2. Warm-up

A toy example

- Suppose that we have a biased coin
 - The outcome is either Head (X = 1) or Tail (X = 0)
 - Parametrized by the head probability $\theta := \Pr[X = 1]$
 - which is not known to us

• We toss the coin *n* times, and get the outcomes:

$$X_{1:n} = (X_1, X_2, ..., X_n)$$

• Assume independence between tosses

- **Question.** How would you estimate the head probability θ , as a function of $X_{1:n}$?
 - That is, construct a good estimator $\hat{\theta} = f(X_1, ..., X_n)$
 - What "guarantee" do we have, i.e., an upper (and lower) bound on the quantity

$$\Pr[|\hat{\theta} - \theta| > \epsilon] = ?$$

- Note. Why do we care about probability?
 - Sometimes we'll be unlucky, and get the samples $X_{1:n} = (1,1,1,1,...,1)$, even when $\theta = 0.1$
 - However—thankfully—the probability of being unlucky will be very small!

• Unless you have a good prior, one would try the empirical mean

(we'll justify later)

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} X_n$$

- That is, the fraction of heads in the dataset.
- Guarantee. We can proceed as:

$$\Pr[|\hat{\theta} - \theta| > \epsilon] =$$

We have the guarantee

$$\Pr[|\hat{\theta} - \theta| > \varepsilon] \le 2 \cdot \exp(-2n\varepsilon^2)$$

- Question. How many samples do we need to guarantee an error less than ϵ with probability 1δ ?
 - called "sample complexity"

- We have just analyzed the theoretical property of an estimator.
 - The estimator was the empirical mean

- This type of guarantee is called PAC (probably approximately correct)
 - Approximately correct, because we care about the event $|\theta \hat{\theta}| > \varepsilon$
 - Probably, because the error happens with probability no larger than δ
 - Again, the randomness comes from the randomness of data draws

- Sometimes, we take a simpler path to bound something like $\mathbb{E}[|\hat{\theta} \theta|]$
 - Can be related with PAC bound (e.g., via Markov's inequality)

- Note that our guarantee is an upper bound (achievability)
 - For some $\hat{\theta}$, we can be successful at least by this amount
- In some cases, we can come up with a lower bound (converse)
 - For any $\hat{\theta}$, we cannot achieve the error less than this amount
 - In this course, we won't discuss these much:
 - Requires much more statistical backgrounds:
 - Le Cam's method
 - Fano's method
 - Assouad's method

- We have used the empirical mean why?
- A perspective. It minimizes some loss function w.r.t. the training data.
 - Suppose that we have a family of estimates, called "constant functions"

$$\mathcal{F}_{con} = \mathbb{R}$$

• Then, we observe that the population mean (θ) is the MMSE estimate of X under the datagenerating distribution P

$$\theta = \arg\min_{z \in \mathcal{F}_{con}} \mathbb{E}_{X \sim P}[(z - X)^2]$$

• Likewise, the sample mean $(\hat{\theta})$ is the MMSE estimate of X under the empirical distribution P_n

$$\hat{\theta} = \arg\min_{z \in \mathcal{F}_{con}} \mathbb{E}_{X \sim P_n} [(z - X)^2]$$

• As *n* increases, we know that $P_n \to P$ (in some sense), thus $\hat{\theta} \to \theta$.

- In this sense, we have analyzed the behavior of empirical risk minimization algorithm
 - Very restricted hypothesis space
 - Assumed no suboptimality due to poor optimization no SGD involved

• Let's develop this example into a full-fledged learning problem

Formalisms

Basic setup

- Throughout the course, we focus on the following setup:
 - Task. Supervised learning
 - either binary classification or regression
 - Model. Multilayer Perceptrons (MLPs)
 - i.e., fully-connected, feedforward networks
 - Objective. Empirical risk minimization
 - Optimizer. Gradient descent
- Let us be a little more specific...

Task: Supervised Learning

- Training data. We have $D = \{(x_i, y_i)\}_{i=1}^n$
 - We assume independence: $(x_i, y_i) \stackrel{\text{i.i.d.}}{\sim} P$
 - *P* is not known to the learner
 - Features: $x_i \in \mathcal{X}$
 - Labels: $y_i \in \mathcal{Y}$
 - For classification, we let $\mathcal{Y} = \{-1, +1\}$ or $\{0,1\}$
 - For regression, we let $\mathcal{Y} = \mathbb{R}$

Note: Sometimes, we assume that there exists a measurable function $y^*(\cdot)$ such that

$$y^*(x) = y$$

holds for all (x, y) drawn from P

Task: Supervised Learning

- **Goal.** Find a function such that $f(X) \approx Y$ for all likely data (X, Y)
 - More precisely, minimize the test risk

$$R(f) := \mathbb{E}_{(X,Y)\sim P}[\mathscr{C}(f(X),Y)]$$

- Here, $\ell(\cdot, \cdot)$ is some pre-defined loss function
 - Zero-one loss: $\mathcal{E}(\hat{y}, y) = \mathbf{1}\{\hat{y} \neq y\}$
 - Logistic loss: $\ell(\hat{y}, y) = \log(1 + \exp(-y\hat{y}))$
 - Squared loss: $\ell(\hat{y}, y) = ||\hat{y} y||_2^2$

Model: Multilayer Perceptron

- Basically a repetition of fully-connected layers
- Each FC layer conducts:

$$x \mapsto \sigma(Wx + b)$$

- Parametrized by: For some input width $m_{\rm in}$ and output width $m_{\rm out}$
 - Weight matrix. $W \in \mathbb{R}^{m_{\text{out}} \times m_{\text{in}}}$
 - Bias vector. $b \in \mathbb{R}^{m_{\text{out}}}$
- Further specified by:
 - Activation function. $\sigma: \mathbb{R}^m \to \mathbb{R}^m$
 - e.g., ReLU: $\sigma(x) = [x]_+ = \max\{x,0\}$ applied entrywise

Model: Multilayer Perceptron

- For example, consider a two-layer neural net with one-dimensional output
 - Can be written as:

$$f(x; W, a, b) = \sum_{i=1}^{m} a_i \sigma(w_i^{\mathsf{T}} x + b_i^{\mathsf{T}})$$

- Here, blue denotes the learnable parameters
- Given some dataset, we'll want to optimize for the right (W, a, b)

Model: Multilayer Perceptron

• More generally, a **deep network** will be written as:

$$f(x; w) = \sigma_L(W_L \sigma_{L-1}(\cdots \sigma_1(W_1 x + b_1) \cdots + b_L)$$

We will simply use the shorthand

$$w = (W_1, b_1, ..., W_L, b_L)$$

• Based on this, we can parameterize a family of functions—i.e., a hypothesis space—as:

$$\mathcal{F} = \{ f(\cdot; w) \mid W_i \in \mathbb{R}^{m_i \times m_{i-1}}, b_i \in \mathbb{R}^{m_i} \}$$

• Later, we'll measure the complexity of this set

Algorithm: Empirical Risk Minimization

Definition (Empirical Risk).

Given some dataset $D = \{(x_i, y_i)\}_{i=1}^n$, the empirical risk is defined as

$$R_n(f) := \frac{1}{n} \sum_{i=1}^n \mathcal{E}(f(x_i), y_i)$$

• Can be expressed in terms of the empirical distribution P_n as

$$R_n(f) = \mathbb{E}_{P_n}[\mathscr{C}(f(X), Y)]$$

• Convenient, as we know various concentration properties of the empirical distribution to the true distribution

$$P_n \longrightarrow P$$

- Importantly, we want $R_n(f) \to R(f)$ for "all" $f \in \mathcal{F}$ simultaneously, not for just a single f
 - We'll see why later

Algorithm: Empirical Risk Minimization

Definition (Empirical Risk Minimization).

Suppose that we have some hypothesis space \mathcal{F} .

The empirical risk minimization (ERM) is to solve

$$f_{\text{ERM}} := \arg\min_{f \in \mathscr{F}} R_n(f)$$

- Note. The ERM solution may not be unique!
 - Indeed, this happens a lot in deep learning
 - Spoiler. Some generalize to the unseen data better than others
 - The mystery of deep learning is that somehow it seems to automatically find one that generalizes better than others (when sufficiently overparametrized)

Algorithm: Empirical Risk Minimization

• We now have various functions defined.

```
• The empirical risk minimizer:  f_{\text{ERM}} := \arg\min_{f \in \mathcal{F}} R_n(f)
```

• What we actually get by SGD: \hat{f}

- The "true" predictor: $f_{GT} := \underset{f:any \text{ func.}}{arg} \min_{R(f)} R(f)$
- The best we can do, given some \mathscr{F} : $f^* := \arg\min_{f \in \mathscr{F}} R(f)$

• Question. How do these relate?

First steps: Decomposition

• Consider the excess risk — the risk added by not knowing the ground truth

$$R(\hat{f}) - R(f_{\rm GT})$$

• By addition-and-subtraction, we can decompose the excess risk into four terms

$$R(\hat{f}) - R(f_{\text{GT}}) = \left[R(\hat{f}) - R_n(\hat{f}) \right] + \left[R_n(\hat{f}) - R_n(f^*) \right] + \left[R_n(f^*) - R(f^*) \right] + \left[R(f^*) - R(f_{\text{GT}}) \right]$$

• No mysteries — simply added and subtracted empirical risks

• We can adapt a little bit, and show that:

$$R(\hat{f}) - R(f_{\text{GT}}) \le \left[R(\hat{f}) - R_n(\hat{f}) \right] + \left[R_n(\hat{f}) - R_n(f_{\text{ERM}}) \right] + \left[R_n(f^*) - R(f^*) \right] + \left[R(f^*) - R(f_{\text{GT}}) \right]$$

• Can do this, because $f_{\rm ERM}$ achieves the smallest $R_n(\cdot)$

$$R(\hat{f}) - R(f_{\text{GT}})$$

$$\leq \left[R(\hat{f}) - R_n(\hat{f}) \right] + \left[R_n(\hat{f}) - R_n(f_{\text{ERM}}) \right] + \left[R_n(f^*) - R(f^*) \right] + \left[R(f^*) - R(f_{\text{GT}}) \right]$$

• These terms can be categorized into 3 kinds of penalties:

$$\begin{split} R(\hat{f}) - R(f_{\text{GT}}) \\ & \leq \left[R(\hat{f}) - R_n(\hat{f}) \right] + \left[R_n(\hat{f}) - R_n(f_{\text{ERM}}) \right] + \left[R_n(f^*) - R(f^*) \right] + \left[R(f^*) - R(f_{\text{GT}}) \right] \end{split}$$

- These terms can be categorized into 3 kinds of penalties:
 - (1) Approximation: Penalty from insufficient expressivity
 - Measures how rich the hypothesis set is

$$R(f^*) - R(f_{GT}) = \min_{f \in \mathscr{F}} R(f) - \min_{f \text{ meas.}} R(f)$$

$$\begin{split} R(\hat{f}) - R(f_{\text{GT}}) \\ & \leq \left[R(\hat{f}) - R_n(\hat{f}) \right] + \left[R_n(\hat{f}) - R_n(f_{\text{ERM}}) \right] + \left[R_n(f^*) - R(f^*) \right] + \left[R(f^*) - R(f_{\text{GT}}) \right] \end{split}$$

- These terms can be categorized into 3 kinds of penalties:
 - (2) Optimization: Penalty from imperfect fitting
 - Measures how well we can perform ERM

$$R_n(\hat{f}) - R_n(f_{\text{ERM}}) = R_n(\hat{f}) - \min_{f \in \mathcal{F}} R_n(f)$$

- Smoothness and convexity matters, for convex optimization
- For deep learning, there is an SGD magic involved

$$\begin{split} R(\hat{f}) - R(f_{\text{GT}}) \\ \leq \left[R(\hat{f}) - R_n(\hat{f}) \right] + \left[R_n(\hat{f}) - R_n(f_{\text{ERM}}) \right] + \left[R_n(f^*) - R(f^*) \right] + \left[R(f^*) - R(f_{\text{GT}}) \right] \end{split}$$

- These terms can be categorized into 3 kinds of penalties:
 - (3) Generalization: Penalty from scarce data
 - Measures how well the dataset represents the distribution
 - Classically handled via the uniform deviation

$$R(\hat{f}) - R_n(\hat{f}) + R_n(f^*) - R(f^*) \leq 2 \sup_{f \in \mathcal{F}} |R(f) - R_n(f)|$$

- Note that this is essentially a stochastic quantity
 - Will need some concentration of measures to handle

- Throughout the course, we focus on analyzing three components, under the assumption that:
 - F is a family of functions expressible with MLP

$$f(x; w) = \sigma_L(W_L \sigma_{L-1}(\cdots \sigma_1(W_1 x + b_1) \cdots + b_L))$$

$$\mathscr{F} = \{ f(\cdot; w) \mid W_i \in \mathbb{R}^{m_i \times m_{i-1}}, b_i \in \mathbb{R}^{m_i} \}$$

• Optimization is done via empirical risk minimization, using gradient descent

$$\hat{f} = \text{SGD}(f_{\text{init}}, D)$$

Caveat

- Importantly, this decoupled approach is far from complete
 - Cannot explain the phenomenon that larger nets generalize better
 - More discussion in the optimization & generalization sections

Next up

• First steps on the approximation