
4. Approximation:
3-Layer ReLU net

Recap
• In the last class, we proved our first universal approximation result

• Simple case, of 1D function with 2-layer threshold nets

• In particular, we proved that:

Proposition 2.1.

Suppose that is -Lipschitz. Then, for any , there exists a 2-layer network with
threshold nodes, so that

g : ℝ → ℝ ρ ε > 0 ⌈ρ/ε⌉

sup
x∈[0,1]

| f(x) − g(x) | ≤ ϵ

⋯

Distilling the Key Ideas
Proposition 2.1.

Suppose that is -Lipschitz. Then, for any , there exists a 2-layer network with
threshold nodes, so that

• Recall that the proof consists of two large steps:

• Approximating with — a weighted sum of simple bases

• Approximating with — a weighted sum of neurons

• Establish the relationship

g : ℝ → ℝ ρ ε > 0 ⌈ρ/ε⌉

sup
x∈[0,1]

| f(x) − g(x) | ≤ ϵ

g(⋅) h(⋅)

h(x) =
k

∑
i=1

αi ⋅ bi(x)

h(⋅) f(⋅)

f(x) =
m

∑
i=1

ai ⋅ ni(x)

g(⋅) ≈ h(⋅) ≈ f(⋅)

Distilling the Key Ideas
Step 1. Approximating with — a weighted sum of simple basis
• As the basis, we used shifted step functions

g(⋅) h(⋅)

bi(x) = 1{x − xi}

xi

1

0

Distilling the Key Ideas
• Weighted sum of bases gives histogram-like function

h(x) =
k

∑
i=1

αi ⋅ bi(x)

x1
o

α2

x2o

α1

x3
o

α3

o x1

α1

α1 + α2

x2 x3

α1 + α2 + α3

Distilling the Key Ideas
• The histogram can approximate any Lipschitz function arbitrarily closely

• Consider finer and finer granularity (i.e., increased) ✏

h(⋅) g(⋅)
k

Distilling the Key Ideas
Step 2. Approximating with — a weighted sum of neurons
• Two-layer threshold net can be written as a weighted sum of threshold neurons

• Each threshold neuron can be written as:

h(⋅) f(⋅)

f(x) =
m

∑
i=1

ai ⋅ ni(x)

ni(⋅) = 1{wix + bi ≥ 0}

Distilling the Key Ideas
• Approximate each basis with neuron(s)!

• Luckily, we can represent each basis using one threshold neuron, without error

• Basis

• Neuron

• Thus, -basis can be approximated by -neuron network , with

bi(⋅)

bi(⋅)

ni(⋅)

k h(⋅) k f(⋅) ∥h(⋅) − f(⋅)∥∞ = 0

0 xi

1

0
−bi/wi

1

Distilling the Key Ideas
• Thus we have:

• , for some good

•

• By triangle inequality:

∥g(⋅) − h(⋅)∥∞ < ε k
∥h(⋅) − f(⋅)∥∞ = 0

∥g − f∥∞ ≤ ∥g − h∥∞ + ∥h − f∥∞

< ε + 0

Today
• We depart from non-realistic assumptions

• Use ReLU, not threshold

• Use -dimensional input, not 1-dimensional

• This is trickier, so we will first:
• Use three-layers, not two

• Upper-bound norm, not uniform

d

L1

Main result
• In particular, we prove the following result
Theorem 2.1.

Let be a -Lipschitz function, and let . Then, there exists a three-layer ReLU
network with neurons such that

• Here, the Lipschitz constant is w.r.t. at the input and at the output

• Our strategy is basically the same:

• Build a nice , but with -dimensional bases

• Approximate each basis with neurons, but with ReLU neurons

• Let’s think about these questions first, then move onto the final proof

g : [0,1]d → ℝ ρ ε > 0
O(d ⋅ ⌈ρ/ε⌉d)

∫[0,1]d

| f(x) − g(x) |dx ≤ 2ε

∥ ⋅ ∥∞ | ⋅ |

h(⋅) d

• In 1D, we used step functions…
• Can we also use axis-parallel 1D step functions?

Basis

x1

x2

1

0

x1

x2

10

Basis
• Problem. Not exactly sure whether we can decouple everything…

• Brainteaser: Can anybody prove that we can/cannot do this?

x1

x2

α1

o α2 + α4α2

α1 + α3

α1 + α2

α1 + α2 + α3
α1 + α2

α1 + α2 + α4

+α3 + α4

• Choice. For now, we will use “high-D pulse” as our basis

 (is some hypercube)

• Much easier to approximate

• Somewhat involved, to be approximated by ReLU neurons

bi(x) = 1{x ∈ Ri} Ri

g(⋅)

Basis

x1

x2

1 0

• Now let’s think about what a ReLU neuron can approximate:

• For 1D input, a single ReLU neuron looks like this:

• Question. Can this approximate 1D pulse, i.e., ?

σ(w⊤
i x + bi)

1{x ∈ [a, b]}

ReLU for 1D pulse

• We do it in three steps:
Step 1. Sharpen up ReLU
• Build ReLU like:

using very small ()

σ (x − a
γ)

γ w = 1/γ, b = − a/γ

ReLU for 1D pulse

a

• We do it in three steps:
Step 2. Combine two ReLU to build a hard sigmoid
• Group two ReLU neurons

• Brainteaser: What if we used sigmoid activations from the first place?

sa,γ(x) = σ (x − (a − γ)
γ) − σ (x − a

γ)

ReLU for 1D pulse

a − γ a a − γ

a

0

1

• We do it in three steps:
Step 3. Combine two hard sigmoids to build a pulse
• Group two hard sigmoids as:

ua,b,γ(x) = sa,γ(x) − sb,γ(x)

ReLU for 1D pulse

a

a − γ

b − γ

b

• Summing up, a pulse can be approximated by:

• Question. How good is this approximation?

• Of course, the goodness depends on the sharpening factor

• In fact, the error is exactly ✏

1{x ∈ [a, b]}

ua,b,γ(x) = σ (x − (a − γ)
γ) − σ (x − a

γ) − σ (x − (b − γ)
γ) + σ (x − b

γ)

γ
L1 γ

ReLU for 1D pulse

a

a − γ

b − γ

b

• Question. How do we extend it to multivariate pulse?

∏
i

1{xi ∈ [aj, bj]}

ReLU for multivariate pulse

• Answer.
• Very difficult if we use two layers (try it!)
• Much easier if we use three layers

ReLU for multivariate pulse

• Again, we proceed in three steps:

Step 1. Sum univariate pulses in axes
• We’ll get something very ugly
• Total 4d ReLU neurons added, so far

d

ReLU for multivariate pulse

x1

x2

2 1

1

1

1

0

0 0

0

• Again, we proceed in three steps:

Step 2. Subtract
• Think of this as adding a bias, while adding the second hidden layer

d − 1

ReLU for multivariate pulse

0

x1

x2

1 0

0

0

0

-1

-1 -1

-1

• Again, we proceed in three steps:
Step 3. Remove negative parts, with ReLU
• We have fully added the second hidden layer

• Total number of neurons used: 4d in the 1st layer, 1 in the second layer

ReLU for multivariate pulse

x1

x2

10

• If we analyze the L1 error, it will be of order at most

• Now we are ready for a formal proof!
γ

ReLU for multivariate pulse

10

• We will prove three claims:

• Claim 1. Existence of some with

• Claim 2. Approximating bases with neurons
• Claim 3. Connecting two claims

h(⋅) ∥g − h∥∞ ≤ ε

Formalizing the claims

Claim 1. There exists an such that

 for .

Idea.

• Divide the domain into many sub-hypercubes, with sidelengths

• Select , for some

h(⋅)

∥g(x) − h(x)∥∞ ≤ ε, where h(x) =
N

∑
i=1

αi ⋅ 1{x ∈ Ri}

N = ⌈ρ/ε⌉d

[0,1]d ε/ρ
αi = g(x(i)) x(i) ∈ Ri

Formalizing the claims

Claim 2. For each , there exists a three-layer neural net such that

Idea.

• Already have the construction — all that remains is to choose the right

Ri fi(⋅)

∥fi(x) − 1{x ∈ Ri}∥1 ≤
ε

∑N
i=1 |αi |

, ∀i ∈ [N]

γ

Formalizing the claims

Claim 3. We have , for the three-layer neural network

Idea.
• Use the triangle inequality

• Congratulations — you have the claim!

∥f − g∥1 ≤ 2ε

f(x) =
N

∑
i=1

αi ⋅ fi(x)

Formalizing the claims

Theorem 2.1.

Let be a -Lipschitz function, and let . Then, there exists a three-layer ReLU
network with neurons such that

• We have used a lot of neurons — exponential dependence on

• Generally unavoidable, but gets better as we increase depth
• We can also use two layers

• Requires sophisticated tools (next lecture)

g : [0,1]d → ℝ ρ ε > 0
O(d ⋅ ⌈ρ/ε⌉d)

∫[0,1]d

| f(x) − g(x) |dx ≤ 2ε

d

Discussion

