
3. Approximation: 
Primer & Toy Case



Recap
• Recall the excess risk decomposition 

 

 

• Approximation theory is concerned with controlling the 4th term 

R( ̂f ) − R( fGT)

≤ [R( ̂f ) − Rn( ̂f )] + [Rn( ̂f ) − Rn( fERM)] + [Rn( f*) − R( f*)] + [R( f*) − R( fGT)]

R( f*) − R( fGT) = inf
f∈ℱ

R( f ) − inf
f meas.

R( f )



Recap
 

• This quantity measures the richness of the hypothesis space  

• If  is rich. The gap should be small 

• If  is small. The gap should be large

inf
f∈ℱ

R( f ) − inf
f meas.

R( f )

ℱ
ℱ
ℱ

All measurable functions

Functions in  (expressible with MLP)ℱ
f*

fGT



Recap
 

• Fortunately… 
• no {randomness, data} involved 
• less gradient descent involved 

• “less,” because running GD longer means larger 

inf
f∈ℱ

R( f ) − inf
f meas.

R( f )

ℱ

Learnable with 100 steps

Learnable with 200 steps

Learnable with 400 steps



Quantity of interest
• Still, this quantity per se is difficult to analyze 

 

• So let us simplify further 

• Issue 1. Terms are still about , which we never know 

inf
f∈ℱ

R( f ) − inf
f meas.

R( f )

P
inf
f∈ℱ

𝔼(X,Y)∼P[ℓ( f(X), Y)] − inf
f meas.

𝔼(X,Y)∼P[ℓ( f(X), Y)]



Quantity of interest
• Simplification 1. Express it as the “distance of hypotheses” 

 

                

                

                

                where  and  are Hölder conjugates (i.e., )

inf
f∈ℱ

R( f ) − inf
f meas.

R( f ) = sup
g meas.

inf
f∈ℱ

(𝔼[ℓ( f(X), Y) − ℓ(g(X), Y)])

= sup
g meas.

inf
f∈ℱ (∫𝒳×𝒴

PXY(x, y) ⋅ (ℓ( f(X), Y) − ℓ(g(X), Y)) dxdy)
≤ Lip(1)(ℓ) ⋅ sup

g meas.
inf
f∈ℱ (∫𝒳×𝒴

PXY(x, y) ⋅ | f(X) − g(X) | dxdy)
≤ Lip(1)(ℓ) ⋅ ∥PXY(x, y)∥q ⋅ sup

g meas.
inf
f∈ℱ (∥f(x) − g(x)∥p)

p q 1/p + 1/q = 1

Definition of 
Lipschitz constant

Hölder’s inequality



Quantity of interest
• Simplification 1. Express it as the “distance of hypotheses” 

 

• A popular choice is to let  

• Then,  and we get the supremum norm bound: 

 

• Otherwise, we can use general 

Lip(ℓ) ⋅ ∥PXY(x, y)∥q ⋅ sup
g meas.

inf
f∈ℱ (∥f(x) − g(x)∥p)

p = ∞
q = 1

Lip(ℓ) ⋅ sup
g meas.

inf
f∈ℱ

∥f(x) − g(x)∥∞

p



Quantity of interest
• Simplification 1. Express it as the “distance of hypotheses” 

 

• Also, in general, we’ll ignore the Lipschitz constant 
• because this is something that we cannot control 

• If you are irritated by the fact that  does not exist even for  loss 

• simply assume the bounded support 

Lip(ℓ) ⋅ sup
g meas.

inf
f∈ℱ

∥f(x) − g(x)∥∞

Lip(ℓ) ℓ2

𝒳, 𝒴

Assumptions make you happy ;)



Quantity of interest
• This is what we have now: 

 

• Issue 2. Taking care of “worst measurable ” is too pessimistic 

 

• Discontinuities can make your function arbitrarily wrong 

sup
g meas.

inf
f∈ℱ

∥f(x) − g(x)∥∞

g
sup

g meas.
inf
f∈ℱ

∥f(x) − g(x)∥∞



Quantity of interest
• Simplification 2. Again, we’ll narrow down the to continuous target functions 

 

• Justification. Ground truth is rarely discontinuous 
• e.g., is human prediction altered by infinitesimal perturbation on input? 

sup
g cont.

inf
f∈ℱ

∥f(x) − g(x)∥∞

f(x) → f(x + ε)



Quantity of interest
• Summing up, this is the quantity that we want to upper/lower-bound for the next few weeks 

 

• called universal approximation results 
• very actively studied in 1980s and 1990s 

• Modern variants include: 
• Are GNNs universal approximators? 
• Are sparse-attention transformers universal approximators? 
• Are mamba-like models universal approximators? 
• Are equivariant networks universal approximators?

sup
g cont.

inf
f∈ℱ

∥f(x) − g(x)∥∞



The simplest universal 
approximation theorem



Setup
• To give you an idea, we first study a very simple case 

• 1D inputs 

•  

• Bounded input domain 

•  

• Two-layer networks 

• Threshold activation  

• The hypothesis space can be written as: 

x ∈ ℝ, y ∈ ℝ

x ∈ [0,1]

σ(x) = 1{x ≥ 0}

ℱ = {
m

∑
i=1

ai1{wix + bi} ai ∈ ℝ, wi ∈ ℝ, bi ∈ ℝ}

⋯



Result
Proposition 2.1. 

Suppose that  is -Lipschitz. Then, for any , there exists a 2-layer network with  
threshold nodes, so that 

 

• Universal approximation is possible, if: 
• certain width and depth conditions are satisfied 
• certain smoothness assumption holds on GT

g : ℝ → ℝ ρ ε > 0 ⌈ρ/ε⌉

sup
x∈[0,1]

| f(x) − g(x) | ≤ ϵ



Proof
Proof. 

• Idea: Think about what each neuron represents in threshold neural net ✏ 

ℱ = {
m

∑
i=1

ai1{wix + bi} ai ∈ ℝ, wi ∈ ℝ, bi ∈ ℝ}



Proof
Proof. 

• Idea: Construct a “histogram”-like approximation of the original function ✏



Discussion
• While the result is very simple, it contains all the core ideas 

• We broke down GT into basis + small error 
• We used each neuron to approximate the basis 

• Thankfully, this step was exact 

• Notice that we have used “Lipschitz assumption” on the GT — a worst-case bound on smoothness 
• Brainteaser. If we have a more refined bound, such as total variation, 

                            then can we prove a better bound?



Next up
• In the coming lectures, we extend this idea to more complicated cases 

• Two-layer —> Deeper models 
• Threshold —> ReLU and Sigmoid 

• Uniform norm —>  normLp


