

A toy example

Coin Tossing

o Suppose that we have a biased coin
e The outcome is either Head (X = 1) or Tail (X = 0)

e Parametrized by the head probability 8 := Pr[X = 1]

e which 1s not known to us

e We toss the coin n times, and get the outcomes:
Xl:n — (XI’XZ’ .o .,X)

e Assume independence between tosses

Coin Tossing

e Question. How would you estimate the head probability 6, as a function of X.,?

e That is, construct a good estimator 0 = X,,X)

e What “guarantee” do we have, 1.e., an upper (and lower) bound on the quantity
Pr[\é’—@\ >¢]l =7

e Note. Why do we care about probability?

e Sometimes we'll be unlucky, and get the samples X,., = (1,1,1,1,...,1), even when 6 = 0.1

 However—thankfully—the probability of being unlucky will be very small!

Coin Tossing

e Unless you have a good prior, one would try the empirical mean

S
9=;§;Xn

e That is, the fraction of heads in the dataset.

e Guarantee. We can proceed as:
Pr[\é’—é’\ > ¢] =

Coin Tossing

e We have the guarantee
Pr| | 0 — 0] > e] <2 -exp(—2ne?)

¢ Question. How many samples do we need to guarantee an error less than ¢ with probability 1 — 6?

o called “sample complexity”

Coin Tossing

e We have just analyzed the theoretical property of an estimator.

e The estimator was the empirical mean

o This type of guarantee is called PAC (probably approximately correct)

e Approximately correct, because we care about the event |6 — 4, | > &

e Probably, because the error happens with probability no larger than o

o Again, the randomness comes from the randomness of data draws

e Sometimes, we take a simpler path to bound something like [E[| 0—0 |]

e (Can be related with PAC bound (e.g., via Markov’s inequality)

Coin Tossing

o Note that our guarantee is an upper bound (achievability)

e For some 0, we can be successful at least by this amount

e In some cases, we can come up with a lower bound (converse)

e For any 0, we cannot achieve the error less than this amount
e In this course, we won’t discuss these much:
e Requires much more statistical backgrounds:
e Le Cam’s method
e Fano’s method

e Assouad’s method

Coin Tossing

e We have used the empirical mean — why?

o A perspective. It minimizes some loss function w.r.t. the training data.
e Suppose that we have a family of estimates, called “constant functions”
9COH — R

e Then, we observe that the population mean (6) is the MMSE estimate of X under the data-
generating distribution P

0 = arg min E, _p[(z — X)”]
Ze‘O}:con

e Likewise, the sample mean (0) is the MMSE estimate of X under the empirical distribution P,

f = arg min = eop (2= X))
ZEQCj/\;COn "

e Asnincreases, we know that P, — P (in some sense), thus 0 — 0.

Coin Tossing

e In this sense, we have analyzed the behavior of empirical risk minimization algorithm

e Very restricted hypothesis space — F

con

e Assumed no suboptimality due to poor optimization — no SGD involved

o Let’s develop this example into a full-fledged learning problem

Formalisms

Basic setup

e Throughout the course, we focus on the following setup:
o Task. Supervised learning
e either binary classification or regression
e Model. Multilayer Perceptrons (MLPs)
e 1.e., fully-connected, feedforward networks
e Objective. Empirical risk minimization

e Optimizer. Gradient descent

e Let us be a little more specific...

Task: Supervised Learning

o Training data. We have D = {(x;,y,)}'_,
e We assume independence: (x;, ;) K
e P isnot known to the learner
o Features:x, € X
e Labels: y €%

o For classification, welet %/ = {—1,+ 1} or {0,1}

e Forregression,welet % =R

Task: Supervised Learning

e Goal. Find a function such that f(X) =~ Y for all likely data (X, Y)

e More precisely, minimize the test risk

R(f) := Ex y)-plt (S(X), V)]

e Here, £(-, -)is some pre-defined loss function
e Zero-oneloss: Z(y,y) = 1{y # y}
e Logisticloss: Z(y,y) = log(l + exp(—yYy))
e Squaredloss: Z(y,y) = ||y — yH%

Model: Multilayer Perceptron

e Basically a repetition of fully-connected layers

e Each FC layer conducts:
x = o(Wx + b)

o Parametrized by: For some input width m, . and output width m_,

o Weight matrix. W e Rou/in

e Bias vector. b € RMou

o Further specified by:

e Activation function. o : R" —- R

e e.g., ReLU: o(x) = [x], = max{x,0} applied entrywise

Model: Multilayer Perceptron

o For example, consider a two-layer neural net with one-dimensional output

e (Can be written as:
m

fx; W,a,b) = Z ao(w;Tx+b;)
i=1
e Here, blue denotes the learnable parameters

e Given some dataset, we’ll want to optimize for the right (W, a, b)

Model: Multilayer Perceptron

e More generally, a deep network will be written as:
e We will simply use the shorthand
w = (Wl’ bl’ coes WL, bL)

e Based on this, we can parameterize a family of functions—i.e., a hypothesis space—as:
_ : XM, l-
F = {f(-sw) | W, € R b, € R™}

o Later, we'll measure the complexity of this set

Algorithm: Empirical Risk Minimization
Definition (Empirical Risk).

Given some dataset D = {(x;,y;) }'_,, the empirical risk is defined as

1 n
R(f) =~ 2} £(fx),)

e (Can be expressed in terms of the empirical distribution P, as

R(f) = Ep [£(f(X),)]

 Convenient, as we know various concentration properties of the empirical distribution to the
true distribution

P,— P
e Importantly, we want R (f) — R(f) for “all” f € & simultaneously, not for just a single f
e We'll see why later

Algorithm: Empirical Risk Minimization

Definition (Empirical Risk Minimization).
Suppose that we have some hypothesis space .

The empirical risk minimization (ERM) is to solve

ferMm c=argmin R (f)

fes#

e Note. The ERM solution may not be unique!

e Indeed, this happens a lot in deep learning

e Spoiler. Some generalize to the unseen data better than others

e The mystery of deep learning is that somehow it seems to automatically find one that
generalizes better than others (when sufficiently overparametrized)

—_— 3 Ra”don] ReLU featu(es 33 Ra”(:of“ RQLU feafL.'GS {

5 . | . A . 5 rv . v ' ‘ ' ' ' n
J — 3000 RelU ft'dtures:
. +
®
O [1 ; 3) d
e +
®
®
_5 A A A A A A A A A A g | | _5 | | A A | | A | A | AJ
5 4 : 0 - 2 3 4 5 : 4 . _ : : . . 4 : 5 4 3 2 1 0 1 2 3 4 3

Algorithm: Empirical Risk Minimization

e We now have various functions defined.

. The empirical risk minimizer: ferv c=argmin R (f)
cF
e What we actually get by SGD: f
, The “true” predictor: for:i=arg min R(f)
f:any func.

The best we can do, given some &: f* := argmin R(f)
feF

e Question. How do these relate?

First steps: Decomposition

Risk decomposition

e Consider the excess risk — the risk added by not knowing the ground truth

R(f) = R(f51)

Risk decomposition

o By addition-and-subtraction, we can decompose the excess risk into four terms

R(f) — R(fgp) = [R(H) = R(H)] + [R.(F) = R(F5)] + [R.(F%) — R(H)| + [R(F*) — R(fgp)]

e No mysteries — simply added and subtracted empirical risks

e We can adapt a little bit, and show that:
R(f) = R(fgp) < [RU) = Ry(D]+[R,()) = R, (Ferad) |+ [Ri() = R(F)] + [R(F*) = R(fgr)]

e Can do this, because frrp achieves the smallest R (-)

Risk decomposition
R(f) = R(f5r)

<[RS = R(D|*+|[R(H) = R.Sizrw)]| +|[Ru(F*) = RUH[+|[R(F*) = RUgr)]

 These terms can be categorized into 3 kinds of penalties:

Risk decomposition

R(f) = R(f5r)
< [R(H) = R(H)] + [R(F) = R,(firm)] + [R.(fF) = R(FH] +|[R(F¥) — R(f57)]

 These terms can be categorized into 3 kinds of penalties:
e (1) Approximation: Penalty from insufficient expressivity

e Measures how rich the hypothesis set is

R(f*) = R(fgr) = minR(f)— min R(f)

fe# f meas.

All measurable functions

Functions in & (expressible with MLP)

Risk decomposition
R(f) = R(fgr)

< [R(H) = R(H)] +|[R.(F) = R,(firm)]| + [R.(F*) = R(FH)] + [R(F¥) — R(f51)]

 These terms can be categorized into 3 kinds of penalties:
e (2) Optimization: Penalty from imperfect fitting

e Measures how well we can perform ERM

R(f)—R(firm) = R,(f)—minR,(f)

feF
 Smoothness and convexity matters, for convex optimization

o For deep learning, there is an SGD magic involved

]? JERM
O

Functions in & (expressible with MLP)

Risk decomposition
R(f) = R(fgr)

 These terms can be categorized into 3 kinds of penalties:
¢ (3) Generalization: Penalty from scarce data
e Measures how well the dataset represents the distribution

e C(lassically handled via the uniform deviation

R(f) =R (HH+R(f5)—R(f* < 2sup|R(f) =R (f)]

cF
o Note that this is essentially a stochastic quantity

e Will need some concentration of measures to handle

Risk decomposition

e Throughout the course, we focus on analyzing three components, under the assumption that:
e F is afamily of functions expressible with MLP
fxesw) =o0;,(Wyo7 _(--co/(Wix + by)--+ + by)
F ={f(-;w) | W, € R™"™"i-1 b, € R™}
e Optimization is done via empirical risk minimization, using gradient descent
f = SGD(f;y;1» D)

nit®

Caveat

 Importantly, this decoupled approach is far from complete

o (Cannot explain the phenomenon that larger nets generalize better

e More discussion in the optimization & generalization sections

Classical Regime: Modern Regime:
Bias-Variance Tradeoff Larger Model is Better
A 3
\/
i
0.5 ' Critical Test
O ' Regime Train
t i .
LL 04 :
k= .
© 0.3 !
— i
= N Interpolation
0.2 \ '(_/_ Threshold
-~ .
& \
— 0.1 \\:
l\\\
0.0 S e

10 20 30 40 50 60
ResNetl8 width parameter

Next up

o First steps on the approximation

