5. Approximation:
2-Layer ReLLU net




Recap

Last class, we showed that 3-layer ReLLU net are universal approximators

e Covered d-dimensional inputs
e Constructive proof

e 1.e., explicit construction given
e Linorm

e Lipschitz function



Today

e We prove that 2-layer sigmoid / ReLU networks are universal approximators
 Non-constructive proof
e 1.e., no explicit construction will be given
e Uniform norm (!)

e Continuous function (!)



Regret

e Question. In the last class, why did we need three layers?



Regret

e Question. In the last class, why did we need three layers?

e Each d-dimensional pulse 1{x € R.} was a 3-layer net

e Each R;is a hypercube
d
l[x € R] = Hl[xj € la;, b,]]
i=1

e 1st hidden layer. Construct a 1D pulse

e 2nd hidden layer. Conduct a “multiplication” of 1D pulses
e Add 1D pulses

e Subtractd — 1

e ReLU out negative parts



Regret

'. 2nd hidden layer. Conduct a “multiplication” of 1D pulses
o Add 1D pulses '
e Subtractd — 1

e ReLU out negative parts

Can we remove this?



Regret

'. 2nd hidden layer. Conduct a “multiplication” of 1D pulses '
| e Add 1D pulses '
e Subtractd — 1

e ReLU out negative parts

Yes, if two-layer nets are
“closed under multiplication”



Formalisms

o To formalize this, consider a set of all two-layer networks
e The set of depth-2, width-m nets will be defined as:

m
Fo = {x — Y aox"w;+b) | w, e R, b, € R, € R, i € [m]}
=1

o The set of depth-2 nets will be defined as:

@ _ @
Jra,d — U ‘/ra,d,m
meN

e Let’s study the properties of these hypothesis spaces



Hypothesis space as an algebra

Claim 1. The set #_ ;, is closed under scalar multiplication, i.e.,

fE LC—jjza,d,m’ C € R;&O 5 (C f) S LC;Tra,al,rn



Hypothesis space as an algebra

Claim 2. The set # _ ;1s closed under addition, 1.e.,

LeEF g —([+8Q€EF,,



Hypothesis space as an algebra

Claim 3 (Cosine). The set # . ;1s closed under multiplication, i.e.,

[ 8E€ Fiosa —— (8 € Frpey



Stone-Weilerstrass

e Now, we describe our main technical tool

o Will not prove it, sadly

Theorem 2.2. (Stone-Welerstrass).

Let a set of functions & be given as follows.

e Eachf € & is continuous

e For any x, there exists f € & such that f(x) # 0

e For any x # x/, there exists f € & such that f(x) # f(x')

e # is closed under multiplications and vector space operations (i.e., algebra)

Then, & 1s a universal approximator:

For every continuous f : R - R and ¢ > 0, there exists f € F with

sup |f(x) —gx)| L e
x€[0,1]¢



Exercises

Exercise 1. (Cosines).

Show that # . , satisties the Stone-Weierstrass conditions, and thus universal approximators
e Eachf € F# is continuous

e For any x, there exists f € &# such that f(x) # 0

e For any x # x/, there exists f € & such that f(x) # f(x')

e F# is closed under multiplications and vector space operations



Exercises

Exercise 2. (Exponentials).

Show that &# exp.d Satisties the Stone-Weierstrass conditions, and thus universal approximators

e Eachf € # is continuous
e For any x, there exists f € & such that f(x) # 0
e For any x # x/, there exists f € & such that f(x) # f(x')

e F# is closed under multiplications and vector space operations



Sigmoidal functions

e Now, we state our main result today

Theorem 2.3. (Hornik, Stinchecombe, and White, 1989)

Suppose that 6 : R — R is sigmoidal, i.e.,

e Continuous

e Nondecreasing

, lIm o(x)=0and lIm o(x) =1

X—>—00 X—>+00

Then, & _ ,1s universal.

o Unfortunately, validating SW conditions for general sigmoid is harder than it looks...



Sigmoidal functions

e Instead of a direct proof, we’ll go through cosines
e Step 1. Sigmoids can approximate “cosine sigmoids”
o Step 2. Cosine sigmoids can represent cosines

o Step 3. Cosines are universal approximators

g(6) = cos(0)

A

Define “Cosine sigmoids” as:

O coe xSO

1 coe xZ]Z'
cos(x+ )+ 1
2

0.(X) =

x € (0,m)




Technical Lemma

Lemma A. (Any sigmoid can approximate another sigmoid)

For any sigmoids o, 6" and € > 0, there exists f € F | such that

sup [o'(x) —f(x0) | < &

xeR



Technical Lemma

Lemma A. (Any sigmoid can approximate another sigmoid)

For any sigmoids o, 6" and € > 0, there exists f € F | such that

sup [o'(x) —f(x0) | < &

xeR

o Idea. Copy-and-paste your sigmoid




Proof

o Step 1. Divide the curve to be fit.

e Choosesomek > 2/e  (number of pieces)

7; = sup {x o'(x) = Jz}

(we'lllet r, = supi{x | o'(x) =1 — 1/2k})

e Forje {1,....k— 1}, select

1/2k




Proof

e Step 1. Divide the approximand o’'(x)

e Choosesomek > 2/e  (number of pieces)

r; = sup {x o'(x) = ];}

(we'lllet r, = supi{x | 6'(x) =1 = 1/2k})

m—(X)

e Forje {l1,....k— 1}, select

1/2k




Proof

e Step 2. Choose the “effective region” of the approximator o(x)
e Choose M such that

E E
-M) < —, M)<1——
o(—M) Y o(M) Y

el2k



| ™

Proof

o Step 3. Fit piecewise functions
e Use one sigmoid for each of 6'((— o0, r{]), 6'((r{, 1,]), ...
e Blue can deviate from red by
1/k + k X (tail components) < ¢€/2+kX(e/2k) = ¢
1/2k I

IV
ek
\
~



Technical Lemma

Lemma B. (Any sigmoid can approximate cosine)

For any sigmoids o, ¢ > 0, M > 0, there exists f € & _; such that

sup | f(x) —cos(x)| < ¢
xe|—-M, M|

e Idea.
e Use Lemma A to approximate the cosine sigmoid

e Overlap cosine sigmoids to get cosine



The Case of ReLU

e Handling ReLU is easy
e Two ReLUs can generate “hard sigmoid”

e Hard sigmoids can approximate cosine sigmoid



Next up

e Infinite-width limits of neural networks



