
4. Approximation: 
3-Layer ReLU net



Recap
• In the last class, we proved our first universal approximation result 

• Simple case, of 1D function with 2-layer threshold nets 

• In particular, we proved that: 

Proposition 2.1. 

Suppose that  is -Lipschitz. Then, for any , there exists a 2-layer network with  
threshold nodes, so that 

g : ℝ → ℝ ρ ε > 0 ⌈ρ/ε⌉

sup
x∈[0,1]

| f(x) − g(x) | ≤ ϵ

⋯



Distilling the Key Ideas
Proposition 2.1. 

Suppose that  is -Lipschitz. Then, for any , there exists a 2-layer network with  
threshold nodes, so that 

 

• Recall that the proof consists of two large steps: 

• Approximating  with  — a weighted sum of simple bases 

 

• Approximating  with  — a weighted sum of neurons 

 

• Establish the relationship 

g : ℝ → ℝ ρ ε > 0 ⌈ρ/ε⌉

sup
x∈[0,1]

| f(x) − g(x) | ≤ ϵ

g( ⋅ ) h( ⋅ )

h(x) =
k

∑
i=1

αi ⋅ bi(x)

h( ⋅ ) f( ⋅ )

f(x) =
m

∑
i=1

ai ⋅ ni(x)

g( ⋅ ) ≈ h( ⋅ ) ≈ f( ⋅ )



Distilling the Key Ideas
Step 1. Approximating  with  — a weighted sum of simple basis 
• As the basis, we used shifted step functions 

g( ⋅ ) h( ⋅ )

bi(x) = 1{x − xi}

xi

1

0



Distilling the Key Ideas
• Weighted sum of bases gives histogram-like function 

h(x) =
k

∑
i=1

αi ⋅ bi(x)

x1
o

α2

x2o

α1

x3
o

α3

o x1

α1

α1 + α2

x2 x3
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Distilling the Key Ideas
• The histogram  can approximate any Lipschitz function  arbitrarily closely 

• Consider finer and finer granularity (i.e., increased ) ✏

h( ⋅ ) g( ⋅ )
k



Distilling the Key Ideas
Step 2. Approximating  with  — a weighted sum of neurons 
• Two-layer threshold net can be written as a weighted sum of threshold neurons 

 

• Each threshold neuron can be written as: 

 

h( ⋅ ) f( ⋅ )

f(x) =
m

∑
i=1

ai ⋅ ni(x)

ni( ⋅ ) = 1{wix + bi ≥ 0}



Distilling the Key Ideas
• Approximate each basis  with neuron(s)! 

• Luckily, we can represent each basis using one threshold neuron, without error 

• Basis  

• Neuron  

• Thus, -basis  can be approximated by -neuron network , with 

bi( ⋅ )

bi( ⋅ )

ni( ⋅ )

k h( ⋅ ) k f( ⋅ ) ∥h( ⋅ ) − f( ⋅ )∥∞ = 0

0 xi

1

0
−bi/wi

1



Distilling the Key Ideas
• Thus we have: 

• ,    for some good  

•  

• By triangle inequality: 

 

                                                  

∥g( ⋅ ) − h( ⋅ )∥∞ < ε k
∥h( ⋅ ) − f( ⋅ )∥∞ = 0

∥g − f∥∞ ≤ ∥g − h∥∞ + ∥h − f∥∞

< ε + 0



Today
• We depart from non-realistic assumptions 

• Use ReLU, not threshold 

• Use -dimensional input, not 1-dimensional 

• This is trickier, so we will first: 
• Use three-layers, not two 

• Upper-bound  norm, not uniform

d

L1



Main result
• In particular, we prove the following result 
Theorem 2.1. 

Let  be a -Lipschitz function, and let . Then, there exists a three-layer ReLU 
network with  neurons such that 

 

• Here, the Lipschitz constant is w.r.t.  at the input and  at the output 

• Our strategy is basically the same: 

• Build a nice ,                                             but with -dimensional bases 

• Approximate each basis with neurons,        but with ReLU neurons 

• Let’s think about these questions first, then move onto the final proof

g : [0,1]d → ℝ ρ ε > 0
O(d ⋅ ⌈ρ/ε⌉d)

∫[0,1]d

| f(x) − g(x) |dx ≤ 2ε

∥ ⋅ ∥∞ | ⋅ |

h( ⋅ ) d



• In 1D, we used step functions… 
• Can we also use axis-parallel 1D step functions? 

Basis

x1

x2

1

0

x1

x2

10



Basis
• Problem. Not exactly sure whether we can decouple everything… 

• Brainteaser: Can anybody prove that we can/cannot do this?

x1

x2

α1

o α2 + α4α2

α1 + α3

α1 + α2

α1 + α2 + α3
α1 + α2

α1 + α2 + α4

+α3 + α4



• Choice. For now, we will use “high-D pulse” as our basis 

          (  is some hypercube) 

• Much easier to approximate  

• Somewhat involved, to be approximated by ReLU neurons

bi(x) = 1{x ∈ Ri} Ri

g( ⋅ )

Basis

x1

x2

1 0



• Now let’s think about what a ReLU neuron can approximate: 

 

• For 1D input, a single ReLU neuron looks like this: 

• Question. Can this approximate 1D pulse, i.e., ?

σ(w⊤
i x + bi)

1{x ∈ [a, b]}

ReLU for 1D pulse



• We do it in three steps: 
Step 1. Sharpen up ReLU 
• Build ReLU like: 

 

using very small        ( )

σ ( x − a
γ )

γ w = 1/γ, b = − a/γ

ReLU for 1D pulse

a



• We do it in three steps: 
Step 2. Combine two ReLU to build a hard sigmoid 
• Group two ReLU neurons 

 

• Brainteaser: What if we used sigmoid activations from the first place?

sa,γ(x) = σ ( x − (a − γ)
γ ) − σ ( x − a

γ )

ReLU for 1D pulse

a − γ a a − γ

a

0

1



• We do it in three steps: 
Step 3. Combine two hard sigmoids to build a pulse 
• Group two hard sigmoids as: 

ua,b,γ(x) = sa,γ(x) − sb,γ(x)

ReLU for 1D pulse

a

a − γ

b − γ

b



• Summing up, a pulse  can be approximated by: 

 

• Question. How good is this approximation? 

• Of course, the goodness depends on the sharpening factor  

• In fact, the  error is exactly  ✏

1{x ∈ [a, b]}

ua,b,γ(x) = σ ( x − (a − γ)
γ ) − σ ( x − a

γ ) − σ ( x − (b − γ)
γ ) + σ ( x − b

γ )

γ
L1 γ

ReLU for 1D pulse

a

a − γ

b − γ

b



• Question. How do we extend it to multivariate pulse? 

∏
i

1{xi ∈ [aj, bj]}

ReLU for multivariate pulse



• Answer. 
• Very difficult if we use two layers        (try it!) 
• Much easier if we use three layers 

ReLU for multivariate pulse



• Again, we proceed in three steps: 

Step 1. Sum univariate pulses in  axes 
• We’ll get something very ugly 
• Total 4d ReLU neurons added, so far

d

ReLU for multivariate pulse

x1

x2

2 1

1

1

1

0

0 0

0



• Again, we proceed in three steps: 

Step 2. Subtract  
• Think of this as adding a bias, while adding the second hidden layer

d − 1

ReLU for multivariate pulse

0

x1

x2

1 0

0

0

0

-1

-1 -1

-1



• Again, we proceed in three steps: 
Step 3. Remove negative parts, with ReLU 
• We have fully added the second hidden layer 

• Total number of neurons used: 4d in the 1st layer, 1 in the second layer

ReLU for multivariate pulse

x1

x2

10



• If we analyze the L1 error, it will be of order at most  

• Now we are ready for a formal proof!
γ

ReLU for multivariate pulse

10



• We will prove three claims: 

• Claim 1. Existence of some  with  

• Claim 2. Approximating bases with neurons 
• Claim 3. Connecting two claims

h( ⋅ ) ∥g − h∥∞ ≤ ε

Formalizing the claims



Claim 1. There exists an  such that 

 

                  for . 

Idea. 

• Divide the domain  into many sub-hypercubes, with sidelengths  

• Select , for some 

h( ⋅ )

∥g(x) − h(x)∥∞ ≤ ε, where h(x) =
N

∑
i=1

αi ⋅ 1{x ∈ Ri}

N = ⌈ρ/ε⌉d

[0,1]d ε/ρ
αi = g(x(i)) x(i) ∈ Ri

Formalizing the claims



Claim 2. For each , there exists a three-layer neural net  such that 

 

Idea. 

• Already have the construction — all that remains is to choose the right 

Ri fi( ⋅ )

∥fi(x) − 1{x ∈ Ri}∥1 ≤
ε

∑N
i=1 |αi |

, ∀i ∈ [N]

γ

Formalizing the claims



Claim 3. We have , for the three-layer neural network 

 

Idea. 
• Use the triangle inequality 

• Congratulations — you have the claim!

∥f − g∥1 ≤ 2ε

f(x) =
N

∑
i=1

αi ⋅ fi(x)

Formalizing the claims



Theorem 2.1. 

Let  be a -Lipschitz function, and let . Then, there exists a three-layer ReLU 
network with  neurons such that 

 

• We have used a lot of neurons — exponential dependence on  

• Generally unavoidable, but gets better as we increase depth 
• We can also use two layers 

• Requires sophisticated tools (next lecture)

g : [0,1]d → ℝ ρ ε > 0
O(d ⋅ ⌈ρ/ε⌉d)

∫[0,1]d

| f(x) − g(x) |dx ≤ 2ε

d

Discussion


