19. RC of Simple Nets



Recap

e Our goal is to prove generalization bounds

e With probability at least 1 — 0, we have (roughly)

log(2/0)

sup (R(f) = R(f)) <2 - ER(L5(Z) + \/

fes

e Here, the Rademacher complexity is:

n

RV) = l = sup(e, v), g ~ Unif({*1})

n vevV

£ (Z") = {(ff(Zl), 62, | fe 9}}




Today

e Give elementary generalization bounds for neural networks

o That is, want to upper bound:

= R(C5(Z7))

e for the cases:

£z w) = £y, o Wy.0)
Jaes W) =Wpeoe W, jo-ooe W

o As the first step, we’ll look at the linear model

fow) =w'x



Logistic regression

e Consider a logistic regression with bounded weights & data
e Bounded data

| Xll, <M, Yei{+l1,—-1}

e Logisticloss

£(y, f(x)) = log(1 + exp(—y - f(x)))

e Bounded function space

F = {x —w'x | weRy |w|, SB}




Logistic regression

o First, we claim that we can “peel off” the loss function

Lemma.

R(CH(Z")) < R(F (X))

 Proof idea. Recall the “contraction principle”
® Let Vbe a bounded subset of R”, and let ¢.( - ) : R — R be an M-Lipschitz function. Then,

R(@oV)<M-R(V)
e Showthatfory € {+1, — 1}, the following function is 1-Lipschitz

¢(a) = log(1 + exp(—y - a))



Logistic regression

e Now, our target of analysis is:

R(F(x")) = 1 sup ( Z £ - WTXl->

e This is usually a headache:

o« We expect something that behaves ~ 1/ \/Z

- sup (Zgi-wal) Nﬁ

e Naive approaches, e.g., Cauchy-Schwarz, is doomed.

o That is, we expect




Logistic regression

o In fact, we have the following bound.

Proposition.

= sup (iei : wal-) <B- i |11
i=1

 Not a bound that involves the number of parameters!
o Tight

o consult Khinchine’s inequality



Proof sketch
= sup (i £ * wal) <B- i ;117

e First, remove supremum:
n

- sup (Zei-wai>:B- - iel--xi
i=1

Iwl[,<B " ;_1

e Then, apply the Jensen’s inequality

n n
— — 2
=1

i=1
e Analyze the cross terms, and confirm they are zero.




Logistic regression

e As a corollary, we have:

Corollary.

B - +/Var(X
(e, (2 < SV BM

v v

o Thus, we have a generalization bound of order 1/ \/;

e If we train a lot, then B can be large:

e Longer training —> Can overtfit



Logistic regression — a variant

e Suppose that we have a 1-norm constraint on the weights.

L log 2d
= sup | Qe wy, SB-maxuxiuoo-\/ =
wll\<B \ ;=1 i L

e Proofidea. Try yourself ;)

Proposition.




Two-layer net

e Consider a slightly different version: Regression with two-layer net
e Bounded data

e Squared loss

£y, fx) = (y = fx))°

e Bounded function space

F = {x — w'o(Ux) | we R™, U e R™ ||w|, < B, |lull, < B,Vj € [m]}




Two-layer net

o Similarly, begin by peeling off the loss function

Lemma.

R(CH(Z") <4 - R(F(X"))

o Proofidea. Again, inspect the Lipschitz constant of a — ||y — a||*



Two-layer net

e Now, we can show the following bound

Proposition.

wp(ie f(x)) <2B,B A/ mn

JEF \ =1

e Unfortunately, we have \/m

e Dependent on the number of hidden layer neurons



Proof sketch

o Begin by peeling off the second layer

- sup ( Z £; -f(xi)) = £ Sup sup ( Z & ng(xi)>
feg i=1 ”W“ZSBW geg =1

n

=L sup supr(Zei-g(xi))

”WHQ,SBW gE? =1
n

=B, - Esup Zel--g(xi) 5
g€ 1l =

n

<B/m-Esup|l D & g(v)|o

SSE |

n

= BW\M -E  sup max Z E; - a(uiji)

U: |lu;ll,<B, /€M | "=




w

Sup max
U:llujll,<B, JELM]

Proof sketch

n

Z E; - a(uiji)

=1

||M||2SB l:l
n
<2-B\m-E sup
|ul[,<B, ;—1
n
<2-Bm-E sup
”l/lllszM =1
<2-B BA/mn




Remarks

- sup ( Z E; - f(xl-)) <2B,B A/ mn
1

fe&#

=

o The factory/m came from || - ||, = || - ||, and then coming back to || - ||,

e Thus, for depth-L nets, we will have the dependency: (21/ width)dPth

e But is this true?




Depth-independent bound

Theorem 14.2.

Consider a ReLLU net of form
x = o(W,o(W;_;--:6(W;x)--+), |\Wil-<B

Then, we have

R(F(Z") < B XI|p(1 ++/2L1og(2))

e Sadly, won't prove today

e Proofidea. Use the log-exponential trick

- sup = Elogexp sup < log [E exp sup

 Handle everything inside the log



e Covering number bounds



