6. Approximation: GT as an infinite-width net

Recap

- Last few lectures, we have covered basic universal approximation results
- Key idea. Neural nets can express the basis of other functions
 - Pulses
 - Fourier basis
- Sometimes, we managed to prove explicit bounds on the #neurons needed
 - Unfortunately, when invoking Stone-Weierstrass, no explicit bound

Today

- Play with a powerful tool: sampling!
 - Widely used in the analysis of algorithms

Rough sketch

- Ground truth $g(\cdot)$: An infinite-width neural network
- Neural net $f(\cdot)$: A neural net constructed by sampling the GT neurons
- As the number of samples (i.e., neurons) increase, we have

$$f(\cdot) \to g(\cdot)$$
, at some rate

Analyze this to get finite-width guarantees

Today

Key Questions

- **Q1.** How do we express $g(\cdot)$ as an infinite-width neural net?
- **Q2.** How do we analyze the convergence rate of $f(\cdot) \rightarrow g(\cdot)$?
- Today, we'll cover Q1, and do warm-up for Q2

Formalization

- First, we'll formalize the concept of (uncountably) infinite-width two-layer net
 - Unfortunately, we'll stick to threshold nets only
- We will show that:

$$g(\mathbf{x}) = \int \pi(\mathbf{w}, b) \cdot a(\mathbf{w}, b) \cdot \mathbf{1} \{ \mathbf{w}^{\mathsf{T}} \mathbf{x} \ge b \} d\mathbf{w} db$$

- Here, we have:
 - (\mathbf{w}, b) specifies each neuron unique 1st layer parameters
 - $a(\mathbf{w}, b)$ is the corresponding second layer weight
 - $\pi(\mathbf{w}, b)$ is the probability density over the neurons
- Remark. This is an exact equality, not an approximation

Formalization

- From this distribution of neurons, we will sample the neurons to build a finite-width net
 - **Step 1.** Draw the neurons:

$$(\mathbf{w}_i, b_i) \sim \pi(\mathbf{w}, b)$$

• Step 2. Build

$$f(\mathbf{x}) = \frac{1}{m} \sum_{i=1}^{m} a(\mathbf{w}_i, b_i) \cdot \mathbf{1} \{ \mathbf{w}_i^{\mathsf{T}} \mathbf{x} \ge b_i \}$$

- If $m \to \infty$, we have certain convergence
 - Later, we'll study good tools to quantify the convergence

GT as an infinite-width net

Univariate case

- First, let's convince ourselves that any GT $g(\cdot)$ is an infinite-width two-layer threshold net
 - Let us first consider the easy case: univariate

Proposition 3.1.

Suppose that we have a univariate function over a compact domain, $g:[0,1] \to \mathbb{R}$. Suppose further that g(0) = 0. Then, for $x \in [0,1]$, we have

$$g(x) = \int_0^1 g'(b) \cdot \mathbf{1}[x \ge b] \, \mathrm{d}b$$

• Any proof ideas?

Proofidea

• Recall the "fundamental theorem of calculus"

First part [edit]

This part is sometimes referred to as the first fundamental theorem of calculus. [6]

Let f be a continuous real-valued function defined on a closed interval [a, b]. Let F be the function defined, for all x in [a, b], by

$$F(x) = \int_a^x f(t) dt.$$

Then F is uniformly continuous on [a, b] and differentiable on the open interval (a, b), and

$$F'(x) = f(x)$$

for all x in (a, b) so F is an antiderivative of f.

Univariate case

• Let's take another look at what we proved:

$$g(x) = \int_0^1 g'(b) \cdot \mathbf{1}[x \ge b] \, \mathrm{d}b$$

- This is an infinite-width two-layer threshold network, with
 - 1st layer weights w = 1
 - biases b (the only parameter)
 - 2nd layer weights a(b) = g'(b)
 - probability density $\pi(b) = \text{Unif}([0,1])$

Flashback

$$g(x) = \int_0^1 g'(b) \cdot \mathbf{1}[x \ge b] \, \mathrm{d}b$$

• Recall that, several lecture ago, we considered a neural net construction

$$f(x) = \sum_{i=1}^{m} (g(b_i) - g(b_{i-1})) \cdot \mathbf{1}[x \ge b_i]$$

- This can also be viewed as a version of sampling:
 - Using a uniform grid instead of uniform distribution
 - Using differentials instead of derivatives
- In this sense, what we are working on today is extending this idea further for a general technique

Multivariate case

- How do we extend this to a multivariate input case?
 - Ultimately, we want to prove something like:

Claim (informal)

Under some conditions, we have

$$g(x) = \iint q(\mathbf{w}, b) \cdot \mathbf{1}\{\mathbf{w}^{\mathsf{T}}\mathbf{x} \ge b\} \, d\mathbf{w} \, db$$

• Here, for simplicity, we are using a merged form

$$q(\mathbf{w}, b) = \pi(\mathbf{w}, b) \cdot a(\mathbf{w}, b)$$

• Given some q, we can always come up with (π, a) where π is a valid probability density

Multivariate case

- Unfortunately, this is not very easy...
 - Can you think of a good multivariate analogue of FTC? (there is one for the line integral, which is meh)
 - Handling various "directions" is the key challenge
- Tool. Fourier transform and complex numbers
 - Will follow the exposition of "new" MJT notes

Preliminaries: Fourier Transform

Notations and assumptions

• Notation. For a complex number, the absolute value $|\cdot|$ denotes the ℓ_2 norm, i.e.,

$$|b + ci| = \sqrt{b^2 + c^2}$$

Definition (Integrable)

A function $g: \mathbb{R}^d \to \mathbb{R}$ is called integrable whenever it satisfies

$$\int_{\mathbb{R}^d} |g(\mathbf{x})| \, \mathrm{d}\mathbf{x} < \infty$$

- We will write $g \in L^1$
- Will be our running assumption

Fourier Transform

Definition (Fourier Transform)

The Fourier transform $\tilde{g}: \mathbb{R}^d \to \mathbb{C}$ of an integrable function $g: \mathbb{R}^d \to \mathbb{R}$ is defined as

$$\tilde{g}(\mathbf{w}) = \int_{\mathbb{R}^d} \exp(-2\pi i \mathbf{w}^\mathsf{T} \mathbf{x}) \cdot g(\mathbf{x}) \, d\mathbf{x}$$

• If you are not familiar with this form, recall that (one of) the Euler's formula says:

$$\exp(ix) = \cos(x) + i \cdot \sin(x)$$

- That is, the Fourier transform is simply extracting the frequency components of $g(\mathbf{x})$
 - Two sinusoids with different frequencies are orthogonal
 - In multivariate case, the frequencies will have "directions" in addition to magnitudes

Properties

- Here are some well-known properties of the Fourier transform:
 - Inversion. If $\tilde{g} \in L^1$, then

$$g(\mathbf{x}) = \int \exp(2\pi i \mathbf{w}^{\mathsf{T}} \mathbf{x}) \cdot \tilde{g}(\mathbf{w}) \, d\mathbf{w}$$

• **Derivatives.** Given some $\mathbf{w} \in \mathbb{R}^d$, we have

$$2\pi \|\mathbf{w}\| \cdot |\tilde{g}(\mathbf{w})| = \|\widetilde{\nabla g}\|$$

• **Real parts.** Let $\Re[b+ic]=b$ denote the real part of a complex number. Then, for an integrable complex function $h:\mathbb{R}^d\to\mathbb{C}$, we have:

$$\Re\left[\int_{\mathbb{R}^d} h(\mathbf{x}) \, \mathrm{d}\mathbf{x}\right] = \int_{\mathbb{R}^d} \Re[h(\mathbf{x})] \, \mathrm{d}\mathbf{x}$$

/preliminaries>

Inverse Fourier Transforms

• Notice that the inverse Fourier transform can be readily viewed as an infinite-width net

$$g(x) = \int_{\mathbb{R}^d} \exp(2\pi i \mathbf{w}^\mathsf{T} \mathbf{x}) \cdot \tilde{g}(\mathbf{w}) \, d\mathbf{w}$$

- Indeed, this is the case where
 - $\tilde{g}(\mathbf{w})$ is the neuron density (multiplied by 2nd layer weights)
 - $t = \exp(2\pi it)$ is the activation function
 - b there is no bias!

Inverse Fourier Transforms

$$g(x) = \int_{\mathbb{R}^d} \exp(2\pi i \mathbf{w}^\mathsf{T} \mathbf{x}) \cdot \tilde{g}(\mathbf{w}) \, d\mathbf{w}$$

• Our goal is to re-write this, using threshold activations

$$g(x) = \int_{\mathbb{R}^d} \mathbf{1}[\mathbf{u}(\mathbf{w})^{\mathsf{T}} x \ge b(\mathbf{w})] \cdot a(\mathbf{w}) \, d\mathbf{w}$$

- Note that we are using a slightly different notation now
 - First-layer weights
 - Biases
- This is done in two steps:
 - Step 1. Turn IFT into cosine nets
 - Step 2. Turn cosine nets into threshold nets

$$g(\mathbf{x}) = \Re[g(\mathbf{x})]$$

$$g(\mathbf{x}) = \Re[g(\mathbf{x})]$$

$$= \Re\left[\int_{\mathbb{R}^d} \exp(2\pi i \mathbf{w}^{\mathsf{T}} \mathbf{x}) \cdot \tilde{g}(\mathbf{w}) \, d\mathbf{w}\right]$$
IFT

$$g(\mathbf{x}) = \Re[g(\mathbf{x})]$$

$$= \Re\left[\int_{\mathbb{R}^d} \exp(2\pi i \mathbf{w}^{\mathsf{T}} \mathbf{x}) \cdot \tilde{g}(\mathbf{w}) d\mathbf{w}\right]$$

$$= \int_{\mathbb{R}^d} \Re\left[\exp(2\pi i \mathbf{w}^{\mathsf{T}} \mathbf{x}) \cdot \tilde{g}(\mathbf{w})\right] d\mathbf{w}$$

"Real Parts" property

$$g(\mathbf{x}) = \Re[g(\mathbf{x})]$$

$$= \Re\left[\int_{\mathbb{R}^d} \exp(2\pi i \mathbf{w}^{\mathsf{T}} \mathbf{x}) \cdot \tilde{g}(\mathbf{w}) \, d\mathbf{w}\right]$$

$$= \int_{\mathbb{R}^d} \Re\left[\exp(2\pi i \mathbf{w}^{\mathsf{T}} \mathbf{x}) \cdot \tilde{g}(\mathbf{w})\right] \, d\mathbf{w}$$

$$= \int_{\mathbb{R}^d} \Re\left[\exp(2\pi i \mathbf{w}^{\mathsf{T}} \mathbf{x}) \cdot \exp(2\pi i \theta_{\tilde{g}}(\mathbf{w})) \cdot |\tilde{g}(\mathbf{w})|\right] \, d\mathbf{w}$$

Polar decomposition

$$g(\mathbf{x}) = \Re[g(\mathbf{x})]$$

$$= \Re\left[\int_{\mathbb{R}^d} \exp(2\pi i \mathbf{w}^{\mathsf{T}} \mathbf{x}) \cdot \tilde{g}(\mathbf{w}) \, d\mathbf{w}\right]$$

$$= \int_{\mathbb{R}^d} \Re\left[\exp(2\pi i \mathbf{w}^{\mathsf{T}} \mathbf{x}) \cdot \tilde{g}(\mathbf{w})\right] \, d\mathbf{w}$$

$$= \int_{\mathbb{R}^d} \Re\left[\exp(2\pi i \mathbf{w}^{\mathsf{T}} \mathbf{x}) \cdot \exp(2\pi i \theta_{\tilde{g}}(\mathbf{w})) \cdot |\tilde{g}(\mathbf{w})|\right] \, d\mathbf{w}$$

$$= \int_{\mathbb{R}^d} \Re\left[\exp\left(2\pi i \left(\mathbf{w}^{\mathsf{T}} \mathbf{x} + \theta_{\tilde{g}}(\mathbf{w})\right)\right)\right] \cdot |\tilde{g}(\mathbf{w})| \, d\mathbf{w}$$
Magnitude is real

$$g(\mathbf{x}) = \Re[g(\mathbf{x})]$$

$$= \Re\left[\int_{\mathbb{R}^d} \exp(2\pi i \mathbf{w}^{\mathsf{T}} \mathbf{x}) \cdot \tilde{g}(\mathbf{w}) \, d\mathbf{w}\right]$$

$$= \int_{\mathbb{R}^d} \Re\left[\exp(2\pi i \mathbf{w}^{\mathsf{T}} \mathbf{x}) \cdot \tilde{g}(\mathbf{w})\right] \, d\mathbf{w}$$

$$= \int_{\mathbb{R}^d} \Re\left[\exp(2\pi i \mathbf{w}^{\mathsf{T}} \mathbf{x}) \cdot \exp(2\pi i \theta_{\tilde{g}}(\mathbf{w})) \cdot |\tilde{g}(\mathbf{w})|\right] \, d\mathbf{w}$$

$$= \int_{\mathbb{R}^d} \Re\left[\exp\left(2\pi i \left(\mathbf{w}^{\mathsf{T}} \mathbf{x} + \theta_{\tilde{g}}(\mathbf{w})\right)\right)\right] \cdot |\tilde{g}(\mathbf{w})| \, d\mathbf{w}$$

$$= \int_{\mathbb{R}^d} \cos\left(2\pi \left(\mathbf{w}^{\mathsf{T}} \mathbf{x} + \theta_{\tilde{g}}(\mathbf{w})\right)\right) \cdot |\tilde{g}(\mathbf{w})| \, d\mathbf{w}$$

Euler's formula

$$g(\mathbf{x}) = \int_{\mathbb{R}^d} \cos(2\pi(\mathbf{w}^\mathsf{T}\mathbf{x} + \theta_{\tilde{g}}(\mathbf{w}))) \cdot |\tilde{g}(\mathbf{w})| d\mathbf{w}$$

• That is, $g(\cdot)$ is an infinite-width two-layer cosine network

$$g(\mathbf{x}) = \int_{\mathbb{R}^d} \widetilde{\cos} \left(\mathbf{w}^\mathsf{T} \mathbf{x} + \theta_{\mathbf{w}} \right) \cdot |\tilde{g}(\mathbf{w})| \, d\mathbf{w}$$

- Here, we use the shorthand notations
 - $\widetilde{\cos}(x) := \cos(2\pi x)$
 - $\bullet \ \theta_{\mathbf{w}} = \theta_{\tilde{g}}(\mathbf{w})$
- Density $|\tilde{g}(\mathbf{w})|$
- 1st layer weight w
- $oldsymbol{ heta}$ bias $heta_{f w}$

$$g(\mathbf{x}) = \int_{\mathbb{R}^d} \widetilde{\cos} \left(\mathbf{w}^\mathsf{T} \mathbf{x} + \theta_{\mathbf{w}} \right) \cdot |\tilde{g}(\mathbf{w})| \, d\mathbf{w}$$

- Now we want to turn this into a threshold network!
 - Need to do something that is not very straightforward...

$$g(\mathbf{x}) = \int_{\mathbb{R}^d} \widetilde{\cos} \left(\mathbf{w}^\mathsf{T} \mathbf{x} + \theta_{\mathbf{w}} \right) \cdot |\widetilde{g}(\mathbf{w})| \, d\mathbf{w}$$

- Now we want to turn this into a threshold network!
 - Need to do something that is not very straightforward...

$$\widetilde{\cos}(\mathbf{w}^{\mathsf{T}}\mathbf{x} + \theta_{\mathbf{w}}) - \widetilde{\cos}(\theta_{\mathbf{w}})$$

$$= -2\pi \int_{0}^{\mathbf{w}^{\mathsf{T}}\mathbf{x}} \widetilde{\sin}(b + \theta_{\mathbf{w}}) db$$

Difference as an integration

$$g(\mathbf{x}) = \int_{\mathbb{R}^d} \widetilde{\cos} \left(\mathbf{w}^\mathsf{T} \mathbf{x} + \theta_{\mathbf{w}} \right) \cdot |\widetilde{g}(\mathbf{w})| \, d\mathbf{w}$$

- Now we want to turn this into a threshold network!
 - Need to do something that is not very straightforward...

$$\widetilde{\cos} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x} + \theta_{\mathbf{w}} \right) - \widetilde{\cos} \left(\theta_{\mathbf{w}} \right)$$

$$= -2\pi \int_{0}^{\mathbf{w}^{\mathsf{T}} \mathbf{x}} \widetilde{\sin} \left(b + \theta_{\mathbf{w}} \right) db$$

$$= -2\pi \int_{0}^{\|\mathbf{w}\|} \mathbf{1} [\mathbf{w}^{\mathsf{T}} \mathbf{x} \ge b] \cdot \widetilde{\sin} \left(b + \theta_{\mathbf{w}} \right) db + 2\pi \int_{-\|\mathbf{w}\|}^{0} \mathbf{1} [\mathbf{w}^{\mathsf{T}} \mathbf{x} \le b] \cdot \widetilde{\sin} (b + \theta_{\mathbf{w}}) db$$

Generate thresholds, by dividing it into cases

$$g(\mathbf{x}) = \int_{\mathbb{R}^d} \widetilde{\cos} \left(\mathbf{w}^\mathsf{T} \mathbf{x} + \theta_{\mathbf{w}} \right) \cdot |\widetilde{g}(\mathbf{w})| \, d\mathbf{w}$$

- Now we want to turn this into a threshold network!
 - Need to do something that is not very straightforward...

$$\widetilde{\cos} \left(\mathbf{w}^{\mathsf{T}} \mathbf{x} + \theta_{\mathbf{w}} \right) - \widetilde{\cos} \left(\theta_{\mathbf{w}} \right) \\
= -2\pi \int_{0}^{\mathbf{w}^{\mathsf{T}} \mathbf{x}} \widetilde{\sin} \left(b + \theta_{\mathbf{w}} \right) db \\
= -2\pi \int_{0}^{\|\mathbf{w}\|} \mathbf{1} [\mathbf{w}^{\mathsf{T}} \mathbf{x} \ge b] \cdot \widetilde{\sin} \left(b + \theta_{\mathbf{w}} \right) db + 2\pi \int_{-\|\mathbf{w}\|}^{0} \mathbf{1} [\mathbf{w}^{\mathsf{T}} \mathbf{x} \le b] \cdot \widetilde{\sin} (b + \theta_{\mathbf{w}}) db \\
= 2\pi \int_{0}^{\|\mathbf{w}\|} \left[\widetilde{\sin} \left(-b + \theta_{-\mathbf{w}} \right) - \widetilde{\sin} (b + \theta_{\mathbf{w}}) \right] \cdot \mathbf{1} [\mathbf{w}^{\mathsf{T}} \mathbf{x} \ge b] db \qquad \text{Reparametrize and combine}$$

Theorem

• Plugging into the $g(\mathbf{x})$, we get the following theorem:

Theorem.

Let $g, \tilde{g} \in L^1$ and g(0) = 0. Then, we have

$$g(\mathbf{x}) = \iint q(\mathbf{w}, b) \cdot \mathbf{1}[\mathbf{w}^{\mathsf{T}} \mathbf{x} \ge b] \, d\mathbf{w} \, db$$

where $q(\mathbf{w}, b)$ is the parameter density

$$q(w,b) = 2\pi |\tilde{g}(\mathbf{w})| \left(\widetilde{\sin}(-b + \theta_{-\mathbf{w}}) - \widetilde{\sin}(b + \theta_{\mathbf{w}})\right) \cdot \mathbf{1}[0 \le b \le ||\mathbf{w}||]$$

Moreover, we have

$$\iint |q(\mathbf{w}, b)| \, \mathrm{d}\mathbf{w} \, \mathrm{d}b \le 2 \iint |\nabla g| |\mathrm{d}\mathbf{w}$$

• Note. Where did $\widetilde{\cos}(\theta_{\mathbf{w}})$ go?

Next up

- Sampling from the infinite-width nets
 - Analysis