
2. Warm-up

A toy example

Coin Tossing
• Suppose that we have a biased coin

• The outcome is either Head () or Tail ()

• Parametrized by the head probability

• which is not known to us

• We toss the coin times, and get the outcomes:

• Assume independence between tosses

X = 1 X = 0
θ := Pr[X = 1]

n
X1:n = (X1, X2, …, Xn)

Coin Tossing
• Question. How would you estimate the head probability , as a function of ?

• That is, construct a good estimator

• What “guarantee” do we have, i.e., an upper (and lower) bound on the quantity

• Note. Why do we care about probability?

• Sometimes we’ll be unlucky, and get the samples , even when

• However—thankfully—the probability of being unlucky will be very small!

θ X1:n
̂θ = f(X1, …, Xn)

Pr[| ̂θ − θ | > ϵ] = ?

X1:n = (1,1,1,1,…,1) θ = 0.1

Coin Tossing
• Unless you have a good prior, one would try the empirical mean (we’ll justify later)

• That is, the fraction of heads in the dataset.

• Guarantee. We can proceed as:

̂θ =
1
n

n

∑
i=1

Xn

Pr[| ̂θ − θ | > ϵ] =

Coin Tossing
• We have the guarantee

• Question. How many samples do we need to guarantee an error less than with probability ?

• called “sample complexity”

Pr[| ̂θ − θ | > ε] ≤ 2 ⋅ exp(−2nε2)

ϵ 1 − δ

Coin Tossing
• We have just analyzed the theoretical property of an estimator.

• The estimator was the empirical mean

• This type of guarantee is called PAC (probably approximately correct)

• Approximately correct, because we care about the event

• Probably, because the error happens with probability no larger than

• Again, the randomness comes from the randomness of data draws

• Sometimes, we take a simpler path to bound something like

• Can be related with PAC bound (e.g., via Markov’s inequality)

|θ − ̂θ | > ε
δ

𝔼[| ̂θ − θ |]

Coin Tossing
• Note that our guarantee is an upper bound (achievability)

• For some , we can be successful at least by this amount

• In some cases, we can come up with a lower bound (converse)

• For any , we cannot achieve the error less than this amount

• In this course, we won’t discuss these much:
• Requires much more statistical backgrounds:

• Le Cam’s method
• Fano’s method
• Assouad’s method

̂θ

̂θ

Coin Tossing
• We have used the empirical mean — why?

• A perspective. It minimizes some loss function w.r.t. the training data.
• Suppose that we have a family of estimates, called “constant functions”

• Then, we observe that the population mean () is the MMSE estimate of under the data-
generating distribution

• Likewise, the sample mean () is the MMSE estimate of under the empirical distribution

• As increases, we know that (in some sense), thus .

ℱcon = ℝ
θ X

P
θ = arg min

z∈ℱcon

𝔼X∼P[(z − X)2]

̂θ X Pn
̂θ = arg min

z∈ℱcon

𝔼X∼Pn
[(z − X)2]

n Pn → P ̂θ → θ

Coin Tossing
• In this sense, we have analyzed the behavior of empirical risk minimization algorithm

• Very restricted hypothesis space —

• Assumed no suboptimality due to poor optimization — no SGD involved

• Let’s develop this example into a full-fledged learning problem

ℱcon

Formalisms

Basic setup
• Throughout the course, we focus on the following setup:

• Task. Supervised learning
• either binary classification or regression

• Model. Multilayer Perceptrons (MLPs)
• i.e., fully-connected, feedforward networks

• Objective. Empirical risk minimization
• Optimizer. Gradient descent

• Let us be a little more specific…

Task: Supervised Learning
• Training data. We have

• We assume independence:

• is not known to the learner

• Features:

• Labels:

• For classification, we let or

• For regression, we let

Note: Sometimes, we assume that there exists a measurable function such that

holds for all drawn from

D = {(xi, yi)}n
i=1

(xi, yi)
i.i.d.∼ P

P
xi ∈ 𝒳
yi ∈ 𝒴

𝒴 = {−1, + 1} {0,1}
𝒴 = ℝ

y*(⋅)
y*(x) = y

(x, y) P

Task: Supervised Learning
• Goal. Find a function such that for all likely data

• More precisely, minimize the test risk

• Here, is some pre-defined loss function

• Zero-one loss:

• Logistic loss:

• Squared loss:

f(X) ≈ Y (X, Y)

R(f) := 𝔼(X,Y)∼P[ℓ(f(X), Y)]

ℓ(⋅ , ⋅)
ℓ(̂y, y) = 1{ ̂y ≠ y}
ℓ(̂y, y) = log(1 + exp(−y ̂y))
ℓ(̂y, y) = ∥ ̂y − y∥2

2

Model: Multilayer Perceptron
• Basically a repetition of fully-connected layers

• Each FC layer conducts:

• Parametrized by: For some input width and output width

• Weight matrix.

• Bias vector.

• Further specified by:

• Activation function.

• e.g., ReLU: applied entrywise

x ↦ σ(Wx + b)

min mout

W ∈ ℝmout×min

b ∈ ℝmout

σ : ℝm → ℝm

σ(x) = [x]+ = max{x,0}

Model: Multilayer Perceptron
• For example, consider a two-layer neural net with one-dimensional output

• Can be written as:

• Here, blue denotes the learnable parameters

• Given some dataset, we’ll want to optimize for the right

f(x; W, a, b) =
m

∑
i=1

aiσ(wi⊤x+bi)

(W, a, b)

Model: Multilayer Perceptron
• More generally, a deep network will be written as:

• We will simply use the shorthand

• Based on this, we can parameterize a family of functions—i.e., a hypothesis space—as:

• Later, we’ll measure the complexity of this set

f(x; w) = σL(WLσL−1(⋯σ1(W1x+b1)⋯+bL)

w = (W1, b1, …, WL, bL)

ℱ = {f(⋅ ; w) | Wi ∈ ℝmi×mi−1, bi ∈ ℝmi}

Algorithm: Empirical Risk Minimization
Definition (Empirical Risk).

Given some dataset , the empirical risk is defined as

• Can be expressed in terms of the empirical distribution as

• Convenient, as we know various concentration properties of the empirical distribution to the
true distribution

• Importantly, we want for “all” simultaneously, not for just a single

• We’ll see why later

D = {(xi, yi)}n
i=1

Rn(f) :=
1
n

n

∑
i=1

ℓ(f(xi), yi)

Pn

Rn(f) = 𝔼Pn
[ℓ(f(X), Y)]

Pn ⟶ P
Rn(f) → R(f) f ∈ ℱ f

Algorithm: Empirical Risk Minimization
Definition (Empirical Risk Minimization).

Suppose that we have some hypothesis space .
The empirical risk minimization (ERM) is to solve

• Note. The ERM solution may not be unique!
• Indeed, this happens a lot in deep learning
• Spoiler. Some generalize to the unseen data better than others

• The mystery of deep learning is that somehow it seems to automatically find one that
generalizes better than others (when sufficiently overparametrized)

ℱ

fERM := arg min
f∈ℱ

Rn(f)

Algorithm: Empirical Risk Minimization
• We now have various functions defined.

• The empirical risk minimizer:

• What we actually get by SGD:

• The “true” predictor:

• The best we can do, given some :

• Question. How do these relate?

fERM := arg min
f∈ℱ

Rn(f)

̂f

fGT := arg min
f:any func.

R(f)

ℱ f* := arg min
f∈ℱ

R(f)

First steps: Decomposition

Risk decomposition
• Consider the excess risk — the risk added by not knowing the ground truth

R(̂f) − R(fGT)

Risk decomposition
• By addition-and-subtraction, we can decompose the excess risk into four terms

• No mysteries — simply added and subtracted empirical risks

• We can adapt a little bit, and show that:

• Can do this, because achieves the smallest

R(̂f) − R(fGT) = [R(̂f) − Rn(̂f)] + [Rn(̂f) − Rn(f*)] + [Rn(f*) − R(f*)] + [R(f*) − R(fGT)]

R(̂f) − R(fGT) ≤ [R(̂f) − Rn(̂f)]+[Rn(̂f) − Rn(fERM)]+[Rn(f*) − R(f*)] + [R(f*) − R(fGT)]
fERM Rn(⋅)

Risk decomposition

• These terms can be categorized into 3 kinds of penalties:

R(̂f) − R(fGT)

≤ [R(̂f) − Rn(̂f)] + [Rn(̂f) − Rn(fERM)] + [Rn(f*) − R(f*)] + [R(f*) − R(fGT)]

Risk decomposition

• These terms can be categorized into 3 kinds of penalties:
• (1) Approximation: Penalty from insufficient expressivity

• Measures how rich the hypothesis set is

R(̂f) − R(fGT)

≤ [R(̂f) − Rn(̂f)] + [Rn(̂f) − Rn(fERM)] + [Rn(f*) − R(f*)] + [R(f*) − R(fGT)]

R(f*) − R(fGT) = min
f∈ℱ

R(f) − min
f meas.

R(f)

All measurable functions

Functions in (expressible with MLP)ℱ
f*

fGT

Risk decomposition

• These terms can be categorized into 3 kinds of penalties:
• (2) Optimization: Penalty from imperfect fitting

• Measures how well we can perform ERM

• Smoothness and convexity matters, for convex optimization
• For deep learning, there is an SGD magic involved

R(̂f) − R(fGT)

≤ [R(̂f) − Rn(̂f)] + [Rn(̂f) − Rn(fERM)] + [Rn(f*) − R(f*)] + [R(f*) − R(fGT)]

Rn(̂f) − Rn(fERM) = Rn(̂f) − min
f∈ℱ

Rn(f)

Functions in (expressible with MLP)ℱ

̂f fERM

Risk decomposition

• These terms can be categorized into 3 kinds of penalties:
• (3) Generalization: Penalty from scarce data

• Measures how well the dataset represents the distribution
• Classically handled via the uniform deviation

• Note that this is essentially a stochastic quantity
• Will need some concentration of measures to handle

R(̂f) − R(fGT)

≤ [R(̂f) − Rn(̂f)] + [Rn(̂f) − Rn(fERM)] + [Rn(f*) − R(f*)] + [R(f*) − R(fGT)]

R(̂f) − Rn(̂f) + Rn(f*) − R(f*) ≤ 2 sup
f∈ℱ

|R(f) − Rn(f) |

Risk decomposition
• Throughout the course, we focus on analyzing three components, under the assumption that:

• is a family of functions expressible with MLP

• Optimization is done via empirical risk minimization, using gradient descent

ℱ
f(x; w) = σL(WLσL−1(⋯σ1(W1x + b1)⋯ + bL)

ℱ = {f(⋅ ; w) | Wi ∈ ℝmi×mi−1, bi ∈ ℝmi}

̂f = SGD(finit, D)

Caveat
• Importantly, this decoupled approach is far from complete

• Cannot explain the phenomenon that larger nets generalize better
• More discussion in the optimization & generalization sections

Next up
• First steps on the approximation

