
6. Approximation:
GT as an infinite-width net

Recap
• Last few lectures, we have covered basic universal approximation results

• Key idea. Neural nets can express the basis of other functions
• Pulses
• Fourier basis

• Sometimes, we managed to prove explicit bounds on the #neurons needed
• Unfortunately, when invoking Stone-Weierstrass, no explicit bound

Today
• Play with a powerful tool: sampling!

• Widely used in the analysis of algorithms

• Rough sketch

• Ground truth : An infinite-width neural network

• Neural net : A neural net constructed by sampling the GT neurons

• As the number of samples (i.e., neurons) increase, we have

, at some rate

• Analyze this to get finite-width guarantees

g(⋅)
f(⋅)

f(⋅) → g(⋅)

Today
• Key Questions

• Q1. How do we express as an infinite-width neural net?

• Q2. How do we analyze the convergence rate of ?

• Today, we’ll cover Q1, and do warm-up for Q2

g(⋅)
f(⋅) → g(⋅)

Formalization
• First, we’ll formalize the concept of (uncountably) infinite-width two-layer net

• Unfortunately, we’ll stick to threshold nets only

• We will show that:

• Here, we have:

• specifies each neuron — unique 1st layer parameters

• is the corresponding second layer weight

• is the probability density over the neurons

• Remark. This is an exact equality, not an approximation

g(x) = ∫ π(w, b) ⋅ a(w, b) ⋅ 1{w⊤x ≥ b} dw db

(w, b)
a(w, b)
π(w, b)

Formalization
• From this distribution of neurons, we will sample the neurons to build a finite-width net

• Step 1. Draw the neurons:

• Step 2. Build

• If , we have certain convergence

• Later, we’ll study good tools to quantify the convergence

(wi, bi) ∼ π(w, b)

f(x) =
1
m

m

∑
i=1

a(wi, bi) ⋅ 1{w⊤
i x ≥ bi}

m → ∞

GT as an infinite-width net

Univariate case
• First, let’s convince ourselves that any GT is an infinite-width two-layer threshold net

• Let us first consider the easy case: univariate

Proposition 3.1.

Suppose that we have a univariate function over a compact domain, .
Suppose further that . Then, for , we have

• Any proof ideas?

g(⋅)

g : [0,1] → ℝ
g(0) = 0 x ∈ [0,1]

g(x) = ∫
1

0
g′￼(b) ⋅ 1[x ≥ b] db

Proof idea
• Recall the “fundamental theorem of calculus”

Univariate case
• Let’s take another look at what we proved:

• This is an infinite-width two-layer threshold network, with

• 1st layer weights

• biases (the only parameter)

• 2nd layer weights

• probability density

g(x) = ∫
1

0
g′￼(b) ⋅ 1[x ≥ b] db

w = 1
b
a(b) = g′￼(b)
π(b) = Unif([0,1])

Flashback

• Recall that, several lecture ago, we considered a neural net construction

• This can also be viewed as a version of sampling:
• Using a uniform grid — instead of uniform distribution
• Using differentials — instead of derivatives

• In this sense, what we are working on today is extending this idea further for a general technique

g(x) = ∫
1

0
g′￼(b) ⋅ 1[x ≥ b] db

f(x) =
m

∑
i=1

(g(bi) − g(bi−1)) ⋅ 1[x ≥ bi]

Multivariate case
• How do we extend this to a multivariate input case?

• Ultimately, we want to prove something like:

Claim (informal)
Under some conditions, we have

• Here, for simplicity, we are using a merged form

• Given some , we can always come up with where is a valid probability density

g(x) = ∫ ∫ q(w, b) ⋅ 1{w⊤x ≥ b} dw db

q(w, b) = π(w, b) ⋅ a(w, b)
q (π, a) π

Multivariate case
• Unfortunately, this is not very easy…

• Can you think of a good multivariate analogue of FTC?
(there is one for the line integral, which is meh)

• Handling various “directions” is the key challenge

• Tool. Fourier transform and complex numbers
• Will follow the exposition of “new” MJT notes

Preliminaries:
Fourier Transform

Notations and assumptions
• Notation. For a complex number, the absolute value denotes the norm, i.e.,

Definition (Integrable)

A function is called integrable whenever it satisfies

• We will write

• Will be our running assumption

| ⋅ | ℓ2

|b + ci | = b2 + c2

g : ℝd → ℝ

∫ℝd

|g(x) |dx < ∞

g ∈ L1

Fourier Transform
Definition (Fourier Transform)

The Fourier transform of an integrable function is defined as

• If you are not familiar with this form, recall that (one of) the Euler’s formula says:

• That is, the Fourier transform is simply extracting the frequency components of

• Two sinusoids with different frequencies are orthogonal
• In multivariate case, the frequencies will have “directions” in addition to magnitudes

g̃ : ℝd → ℂ g : ℝd → ℝ

g̃(w) = ∫ℝd

exp(−2πiw⊤x) ⋅ g(x) dx

exp(ix) = cos(x) + i ⋅ sin(x)

g(x)

Properties
• Here are some well-known properties of the Fourier transform:

• Inversion. If , then

• Derivatives. Given some , we have

• Real parts. Let denote the real part of a complex number.
 Then, for an integrable complex function , we have:

g̃ ∈ L1

g(x) = ∫ exp(2πiw⊤x) ⋅ g̃(w) dw

w ∈ ℝd

2π∥w∥ ⋅ | g̃(w) | = ∥ ∇̃g∥

ℜ[b + ic] = b
h : ℝd → ℂ

ℜ [∫ℝd

h(x) dx] = ∫ℝd

ℜ[h(x)] dx

</preliminaries>

Inverse Fourier Transforms
• Notice that the inverse Fourier transform can be readily viewed as an infinite-width net

• Indeed, this is the case where

• is the neuron density (multiplied by 2nd layer weights)

• is the activation function

• there is no bias!

g(x) = ∫ℝd

exp(2πiw⊤x) ⋅ g̃(w) dw

g̃(w)
t = exp(2πit)
b

Inverse Fourier Transforms

• Our goal is to re-write this, using threshold activations

• Note that we are using a slightly different notation now

• First-layer weights

• Biases

• This is done in two steps:
• Step 1. Turn IFT into cosine nets
• Step 2. Turn cosine nets into threshold nets

g(x) = ∫ℝd

exp(2πiw⊤x) ⋅ g̃(w) dw

g(x) = ∫ℝd

1[u(w)⊤x ≥ b(w)] ⋅ a(w) dw

u
b

Step 1. IFT -> Cosine nets
 g(x) = ℜ[g(x)]

Step 1. IFT -> Cosine nets

 IFT

g(x) = ℜ[g(x)]

= ℜ [∫ℝd

exp(2πiw⊤x) ⋅ g̃(w) dw]

Step 1. IFT -> Cosine nets

 “Real Parts” property

g(x) = ℜ[g(x)]

= ℜ [∫ℝd

exp(2πiw⊤x) ⋅ g̃(w) dw]
= ∫ℝd

ℜ[exp(2πiw⊤x) ⋅ g̃(w)] dw

Step 1. IFT -> Cosine nets

 Polar decomposition

g(x) = ℜ[g(x)]

= ℜ [∫ℝd

exp(2πiw⊤x) ⋅ g̃(w) dw]
= ∫ℝd

ℜ[exp(2πiw⊤x) ⋅ g̃(w)] dw

= ∫ℝd

ℜ[exp(2πiw⊤x) ⋅ exp(2πiθg̃(w)) ⋅ | g̃(w) |] dw

Imag

Real1

g̃(w)

Step 1. IFT -> Cosine nets

 Magnitude is real

g(x) = ℜ[g(x)]

= ℜ [∫ℝd

exp(2πiw⊤x) ⋅ g̃(w) dw]
= ∫ℝd

ℜ[exp(2πiw⊤x) ⋅ g̃(w)] dw

= ∫ℝd

ℜ[exp(2πiw⊤x) ⋅ exp(2πiθg̃(w)) ⋅ | g̃(w) |] dw

= ∫ℝd

ℜ[exp(2πi(w⊤x + θg̃(w)))] ⋅ | g̃(w) | dw

Step 1. IFT -> Cosine nets

 Euler’s formula

g(x) = ℜ[g(x)]

= ℜ [∫ℝd

exp(2πiw⊤x) ⋅ g̃(w) dw]
= ∫ℝd

ℜ[exp(2πiw⊤x) ⋅ g̃(w)] dw

= ∫ℝd

ℜ[exp(2πiw⊤x) ⋅ exp(2πiθg̃(w)) ⋅ | g̃(w) |] dw

= ∫ℝd

ℜ[exp(2πi(w⊤x + θg̃(w)))] ⋅ | g̃(w) | dw

= ∫ℝd

cos(2π(w⊤x + θg̃(w))) ⋅ | g̃(w) | dw

Step 1. IFT -> Cosine nets

• That is, is an infinite-width two-layer cosine network

• Here, we use the shorthand notations

•

•

• Density

• 1st layer weight

• bias

g(x) = ∫ℝd

cos(2π(w⊤x + θg̃(w))) ⋅ | g̃(w) | dw

g(⋅)

g(x) = ∫ℝd

c̃os(w⊤x + θw) ⋅ | g̃(w) | dw

c̃os(x) := cos(2πx)
θw = θg̃(w)

| g̃(w) |
w
θw

Step 2. Cosine nets -> Threshold nets

• Now we want to turn this into a threshold network!
• Need to do something that is not very straightforward…

g(x) = ∫ℝd

c̃os(w⊤x + θw) ⋅ | g̃(w) | dw

Step 2. Cosine nets -> Threshold nets

• Now we want to turn this into a threshold network!
• Need to do something that is not very straightforward…

 Difference as an integration

g(x) = ∫ℝd

c̃os(w⊤x + θw) ⋅ | g̃(w) | dw

c̃os(w⊤x + θw) − c̃os(θw)
= − 2π∫

w⊤x

0
s̃in (b + θw) db

Step 2. Cosine nets -> Threshold nets

• Now we want to turn this into a threshold network!
• Need to do something that is not very straightforward…

Generate thresholds, by dividing it into cases

g(x) = ∫ℝd

c̃os(w⊤x + θw) ⋅ | g̃(w) | dw

c̃os(w⊤x + θw) − c̃os(θw)
= − 2π∫

w⊤x

0
s̃in (b + θw) db

= − 2π∫
∥w∥

0
1[w⊤x ≥ b] ⋅ s̃in (b + θw) db + 2π∫

0

−∥w∥
1[w⊤x ≤ b] ⋅ s̃in (b + θw) db

Step 2. Cosine nets -> Threshold nets

• Now we want to turn this into a threshold network!
• Need to do something that is not very straightforward…

 Reparametrize and combine

g(x) = ∫ℝd

c̃os(w⊤x + θw) ⋅ | g̃(w) | dw

c̃os(w⊤x + θw) − c̃os(θw)
= − 2π∫

w⊤x

0
s̃in (b + θw) db

= − 2π∫
∥w∥

0
1[w⊤x ≥ b] ⋅ s̃in (b + θw) db + 2π∫

0

−∥w∥
1[w⊤x ≤ b] ⋅ s̃in (b + θw) db

= 2π∫
∥w∥

0
[s̃in (− b + θ−w) − s̃in (b + θw)] ⋅ 1[w⊤x ≥ b] db

Theorem
• Plugging into the , we get the following theorem:
Theorem.

Let and . Then, we have

where is the parameter density

Moreover, we have

• Note. Where did go?

g(x)

g, g̃ ∈ L1 g(0) = 0

g(x) = ∫ ∫ q(w, b) ⋅ 1[w⊤x ≥ b] dw db

q(w, b)

q(w, b) = 2π | g̃(w) |(s̃in (−b + θ−w) − s̃in (b + θw)) ⋅ 1[0 ≤ b ≤ ∥w∥]

∫ ∫ |q(w, b) | dw db ≤ 2∫ ∥ ∇̃g∥dw

c̃os(θw)

• Sampling from the infinite-width nets
• Analysis

Next up

