
19. RC of Simple Nets



Recap
• Our goal is to prove generalization bounds 

• With probability at least , we have (roughly) 

 

• Here, the Rademacher complexity is: 

 

1 − δ

sup
f∈ℱ

(R( f ) − R̂( f )) ≤ 2 ⋅ 𝔼ℜ(ℓℱ(Zn)) +
log(2/δ)

2n

ℜ(V) :=
1
n

𝔼ε sup
v∈V

⟨ ⃗ε, v⟩, εi ∼ Unif({±1})

ℓℱ(Zn) = {(ℓf(Z1), …, ℓf(Zn)), f ∈ ℱ}



Today
• Give elementary generalization bounds for neural networks 

• That is, want to upper bound: 

 

• for the cases: 

 

 

• As the first step, we’ll look at the linear model 

𝔼ℜ(ℓℱ(Zn))

ℓf(z; w) = ℓ(y, f(x; W1:d))

f(x; W1:L) = WL ∘ σ ∘ WL−1 ∘ ⋯ ∘ σ ∘ W1x

f(x; w) = w⊤x



Logistic regression
• Consider a logistic regression with bounded weights & data 

• Bounded data 

 

• Logistic loss 

 

• Bounded function space 

∥X∥2 ≤ M, Y ∈ {+1, − 1}

ℓ(y, f(x)) = log(1 + exp(−y ⋅ f(x)))

ℱ = {x ↦ w⊤x w ∈ ℝd, ∥w∥2 ≤ B}



Logistic regression
• First, we claim that we can “peel off” the loss function 

Lemma. 

 

• Proof idea. Recall the “contraction principle” 
• Let  be a bounded subset of , and let  be an -Lipschitz function. Then, 

 

• Show that for , the following function is 1-Lipschitz 

ℜ(ℓℱ(Zn)) ≤ ℜ(ℱ(Xn))

V ℝn ϕi( ⋅ ) : ℝ → ℝ M
ℜ(ϕ ∘ V) ≤ M ⋅ ℜ(V)

y ∈ {+1, − 1}
ϕ(a) = log(1 + exp(−y ⋅ a))



Logistic regression
• Now, our target of analysis is: 

 

• This is usually a headache: 

• We expect something that behaves  

• That is, we expect 

 

• Naïve approaches, e.g., Cauchy-Schwarz, is doomed.

ℜ(ℱ(xn)) =
1
n

𝔼 sup
∥w∥2≤B (

n

∑
i=1

εi ⋅ w⊤xi)

∼ 1/ n

𝔼 sup
∥w∥2≤B (

n

∑
i=1

εi ⋅ w⊤xi) ∼ n



Logistic regression
• In fact, we have the following bound. 

Proposition.  

 

• Not a bound that involves the number of parameters! 
• Tight 

• consult Khinchine’s inequality

𝔼 sup
∥w∥2≤B (

n

∑
i=1

εi ⋅ w⊤xi) ≤ B ⋅
n

∑
i=1

∥xi∥2



Proof sketch
 

• First, remove supremum: 

 

• Then, apply the Jensen’s inequality 

 

• Analyze the cross terms, and confirm they are zero.

𝔼 sup
∥w∥2≤B (

n

∑
i=1

εi ⋅ w⊤xi) ≤ B ⋅
n

∑
i=1

∥xi∥2

𝔼 sup
∥w∥2≤B

(
n

∑
i=1

εi ⋅ w⊤xi) = B ⋅ 𝔼
n

∑
i=1

εi ⋅ xi

𝔼
n

∑
i=1

εi ⋅ xi ≤ 𝔼
n

∑
i=1

εi ⋅ xi
2



Logistic regression
• As a corollary, we have: 

Corollary.  

 

• Thus, we have a generalization bound of order  

• If we train a lot, then  can be large: 

• Longer training —> Can overfit

𝔼ℜ(ℓℱ(Zn)) ≤
B ⋅ Var(X)

n
≤

BM

n

1/ n
B



Logistic regression — a variant
• Suppose that we have a 1-norm constraint on the weights. 

Proposition.  

 

• Proof idea. Try yourself ;)

𝔼 sup
∥w∥1≤B (

n

∑
i=1

εi ⋅ w⊤xi) ≤ B ⋅ max
i

∥xi∥∞ ⋅
log 2d

n



Two-layer net
• Consider a slightly different version: Regression with two-layer net 

• Bounded data 

 

• Squared loss 

 

• Bounded function space 

∥x∥2 ≤ 1, |y | ≤ 1

ℓ(y, f(x)) = (y − f(x))2

ℱ = {x ↦ w⊤σ(Ux) w ∈ ℝm, U ∈ ℝm×d ∥w∥2 ≤ Bw, ∥uj∥2 ≤ Bu ∀j ∈ [m]}



Two-layer net
• Similarly, begin by peeling off the loss function 

Lemma. 

 

• Proof idea. Again, inspect the Lipschitz constant of 

ℜ(ℓℱ(Zn)) ≤ 4 ⋅ ℜ(ℱ(Xn))

a ↦ ∥y − a∥2



Two-layer net
• Now, we can show the following bound 

Proposition. 

 

• Unfortunately, we have  

• Dependent on the number of hidden layer neurons

𝔼 sup
f∈ℱ (

n

∑
i=1

εi ⋅ f(xi)) ≤ 2BwBu mn

m



Proof sketch
• Begin by peeling off the second layer 

 

                        

                        

                        

                       

𝔼 sup
f∈ℱ (

n

∑
i=1

εi ⋅ f(xi)) = 𝔼 sup
∥w∥2≤Bw

sup
g∈𝒢 (

n

∑
i=1

εi ⋅ w⊤g(xi))
= 𝔼 sup

∥w∥2≤Bw

sup
g∈𝒢

w⊤(
n

∑
i=1

εi ⋅ g(xi))
= Bw ⋅ 𝔼 sup

g∈𝒢

n

∑
i=1

εi ⋅ g(xi) 2

≤ Bw m ⋅ 𝔼 sup
g∈𝒢

n

∑
i=1

εi ⋅ g(xi) ∞

= Bw m ⋅ 𝔼 sup
U:∥uj∥2≤Bu

max
j∈[m]

n

∑
i=1

εi ⋅ σ(u⊤
j xi)



Proof sketch

                        

                                                                     

                                                                     

                                                                    

Bw m ⋅ 𝔼 sup
U:∥uj∥2≤Bu

max
j∈[m]

n

∑
i=1

εi ⋅ σ(u⊤
j xi) = Bw m ⋅ 𝔼 sup

∥u∥2≤Bu

n

∑
i=1

εi ⋅ σ(u⊤xi)

≤ 2 ⋅ Bw m ⋅ 𝔼 sup
∥u∥2≤Bu

n

∑
i=1

εi ⋅ σ(u⊤xi)

≤ 2 ⋅ Bw m ⋅ 𝔼 sup
∥u∥2≤Bu

n

∑
i=1

εi ⋅ u⊤xi

≤ 2 ⋅ BwBu mn



Remarks
 

• The factor  came from , and then coming back to  

• Thus, for depth-L nets, we will have the dependency:  

• But is this true?

𝔼 sup
f∈ℱ (

n

∑
i=1

εi ⋅ f(xi)) ≤ 2BwBu mn

m ∥ ⋅ ∥2 → ∥ ⋅ ∥∞ ∥ ⋅ ∥2

(2 width)depth



Depth-independent bound
Theorem 14.2. 
Consider a ReLU net of form 

 
Then, we have 

 

• Sadly, won’t prove today 
• Proof idea. Use the log-exponential trick 

 

• Handle everything inside the log

x ↦ σ(WLσ(WL−1⋯σ(W1x)⋯), ∥Wi∥F ≤ B

ℜ(ℱ(Zn)) ≤ BL∥X∥F(1 + 2L log(2))

𝔼 sup = 𝔼 log exp sup ≤ log 𝔼 exp sup



Next up
• Covering number bounds


