3. Approximation:
Primer & Toy Case




Recap

e Recall the excess risk decomposition
R(f) = R(Jgr)
< [RG) = R(D)] + [R(P) = R(ferw)] + [R5 = R(FH)] +|[R(FH) — R(gr)]

o Approximation theory is concerned with controlling the 4th term

R(f*) = R(fgr) = miR(f)— 1nf R(f)

fe# f meas.



Recap

inf R(f) — inf R(f)

fex f meas.

e This quantity measures the richness of the hypothesis space #
e If 5 isrich. The gap should be small
e If # is small. The gap should be large

All measurable functions

Functions in & (expressible with MLP)




Recap

inf R(f) — inf R(f)

fesF f meas.

e Fortunately...
e no {randomness, data} involved

e less gradient descent involved

d

e “less,” because running GD longer means larger &

Learnable with 400 steps

Learnable with 200 steps

Learnable with 100 steps



Quantity of interest

o Still, this quantity per se is difficult to analyze
inf R(f) — int R(f)

fex f meas.

e So let us simplify further

e Issue 1. Terms are still about P, which we never know

int k) plZ(f(X), Y)] = mt Ep  plZ(f(X), V)]

fe# f meas.




Quantity of interest

o Simplification 1. Express it as the “distance of hypotheses”

inf R(f) — inf R(f) = sup inf (E[£(f(X),Y)—£(gX), V)]
fesF f meas. ¢ meas. fes
= sup inf J Pyy(x,y) - (f(f(X), Y) - £(g(X), Y)) dxdy
gmeas.fet"' AXY
T o tant < Lip(€)- sup inf ([ Pyy(x,¥) - | f(X) — g(X)| dxdy)
g2 meas. XY
Holder’s inequality < Lip (&) - |[Pxy(x, Yl - sup inf (Hf(x) — g(x)\\p)

g meas. e

where p and g are Holder conjugates



Quantity of interest
o Simplification 1. Express it as the “distance of hypotheses”

Lip(®) - 1Pyl - sup inf (I7x) = gColl, )

¢ meas. J€F

e A popular choiceistolet p = oo

e Then, g = 1 and we get the supremum norm bound:
Lip(¢) - sup 1nt [[f(x) — g

g meas. e

o Otherwise, we can use general p



Quantity of interest

o Simplification 1. Express it as the “distance of hypotheses”
Lip(£) - sup 1nt [[f(x) — g(0)||

g meas. J€F

e Also, in general, we’ll ignore the Lipschitz constant

e because this is something that we cannot control

o If you are irritated by the fact that Lip(#) does not exist even for £ loss
e simply assume the bounded support X', ¥

Assumptions make you happy ;) 1 |



Quantity of interest

e This is what we have now:

sup 1nf [[f(x) — g(x)||

¢ meas. J€F

e Issue 2. Taking care of “worst measurable g” is too pessimistic

sup 1nf [[f(x) — g(x)|| &

g meas. e

e Discontinuities can make your function arbitrarily wrong
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Quantity of interest

o Simplification 2. Again, we’ll narrow down the to continuous target functions

sup 1nf ||f(x) — g0l

g cont. e

o Justification. Ground truth is rarely discontinuous

e e.g., 1s human prediction altered by infinitesimal perturbation on input?

J(x) = fx + &)




Quantity of interest

e Summing up, this is the quantity that we want to upper/lower-bound for the next few weeks

sup 1nf |[f(x) — g(x0) ||

¢ cont. J€F

e called universal approximation results

o very actively studied in 1980s and 1990s

e Modern variants include:
e Are GNNs universal approximators?
e Are sparse-attention transformers universal approximators?
e Are mamba-like models universal approximators?

e Are equivariant networks universal approximators?



The simplest universal
approximation theorem




Setup

e To give you an idea, we first study a very simple case

e 1D Inputs

e xER,yER

 Bounded input domain
e x € [0,1]
e Two-layer networks

e Threshold activation o(x) = 1{x > 0}

 The hypothesis space can be written as:
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a, € R,w €R,b; € IR}




Result

Proposition 2.1.

Suppose that g : R — R is p-Lipschitz. Then, for any € > 0, there exists a 2-layer network with [p/e]|
threshold nodes, so that

sup |f(x) —gx)| <€
x€[0,1]

e Universal approximation is possible, if:
o certain width and depth conditions are satisfied

e certain smoothness assumption holds on GT



Proof

Proof.

o Idea: Think about what each neuron represents in threshold neural net .

F = {Zail{wix+bi} a, € R,w, € R, b, € IR}
i=1




Proof

Proof.

o Idea: Construct a “histogram”-like approximation of the original function



Discussion

e While the result is very simple, it contains all the core ideas
e We broke down GT into basis + small error
e We used each neuron to approximate the basis

o Thankfully, this step was exact

e Notice that we have used “Lipschitz assumption” on the GT — a worst-case bound on smoothness

e Brainteaser. If we have a more refined bound, such as total variation,
then can we prove a better bound?



Next up

e In the coming lectures, we extend this idea to more complicated cases

e Two-layer —> Deeper models
e Threshold —> ReLU and Sigmoid

e Uniform norm —> Lp norm



