
2. Warm-up



A toy example



Coin Tossing
• Suppose that we have a biased coin 

• The outcome is either Head ( ) or Tail ( ) 

• Parametrized by the head probability  

• which is not known to us 

• We toss the coin  times, and get the outcomes: 

 

• Assume independence between tosses

X = 1 X = 0
θ := Pr[X = 1]

n
X1:n = (X1, X2, …, Xn)



Coin Tossing
• Question. How would you estimate the head probability , as a function of ? 

• That is, construct a good estimator  

• What “guarantee” do we have, i.e., an upper (and lower) bound on the quantity 

  

• Note. Why do we care about probability? 

• Sometimes we’ll be unlucky, and get the samples , even when  

• However—thankfully—the probability of being unlucky will be very small!

θ X1:n
̂θ = f(X1, …, Xn)

Pr[ | ̂θ − θ | > ϵ] = ?

X1:n = (1,1,1,1,…,1) θ = 0.1



Coin Tossing
• Unless you have a good prior, one would try the empirical mean                            (we’ll justify later) 

 

• That is, the fraction of heads in the dataset. 

• Guarantee. We can proceed as: 

̂θ =
1
n

n

∑
i=1

Xn

Pr[ | ̂θ − θ | > ϵ] =



Coin Tossing
• We have the guarantee 

 

• Question. How many samples do we need to guarantee an error less than  with probability ? 

• called “sample complexity”

Pr[ | ̂θ − θ | > ε] ≤ 2 ⋅ exp(−2nε2)

ϵ 1 − δ



Coin Tossing
• We have just analyzed the theoretical property of an estimator. 

• The estimator was the empirical mean 

• This type of guarantee is called PAC (probably approximately correct) 

• Approximately correct, because we care about the event  

• Probably, because the error happens with probability no larger than  

• Again, the randomness comes from the randomness of data draws 

• Sometimes, we take a simpler path to bound something like  

• Can be related with PAC bound (e.g., via Markov’s inequality)

|θ − ̂θ | > ε
δ

𝔼[ | ̂θ − θ | ]



Coin Tossing
• Note that our guarantee is an upper bound (achievability) 

• For some , we can be successful at least by this amount 

• In some cases, we can come up with a lower bound (converse) 

• For any , we cannot achieve the error less than this amount 

• In this course, we won’t discuss these much: 
• Requires much more statistical backgrounds: 

• Le Cam’s method 
• Fano’s method 
• Assouad’s method

̂θ

̂θ



Coin Tossing
• We have used the empirical mean — why? 

• A perspective. It minimizes some loss function w.r.t. the training data. 
• Suppose that we have a family of estimates, called “constant functions” 

 

• Then, we observe that the population mean ( ) is the MMSE estimate of  under the data-
generating distribution  

 

• Likewise, the sample mean ( ) is the MMSE estimate of  under the empirical distribution  

 

• As  increases, we know that  (in some sense), thus .

ℱcon = ℝ
θ X

P
θ = arg min

z∈ℱcon

𝔼X∼P[(z − X)2]

̂θ X Pn
̂θ = arg min

z∈ℱcon

𝔼X∼Pn
[(z − X)2]

n Pn → P ̂θ → θ



Coin Tossing
• In this sense, we have analyzed the behavior of empirical risk minimization algorithm 

• Very restricted hypothesis space                                         —    

• Assumed no suboptimality due to poor optimization     —   no SGD involved 

• Let’s develop this example into a full-fledged learning problem

ℱcon



Formalisms



Basic setup
• Throughout the course, we focus on the following setup: 

• Task. Supervised learning 
• either binary classification or regression 

• Model. Multilayer Perceptrons (MLPs) 
• i.e., fully-connected, feedforward networks 

• Objective. Empirical risk minimization 
• Optimizer. Gradient descent 

• Let us be a little more specific…



Task: Supervised Learning
• Training data. We have  

• We assume independence:   

•  is not known to the learner 

• Features:  

• Labels:      

• For classification, we let  or  

• For regression, we let       

Note: Sometimes, we assume that there exists a measurable function  such that 

 

holds for all  drawn from 

D = {(xi, yi)}n
i=1

(xi, yi)
i.i.d.∼ P

P
xi ∈ 𝒳
yi ∈ 𝒴

𝒴 = {−1, + 1} {0,1}
𝒴 = ℝ

y*( ⋅ )
y*(x) = y

(x, y) P



Task: Supervised Learning
• Goal. Find a function such that  for all likely data  

• More precisely, minimize the test risk 

 

• Here,  is some pre-defined loss function 

• Zero-one loss:    

• Logistic loss:      

• Squared loss:    

f(X) ≈ Y (X, Y)

R( f ) := 𝔼(X,Y)∼P[ℓ( f(X), Y)]

ℓ( ⋅ , ⋅ )
ℓ( ̂y, y) = 1{ ̂y ≠ y}
ℓ( ̂y, y) = log(1 + exp(−y ̂y))
ℓ( ̂y, y) = ∥ ̂y − y∥2

2



Model: Multilayer Perceptron
• Basically a repetition of fully-connected layers 

• Each FC layer conducts: 

 

• Parametrized by: For some input width  and output width  

• Weight matrix.             

• Bias vector.                    

• Further specified by: 

• Activation function.    

• e.g., ReLU:  applied entrywise

x ↦ σ(Wx + b)

min mout

W ∈ ℝmout×min

b ∈ ℝmout

σ : ℝm → ℝm

σ(x) = [x]+ = max{x,0}



Model: Multilayer Perceptron
• For example, consider a two-layer neural net with one-dimensional output 

• Can be written as: 

 

• Here, blue denotes the learnable parameters 

• Given some dataset, we’ll want to optimize for the right 

f(x; W, a, b) =
m

∑
i=1

aiσ(wi⊤x+bi)

(W, a, b)



Model: Multilayer Perceptron
• More generally, a deep network will be written as: 

 

• We will simply use the shorthand 

 

• Based on this, we can parameterize a family of functions—i.e., a hypothesis space—as: 

 

• Later, we’ll measure the complexity of this set

f(x; w) = σL(WLσL−1(⋯σ1(W1x+b1)⋯+bL)

w = (W1, b1, …, WL, bL)

ℱ = {f( ⋅ ; w) | Wi ∈ ℝmi×mi−1, bi ∈ ℝmi}



Algorithm: Empirical Risk Minimization
Definition (Empirical Risk). 

Given some dataset , the empirical risk is defined as 

 

• Can be expressed in terms of the empirical distribution  as 

 

• Convenient, as we know various concentration properties of the empirical distribution to the 
true distribution 

 

• Importantly, we want  for “all”  simultaneously, not for just a single  

• We’ll see why later

D = {(xi, yi)}n
i=1

Rn( f ) :=
1
n

n

∑
i=1

ℓ( f(xi), yi)

Pn

Rn( f ) = 𝔼Pn
[ℓ( f(X), Y)]

Pn ⟶ P
Rn( f ) → R( f ) f ∈ ℱ f



Algorithm: Empirical Risk Minimization
Definition (Empirical Risk Minimization). 

Suppose that we have some hypothesis space . 
The empirical risk minimization (ERM) is to solve 

 

• Note.  The ERM solution may not be unique! 
• Indeed, this happens a lot in deep learning 
• Spoiler. Some generalize to the unseen data better than others 

• The mystery of deep learning is that somehow it seems to automatically find one that 
generalizes better than others (when sufficiently overparametrized)

ℱ

fERM := arg min
f∈ℱ

Rn( f )



Algorithm: Empirical Risk Minimization
• We now have various functions defined. 

• The empirical risk minimizer:                    

• What we actually get by SGD:                    

• The “true” predictor:                                  

• The best we can do, given some :        

• Question. How do these relate?

fERM := arg min
f∈ℱ

Rn( f )

̂f

fGT := arg min
f:any func.

R( f )

ℱ f* := arg min
f∈ℱ

R( f )



First steps: Decomposition



Risk decomposition
• Consider the excess risk — the risk added by not knowing the ground truth 

R( ̂f ) − R( fGT)



Risk decomposition
• By addition-and-subtraction, we can decompose the excess risk into four terms 

 

• No mysteries — simply added and subtracted empirical risks 

• We can adapt a little bit, and show that: 

 

• Can do this, because  achieves the smallest 

R( ̂f ) − R( fGT) = [R( ̂f ) − Rn( ̂f )] + [Rn( ̂f ) − Rn( f*)] + [Rn( f*) − R( f*)] + [R( f*) − R( fGT)]

R( ̂f ) − R( fGT) ≤ [R( ̂f ) − Rn( ̂f )]+[Rn( ̂f ) − Rn( fERM)]+[Rn( f*) − R( f*)] + [R( f*) − R( fGT)]
fERM Rn( ⋅ )



Risk decomposition
 

 

• These terms can be categorized into 3 kinds of penalties:

R( ̂f ) − R( fGT)

≤ [R( ̂f ) − Rn( ̂f )] + [Rn( ̂f ) − Rn( fERM)] + [Rn( f*) − R( f*)] + [R( f*) − R( fGT)]



Risk decomposition
 

 

• These terms can be categorized into 3 kinds of penalties: 
• (1) Approximation: Penalty from insufficient expressivity 

• Measures how rich the hypothesis set is 

R( ̂f ) − R( fGT)

≤ [R( ̂f ) − Rn( ̂f )] + [Rn( ̂f ) − Rn( fERM)] + [Rn( f*) − R( f*)] + [R( f*) − R( fGT)]

R( f*) − R( fGT) = min
f∈ℱ

R( f ) − min
f meas.

R( f )

All measurable functions

Functions in  (expressible with MLP)ℱ
f*

fGT



Risk decomposition
 

 

• These terms can be categorized into 3 kinds of penalties: 
• (2) Optimization: Penalty from imperfect fitting 

• Measures how well we can perform ERM 

 

• Smoothness and convexity matters, for convex optimization 
• For deep learning, there is an SGD magic involved

R( ̂f ) − R( fGT)

≤ [R( ̂f ) − Rn( ̂f )] + [Rn( ̂f ) − Rn( fERM)] + [Rn( f*) − R( f*)] + [R( f*) − R( fGT)]

Rn( ̂f ) − Rn( fERM) = Rn( ̂f ) − min
f∈ℱ

Rn( f )

Functions in  (expressible with MLP)ℱ

̂f fERM



Risk decomposition
 

 

• These terms can be categorized into 3 kinds of penalties: 
• (3) Generalization: Penalty from scarce data 

• Measures how well the dataset represents the distribution 
• Classically handled via the uniform deviation 

 

• Note that this is essentially a stochastic quantity 
• Will need some concentration of measures to handle

R( ̂f ) − R( fGT)

≤ [R( ̂f ) − Rn( ̂f )] + [Rn( ̂f ) − Rn( fERM)] + [Rn( f*) − R( f*)] + [R( f*) − R( fGT)]

R( ̂f ) − Rn( ̂f ) + Rn( f*) − R( f*) ≤ 2 sup
f∈ℱ

|R( f ) − Rn( f ) |



Risk decomposition
• Throughout the course, we focus on analyzing three components, under the assumption that: 

•  is a family of functions expressible with MLP 

 

 

• Optimization is done via empirical risk minimization, using gradient descent 

ℱ
f(x; w) = σL(WLσL−1(⋯σ1(W1x + b1)⋯ + bL)

ℱ = {f( ⋅ ; w) | Wi ∈ ℝmi×mi−1, bi ∈ ℝmi}

̂f = SGD( finit, D)



Caveat
• Importantly, this decoupled approach is far from complete 

• Cannot explain the phenomenon that larger nets generalize better 
• More discussion in the optimization & generalization sections



Next up
• First steps on the approximation


