6. Approximation:
GT as an infinite-width net




Recap

o Last few lectures, we have covered basic universal approximation results

e Keyidea. Neural nets can express the basis of other functions
e Pulses

e Fourier basis

e Sometimes, we managed to prove explicit bounds on the #neurons needed

o Unfortunately, when invoking Stone-Weierstrass, no explicit bound



Today

o Play with a powertul tool: sampling!

e Widely used in the analysis of algorithms

e Rough sketch
e Ground truth g(-): An infinite-width neural network

e Neuralnet f(:): Aneural netconstructed by sampling the GT neurons

o Asthe number of samples (i.e., neurons) increase, we have

f(-)— g(-), atsome rate

e Analyze this to get finite-width guarantees



Today

e Key Questions
e Q1. How do we express g( - ) as an infinite-width neural net?

e Q2. How do we analyze the convergence rateof f( - ) — g( - )?

e Today, we'll cover Q1, and do warm-up for Q2



Formalization

o First, we’'ll formalize the concept of (uncountably) infinite-width two-layer net

o Unfortunately, we’ll stick to threshold nets only

e We will show that:
g2(X) = Jﬂ'(W, b)-a(w,b) - I{WTX > b} dw db

e Here, we have:
e (W,b) specifies each neuron — unique 1st layer parameters
e a(w,b) 1isthe corresponding second layer weight

e n(w,b) isthe probability density over the neurons

e Remark. This is an exact equality, not an approximation



Formalization

 From this distribution of neurons, we will sample the neurons to build a finite-width net
e Step 1. Draw the neurons:
(W;, b)) ~ (W, b)
e Step 2. Build

m

1
fx) = — ; a(w, b) - 1{wx > b}

e It m — oo, we have certain convergence

o Later, we'll study good tools to quantify the convergence



GT as an infinite-width net



Univariate case

e First, let’s convince ourselves that any GT g( - ) is an infinite-width two-layer threshold net

o Let us first consider the easy case: univariate

Proposition 3.1.

Suppose that we have a univariate function over a compact domain, g : [0,1] — R.
Suppose further that g(0) = 0. Then, for x € [0,1], we have
1

glx) = J g'(b) - 1[x > b] db
0

e Any proof ideas?



Proof idea

e Recall the “fundamental theorem of calculus”

First part |edit]

This part is sometimes referred to as the first fundamental theorem of calculus.!®!

Let f be a continuous real-valued function defined on a closed interval [a, b]. Let I be the function defined, for all x in [a, b], by
X
F(z) = / £(t) dt.
a

Then F’is uniformly continuous on [a, b] and differentiable on the open interval (a, b), and

F'(z) = f()

for all x in (a, b) so F'is an antiderivative of f.




Univariate case

o Let’s take another look at what we proved:

1
g(x) = J g'(b)-1[x > b] db
0

e This is an infinite-width two-layer threshold network, with
e 1st layer weights w=1
e biases b
e 2nd layer weights a(b) = 2'(b)
e probability density  z(b) = Unif(]0,1])



Flashback

|
g(x) = J g'(b) - 1[x > b] db
0

o Recall that, several lecture ago, we considered a neural net construction

m

J(x) = Z (8([9i) — 8(bi—1)> - 1[x > b)]
i=1
e This can also be viewed as a version of sampling:

e Using a uniform grid — instead of uniform distribution

e Using differentials — instead of derivatives

e In this sense, what we are working on today is extending this idea further for a general technique



Multivariate case

e How do we extend this to a multivariate input case?

o Ultimately, we want to prove something like:

Claim (informal)

Under , we have

o(x) = ”q(w, b)-1{w'x > b} dw db

e Here, for simplicity, we are using a merged form
q(w,b) = n(w,b) - a(w, b)

e Given some g, we can always come up with (r, a) where 7 is a valid probability density



Multivariate case

o Unfortunately, this is not very easy...

e (Can you think of a good multivariate analogue of FTC?

 Handling various “directions” is the key challenge

e Tool. Fourier transform and complex numbers

o Will follow the exposition of “new” MJT notes



Prf;liminaries:
Fourier Transform



Notations and assumptions

e Notation. For a complex number, the absolute value | - | denotes the £, norm, i.e.,

b+ ci| =\/b?+ c?

Definition (Integrable)

A function g : RY — R is called integrable whenever it satisfies

J | g(X) | dx < o0
Rd

e Wewill write g € L!

o Will be our running assumption



Fourier Transform

Definition (Fourier Transform)
The Fourier transform g : R? — C of an integrable function g : RY — R is defined as

g(W) = J exp(—27iw 'X) - g(x) dx
Rd

o If you are not familiar with this form, recall that (one of) the Euler’s formula says:

exp(ix) = cos(x) + i - sin(x)

e That is, the Fourier transform is simply extracting the frequency components of g(x)
o Two sinusoids with different frequencies are orthogonal

e In multivariate case, the frequencies will have “directions” in addition to magnitudes



Properties

e Here are some well-known properties of the Fourier transform:

 Inversion.Ifg € L', then

g(X) = J@Xp(ZﬂiWTX) - g(w) dw

e Derivatives. Given some w & IRd, we have

2rl[w]l - 1[gw) [ =1l Vgl

e« Real parts. Let R[D + ic] = b denote the real part of a complex number.
Then, for an integrable complex function 4 : R* — C, we have:

R [J h(x) dx] :J R[A(x)] dx
Rd Rd



< /preliminaries>



Inverse Fourier Transforms

o Notice that the inverse Fourier transform can be readily viewed as an infinite-width net

g(x) = J GXp(ZﬂiWTX) - 9(w) dw
Rd

e Indeed, this is the case where
e 2(W) is the neuron density (multiplied by 2nd layer weights)
o 1 =exp(2xit) 1isthe activation function

e b there is no bias!



Inverse Fourier Transforms

g(x) = J exp(2ziw ' x) - g(w) dw
Rd

o Our goal is to re-write this, using threshold activations

g(x) = J 1[u(w) 'x > b(w)] - a(w) dw
Rd
e Note that we are using a slightly different notation now

e First-layer weights u

e Biases b

e This is done in two steps:
e Step 1. Turn IFT into cosine nets

e Step 2. Turn cosine nets into threshold nets



Step 1. IFT -> Cosine nets

g(x) = R[g(x)]



Step 1. IFT -> Cosine nets
g(x) = R[g(x)]

=R [J' exp(27zinX) - 9(w) dw
Rd



Step 1. IFT -> Cosine nets
g(x) = R[g(x)]

=R [J' exp(27zinX) - 9(w) dw
Rd

= J R [exp(Zm’wa) : g(w)] dw
Rd



Step 1. IFT -> Cosine nets ,,
g(x) = R[g(x)] /

=R [J' exp(27zinX) - 9(w) dw
Rd

= J R [exp(Zm’wa) : g(w)] dw
Rd

— J fR[exp(Zm'wa) - €Xp(2ﬂi@§(W)) - | g(w) |] dw
Rd



Step 1. IFT -> Cosine nets
g(x) = R[g(x)]

=R [J' exp(27zinX) - 9(W) dw]
Rd

J fR[exp(Zm’wTX) : g(w)] dw
R

R |exp(2riw 'x) - exp(2rify(w)) - | Z(w) || dw
R

.
.

_exp(2ni(w X + eg(w)))_ | 3(w) | dw



Step 1. IFT -> Cosine nets

g(x) = R[g(x)]

=R [J' exp(27zinX) - 9(W) dw]
Rd

J [exp(meTx) : g(w)] dw

R |exp(2riw 'x) - exp(2rify(w)) - | Z(w) || dw
Rd

J exp(27i (WX +6,W)) )| - 12(w)| dw
Rd - :

=

cos 27r W x4+ 0, (W))) - | g(w) | dw
Rd



Step 1. IFT -> Cosine nets

g2(X) = J COS(Z]Z’(WTX + Hg(w))) - | g(w) | dw
Rd

e That is, g( - ) is an infinite-width two-layer cosine network

2(X) = J 635(wa + Hw) | g(w) | dw
Rd
e Here, we use the shorthand notations

e COs(x) := cos(2xx)
. 0, = 0,(W)

e Density | (W) |
e 1stlayer weight w
e bias v,

W



Step 2. Cosine nets -> Threshold nets

2(X) = J EE(WTX + 6’W) | g(w)| dw
[Rd
e Now we want to turn this into a threshold network!

e Need to do something that is not very straightforward...



Step 2. Cosine nets -> Threshold nets

2(X) = J EE(WTX + 6’W) | g(w)| dw
[Rd
e Now we want to turn this into a threshold network!

e Need to do something that is not very straightforward...

cos(w'x + 6,,) — cos (6,
= — 2::[ sin (b +6,,) db
0



Step 2. Cosine nets -> Threshold nets

2(X) = J EE(WTX + 6’W) | g(w)| dw
[Rd
e Now we want to turn this into a threshold network!

e Need to do something that is not very straightforward...

cos(w'x + 6,,) — cos (6,
= — 2::[ sin (b +6,,) db
0

Il o 0 —_—
= — Zﬂj 1[w'x > b] - sin (b + Hw) db + 27:[ 1[w'x <b]-sin(b+0,)db
0 —[lwl



Step 2. Cosine nets -> Threshold nets

2(X) = J EE(WTX + 6’W) | g(w)| dw
[Rd
e Now we want to turn this into a threshold network!

e Need to do something that is not very straightforward...

cos(w'x + 6,,) — cos (6,

T

= — 2::[ sin (b +6,,) db
0

W] _ 0 —
= — Zﬂj 1[w'x > b] - sin (b + Hw) db + 27:[ 1[w'x <b]-sin(b+0,)db
—|Iw]

W

Wil - L _
=27rJ sin(—b H_W)—sin(b 6. -1[w'x > b]db




Theorem

e Plugging into the g(x), we get the following theorem:

Theorem.

Let g, 2 € L' and g(0) = 0. Then, we have

g(X) = J,Jq(w, b) - 1[w'x > b] dw db
where g(w, b) is the parameter density
qw.b) = 27| gW)| (Sin(=b +0_,) = sin (b +6,) ) - 110 < b < |}w|

Moreover, we have

”\q(w, b)| dw db < 2[\\%\\@

 Note. Where did cos(6,,) go?



Next up

o Sampling from the infinite-width nets

e Analysis



