4. Approximation:
3-Layer RelLU net




Recap @

o In the last class, we proved our first universal approximation result

L\,

o/

Suppose that ¢ : R — R is p-Lipschitz. Then, for any € > 0, there exists a 2-layer network with |p/é€]
threshold nodes, so that

o Simple case, of 1D function with 2-layer threshold nets

e In particular, we proved that:

Proposition 2.1.

sup |f(x) —gx)| <€
xe[0,1]



Distilling the Key Ideas

Proposition 2.1.

Suppose that g : R — R is p-Lipschitz. Then, for any € > 0, there exists a 2-layer network with [p/e]|
threshold nodes, so that

sup |f(x) —gx)| <€
x€[0,1]

o Recall that the proot consists of two large steps:

e Approximating g( - ) with A( - ) — a weighted sum of simple bases
k
h(x) = ) a;- bx)
i=1

e Approximating A( - ) with f( - ) — a weighted sum of neurons
m

Jx) = Z a; - n(x)
i=1
e Establish the relationship g( )~ h(-) ~ f(-)



Distilling the Key Ideas

Step 1. Approximating g( - ) with /( - ) — a weighted sum of simple basis

o As the basis, we used shifted step functions

b(x) =1{x —x;}



Distilling the Key Ideas

e Weighted sum of bases gives histogram-like function

k
h(x) = ) a;- bx)
=1



Distilling the Key Ideas

e The histogram /( - ) can approximate any Lipschitz function g( - ) arbitrarily closely

e Consider finer and finer granularity (i.e., increased k)



Distilling the Key Ideas

Step 2. Approximating /i( - ) with f( - ) — a weighted sum of neurons

o Two-layer threshold net can be written as a weighted sum of threshold neurons
m

Jx) = Z a; - nyx)

=1

e Each threshold neuron can be written as:



Distilling the Key Ideas

e Approximate each basis b;( - ) with neuron(s)!

e Luckily, we can represent each basis using one threshold neuron, without error

e Basisb(-) .

e Neuronng( -)

O

e Thus, k-basis A( - ) can be approximated by k-neuron network f( - ), with ||A(-) —f( )|, =0



Distilling the Key Ideas

e Thus we have:

o |lg(-)—h(-)||, <e¢ forsomegood k
o |InC-) =)l =0

o By triangle inequality:

1€ —fll £ llg — Nl + 17— fll
<e+0



Today

e We depart from non-realistic assumptions
e Use ReLU, not threshold

e Use d-dimensional input, not 1-dimensional
e This is trickier, so we will first:

o Use three-layers, not two

e Upper-bound L; norm, not uniform



Main result

e In particular, we prove the following result

Theorem 2.1.

Let g : (0,11 > R bea p-Lipschitz function, and let € > 0. Then, there exists a three-layer ReLLU
network with O(d - [p/€]?) neurons such that

[ LX) — g(x)| dx < 2
[0,1]4

e Here, the Lipschitz constant is w.r.t. || - ||, at the input and | - | at the output

e Our strategy is basically the same:

e Build a nice A( - ), but with d-dimensional bases

e Approximate each basis with neurons, = but with ReLU neurons

o Let’s think about these questions first, then move onto the final proof



Basis

e In 1D, we used step functions...

e Can we also use axis-parallel 1D step functions?



Basis

e Problem. Not exactly sure whether we can decouple everything...

o Brainteaser: Can anybody prove that we can/cannot do this?




Basis

e Choice. For now, we will use “high-D pulse” as our basis
b(x)=1{x €€ R}

e Much easier to approximate g( - )

 Somewhat involved, to be approximated by ReLU neurons

%%



ReLU for 1D pulse

e Now let’s think about what a ReLU neuron can approximate:

o(WX + b))

e For 1D input, a single ReLLU neuron looks like this:

e Question. Can this approximate 1D pulse, i.e., 1{x € [a, b]}?



ReLU for 1D pulse

e We do it in three steps:
Step 1. Sharpen up RelLU
e Build ReL.U like:

using very small y



ReLU for 1D pulse

e We do it in three steps:
Step 2. Combine two RelLU to build a hard sigmoid

e Group two ReLU neurons




ReLU for 1D pulse

e We do it in three steps:
Step 3. Combine two hard sigmoids to build a pulse

e Group two hard sigmoids as:




ReLU for 1D pulse

e Summing up, a pulse 1{x € [a, b]} can be approximated by:

e (S572) o (59) - (5575) ()

e Question. How good is this approximation?

e Of course, the goodness depends on the sharpening factor y

o In fact, the L, error is exactly y



ReLU for multivariate pulse

e Question. How do we extend it to multivariate pulse?

[ [1(x € [a. 5}




ReLU for multivariate pulse

e Answer.
o Very difficult if we use two layers

e Much easier if we use three layers



ReLU for multivariate pulse

e Again, we proceed in three steps:

Step 1. Sum univariate pulses in d axes
e We'll get something very ugly
e Total 4d ReLU neurons added, so far




ReLU for multivariate pulse

e Again, we proceed in three steps:

Step 2. Subtractd — 1
e Think of this as adding a bias, while adding the second hidden layer




ReLU for multivariate pulse

e Again, we proceed in three steps:

Step 3. Remove negative parts, with ReLLU
e We have fully added the second hidden layer

e Total number of neurons used: 4d in the 1st layer, 1 in the second layer

%%



ReLU for multivariate pulse

e If we analyze the L1 error, it will be of order at most y

e Now we are ready for a formal prootf!



Formalizing the claims

e We will prove three claims:

e Claim 1. Existence of some /(- ) with ||g — A||, L €
e Claim 2. Approximating bases with neurons

e Claim 3. Connecting two claims



Formalizing the claims

Claim 1. There exists an A( - ) such that

N
lgx) —h®)ll, <&, where h(x)= ) a;-1{xER,]
=1
for N = [p/e]?.

Idea.
o Divide the domain [0,1]¢ into many sub-hypercubes, with sidelengths &/p

o Select a; = g(X;), for some x;) € R,



Formalizing the claims

Claim 2. For each R, there exists a three-layer neural net f.( - ) such that

lfi(x) = {ix € Ri}]l; < Vi e [N]

N )
=1 ‘al‘

Idea.

e Already have the construction — all that remains is to choose the right y



Formalizing the claims

Claim 3. We have ||f — g||; < 2¢, for the three-layer neural network

N
fx) = ) ;- fi(x)
=1

Idea.
e Use the triangle inequality

e Congratulations — you have the claim!



Discussion

Theorem 2.1.

Let g : (0,119 > Rbea p-Lipschitz function, and let € > 0. Then, there exists a three-layer ReLU
network with O(d - [p/€]%) neurons such that

J | f(X) = g(x)[dx < 2e
0,13

e We have used a lot of neurons — exponential dependence on d

o Generally unavoidable, but gets better as we increase depth

e We can also use two layers

e Requires sophisticated tools (next lecture)



