# 3. Approximation: Primer & Toy Case

### Recap

Recall the excess risk decomposition

$$\begin{split} R(\hat{f}) - R(f_{\text{GT}}) \\ & \leq \left[ R(\hat{f}) - R_n(\hat{f}) \right] + \left[ R_n(\hat{f}) - R_n(f_{\text{ERM}}) \right] + \left[ R_n(f^*) - R(f^*) \right] + \left[ R(f^*) - R(f_{\text{GT}}) \right] \end{split}$$

• Approximation theory is concerned with controlling the 4th term

$$R(f^*) - R(f_{GT}) = \inf_{f \in \mathscr{F}} R(f) - \inf_{f \text{ meas.}} R(f)$$

### Recap

$$\inf_{f \in \mathscr{F}} R(f) - \inf_{f \text{ meas.}} R(f)$$

- This quantity measures the richness of the hypothesis space  $\mathcal{F}$ 
  - If  $\mathcal{F}$  is rich. The gap should be small
  - If  $\mathcal{F}$  is small. The gap should be large



### Recap

$$\inf_{f \in \mathscr{F}} R(f) - \inf_{f \text{ meas.}} R(f)$$

- Fortunately...
  - no {randomness, data} involved
  - less gradient descent involved
    - "less," because running GD longer means larger  ${\mathcal F}$



• Still, this quantity *per se* is difficult to analyze

$$\inf_{f \in \mathcal{F}} R(f) - \inf_{f \text{ meas.}} R(f)$$

So let us simplify further

• **Issue 1.** Terms are still about *P*, which we never know

$$\inf_{f \in \mathscr{F}} \mathbb{E}_{(X,Y) \sim P}[\ell(f(X),Y)] - \inf_{f \text{ meas.}} \mathbb{E}_{(X,Y) \sim P}[\ell(f(X),Y)]$$

• Simplification 1. Express it as the "distance of hypotheses"

$$\inf_{f \in \mathscr{F}} R(f) - \inf_{f \text{ meas.}} R(f) = \sup_{g \text{ meas.}} \inf_{f \in \mathscr{F}} \left( \mathbb{E}[\ell(f(X), Y) - \ell(g(X), Y)] \right)$$

$$= \sup_{g \text{ meas.}} \inf_{f \in \mathscr{F}} \left( \int_{\mathscr{X} \times \mathscr{Y}} P_{XY}(x, y) \cdot \left( \ell(f(X), Y) - \ell(g(X), Y) \right) dx dy \right)$$

$$\stackrel{Definition of}{Lipschitz constant} \leq \operatorname{Lip}_{(1)}(\ell) \cdot \sup_{g \text{ meas.}} \inf_{f \in \mathscr{F}} \left( \int_{\mathscr{X} \times \mathscr{Y}} P_{XY}(x, y) \cdot |f(X) - g(X)| dx dy \right)$$

Hölder's inequality 
$$\leq \operatorname{Lip}_{(1)}(\ell) \cdot \|P_{XY}(x,y)\|_q \cdot \sup_{g \text{ meas. } f \in \mathscr{F}} \inf \left( \|f(x) - g(x)\|_p \right)$$

where p and q are Hölder conjugates (i.e., 1/p + 1/q = 1)

• Simplification 1. Express it as the "distance of hypotheses"

$$\operatorname{Lip}(\mathscr{E}) \cdot \|P_{XY}(x,y)\|_{q} \cdot \sup_{g \text{ meas. } f \in \mathscr{F}} \inf \left( \|f(x) - g(x)\|_{p} \right)$$

- A popular choice is to let  $p = \infty$ 
  - Then, q = 1 and we get the supremum norm bound:

$$\operatorname{Lip}(\mathscr{E}) \cdot \sup_{g \text{ meas. } f \in \mathscr{F}} \left\| f(x) - g(x) \right\|_{\infty}$$

• Otherwise, we can use general p

• Simplification 1. Express it as the "distance of hypotheses"

$$\operatorname{Lip}(\mathscr{E}) \cdot \sup_{g \text{ meas.}} \inf_{f \in \mathscr{F}} \|f(x) - g(x)\|_{\infty}$$

- Also, in general, we'll ignore the Lipschitz constant
  - because this is something that we cannot control
- If you are irritated by the fact that  $Lip(\ell)$  does not exist even for  $\ell^2$  loss
  - simply assume the bounded support  $\mathcal{X}, \mathcal{Y}$



• This is what we have now:

$$\sup_{g \text{ meas.}} \inf_{f \in \mathcal{F}} ||f(x) - g(x)||_{\infty}$$

• **Issue 2.** Taking care of "worst measurable g" is too pessimistic

$$\sup_{g \text{ meas.}} \inf_{f \in \mathscr{F}} \|f(x) - g(x)\|_{\infty}$$

• Discontinuities can make your function arbitrarily wrong



• Simplification 2. Again, we'll narrow down the to continuous target functions

$$\sup_{g \text{ cont.}} \inf_{f \in \mathscr{F}} ||f(x) - g(x)||_{\infty}$$

- <u>Justification</u>. Ground truth is rarely discontinuous
  - e.g., is human prediction altered by infinitesimal perturbation on input?

$$f(x) \rightarrow f(x + \varepsilon)$$



• Summing up, this is the quantity that we want to upper/lower-bound for the next few weeks

$$\sup_{g \text{ cont. } f \in \mathcal{F}} \|f(x) - g(x)\|_{\infty}$$

- called universal approximation results
- very actively studied in 1980s and 1990s
- Modern variants include:
  - Are GNNs universal approximators?
  - Are sparse-attention transformers universal approximators?
  - Are mamba-like models universal approximators?
  - Are equivariant networks universal approximators?

## The simplest universal approximation theorem

### Setup

- To give you an idea, we first study a very simple case
  - 1D inputs
    - $x \in \mathbb{R}, y \in \mathbb{R}$
  - Bounded input domain
    - $x \in [0,1]$
  - Two-layer networks
    - Threshold activation  $\sigma(x) = 1\{x \ge 0\}$
- The hypothesis space can be written as:

$$\mathcal{F} = \left\{ \sum_{i=1}^{m} a_i \mathbf{1} \{ w_i x + b_i \} \middle| a_i \in \mathbb{R}, w_i \in \mathbb{R}, b_i \in \mathbb{R} \right\}$$



### Result

### Proposition 2.1.

Suppose that  $g: \mathbb{R} \to \mathbb{R}$  is  $\rho$ -Lipschitz. Then, for any  $\varepsilon > 0$ , there exists a 2-layer network with  $\lceil \rho/\varepsilon \rceil$  threshold nodes, so that

$$\sup_{x \in [0,1]} |f(x) - g(x)| \le \epsilon$$

- Universal approximation is possible, if:
  - certain width and depth conditions are satisfied
  - certain smoothness assumption holds on GT

### Proof

#### Proof.

• Idea: Think about what each neuron represents in threshold neural net 📏

$$\mathcal{F} = \left\{ \sum_{i=1}^{m} a_i \mathbf{1} \{ w_i x + b_i \} \mid a_i \in \mathbb{R}, w_i \in \mathbb{R}, b_i \in \mathbb{R} \right\}$$

### Proof

### **Proof.**

• Idea: Construct a "histogram"-like approximation of the original function \

### Discussion

- While the result is very simple, it contains all the core ideas
  - We broke down GT into basis + small error
  - We used each neuron to approximate the basis
    - Thankfully, this step was exact
- Notice that we have used "Lipschitz assumption" on the GT a worst-case bound on smoothness
  - **Brainteaser.** If we have a more refined bound, such as total variation, then can we prove a better bound?

### Next up

- In the coming lectures, we extend this idea to more complicated cases
  - Two-layer —> Deeper models
  - Threshold —> ReLU and Sigmoid
  - Uniform norm  $-> L_p$  norm