πit)
b



Inverse Fourier Transforms
 

• Our goal is to re-write this, using threshold activations 

 

• Note that we are using a slightly different notation now 

• First-layer weights          

• Biases                                 

• This is done in two steps: 
• Step 1. Turn IFT into cosine nets 
• Step 2. Turn cosine nets into threshold nets

g(x) = ∫ℝd

exp(2πiw⊤x) ⋅ g̃(w) dw

g(x) = ∫ℝd

1[u(w)⊤x ≥ b(w)] ⋅ a(w) dw

u
b



Step 1. IFT -> Cosine nets
 g(x) = ℜ[g(x)]



Step 1. IFT -> Cosine nets
 

                        IFT 

         

g(x) = ℜ[g(x)]

= ℜ [∫ℝd

exp(2πiw⊤x) ⋅ g̃(w) dw]



Step 1. IFT -> Cosine nets
 

         

                           “Real Parts” property 

         

g(x) = ℜ[g(x)]

= ℜ [∫ℝd

exp(2πiw⊤x) ⋅ g̃(w) dw]
= ∫ℝd

ℜ[exp(2πiw⊤x) ⋅ g̃(w)] dw



Step 1. IFT -> Cosine nets
 

         

                           

                     Polar decomposition 

         

g(x) = ℜ[g(x)]

= ℜ [∫ℝd

exp(2πiw⊤x) ⋅ g̃(w) dw]
= ∫ℝd

ℜ[exp(2πiw⊤x) ⋅ g̃(w)] dw

= ∫ℝd

ℜ[exp(2πiw⊤x) ⋅ exp(2πiθg̃(w)) ⋅ | g̃(w) |] dw

Imag

Real1

g̃(w)



Step 1. IFT -> Cosine nets
 

         

                           

         

                     Magnitude is real

g(x) = ℜ[g(x)]

= ℜ [∫ℝd

exp(2πiw⊤x) ⋅ g̃(w) dw]
= ∫ℝd

ℜ[exp(2πiw⊤x) ⋅ g̃(w)] dw

= ∫ℝd

ℜ[exp(2πiw⊤x) ⋅ exp(2πiθg̃(w)) ⋅ | g̃(w) |] dw

= ∫ℝd

ℜ[exp(2πi(w⊤x + θg̃(w)))] ⋅ | g̃(w) | dw



Step 1. IFT -> Cosine nets
 

         

                           

         

         

                                      Euler’s formula

g(x) = ℜ[g(x)]

= ℜ [∫ℝd

exp(2πiw⊤x) ⋅ g̃(w) dw]
= ∫ℝd

ℜ[exp(2πiw⊤x) ⋅ g̃(w)] dw

= ∫ℝd

ℜ[exp(2πiw⊤x) ⋅ exp(2πiθg̃(w)) ⋅ | g̃(w) |] dw

= ∫ℝd

ℜ[exp(2πi(w⊤x + θg̃(w)))] ⋅ | g̃(w) | dw

= ∫ℝd

cos(2π(w⊤x + θg̃(w))) ⋅ | g̃(w) | dw



Step 1. IFT -> Cosine nets
 

• That is,  is an infinite-width two-layer cosine network 

 

• Here, we use the shorthand notations 

•  

•  

• Density                     

• 1st layer weight        

• bias                            

g(x) = ∫ℝd

cos(2π(w⊤x + θg̃(w))) ⋅ | g̃(w) | dw

g( ⋅ )

g(x) = ∫ℝd

c̃os(w⊤x + θw) ⋅ | g̃(w) | dw

c̃os(x) := cos(2πx)
θw = θg̃(w)

| g̃(w) |
w
θw



Step 2. Cosine nets -> Threshold nets
 

• Now we want to turn this into a threshold network! 
• Need to do something that is not very straightforward…

g(x) = ∫ℝd

c̃os(w⊤x + θw) ⋅ | g̃(w) | dw



Step 2. Cosine nets -> Threshold nets
 

• Now we want to turn this into a threshold network! 
• Need to do something that is not very straightforward… 

 

                            Difference as an integration

g(x) = ∫ℝd

c̃os(w⊤x + θw) ⋅ | g̃(w) | dw

c̃os(w⊤x + θw) − c̃os(θw)
= − 2π∫

w⊤x

0
s̃in (b + θw) db



Step 2. Cosine nets -> Threshold nets
 

• Now we want to turn this into a threshold network! 
• Need to do something that is not very straightforward… 

 

 

   

Generate thresholds, by dividing it into cases

g(x) = ∫ℝd

c̃os(w⊤x + θw) ⋅ | g̃(w) | dw

c̃os(w⊤x + θw) − c̃os(θw)
= − 2π∫

w⊤x

0
s̃in (b + θw) db

= − 2π∫
∥w∥

0
1[w⊤x ≥ b] ⋅ s̃in (b + θw) db + 2π∫

0

−∥w∥
1[w⊤x ≤ b] ⋅ s̃in (b + θw) db



Step 2. Cosine nets -> Threshold nets
 

• Now we want to turn this into a threshold network! 
• Need to do something that is not very straightforward… 

 

 

   

             Reparametrize and combine

g(x) = ∫ℝd

c̃os(w⊤x + θw) ⋅ | g̃(w) | dw

c̃os(w⊤x + θw) − c̃os(θw)
= − 2π∫

w⊤x

0
s̃in (b + θw) db

= − 2π∫
∥w∥

0
1[w⊤x ≥ b] ⋅ s̃in (b + θw) db + 2π∫

0

−∥w∥
1[w⊤x ≤ b] ⋅ s̃in (b + θw) db

= 2π∫
∥w∥

0
[ s̃in ( − b + θ−w) − s̃in (b + θw)] ⋅ 1[w⊤x ≥ b] db



Theorem
• Plugging into the , we get the following theorem: 
Theorem. 

Let  and . Then, we have 

 

where  is the parameter density 

 

Moreover, we have 

 

• Note. Where did  go?

g(x)

g, g̃ ∈ L1 g(0) = 0

g(x) = ∫ ∫ q(w, b) ⋅ 1[w⊤x ≥ b] dw db

q(w, b)

q(w, b) = 2π | g̃(w) |( s̃in (−b + θ−w) − s̃in (b + θw)) ⋅ 1[0 ≤ b ≤ ∥w∥]

∫ ∫ |q(w, b) | dw db ≤ 2∫ ∥ ∇̃g∥dw

c̃os(θw)



• Sampling from the infinite-width nets 
• Analysis

Next up


