19. RC of Simple Nets

Recap

- Our goal is to prove generalization bounds
- With probability at least 1δ , we have (roughly)

$$\sup_{f \in \mathcal{F}} \left(R(f) - \hat{R}(f) \right) \le 2 \cdot \mathbb{E} \Re(\mathcal{E}_{\mathcal{F}}(Z^n)) + \sqrt{\frac{\log(2/\delta)}{2n}}$$

• Here, the Rademacher complexity is:

$$\Re(V) := \frac{1}{n} \mathbb{E}_{\varepsilon} \sup_{v \in V} \langle \vec{\varepsilon}, v \rangle, \qquad \varepsilon_i \sim \text{Unif}(\{\pm 1\})$$

$$\ell_{\mathscr{F}}(Z^n) = \left\{ \left(\ell_f(Z_1), \dots, \ell_f(Z_n) \right), \middle| f \in \mathscr{F} \right\}$$

Today

- Give elementary generalization bounds for neural networks
 - That is, want to upper bound:

$$\mathbb{E}\mathfrak{R}(\mathscr{C}_{\mathscr{F}}(Z^n))$$

for the cases:

$$\mathcal{E}_f(z; w) = \mathcal{E}(y, f(x; W_{1:d}))$$

$$f(x; W_{1:L}) = W_L \circ \sigma \circ W_{L-1} \circ \cdots \circ \sigma \circ W_1 x$$

• As the first step, we'll look at the linear model

$$f(x; w) = w^{\mathsf{T}} x$$

- Consider a logistic regression with bounded weights & data
 - Bounded data

$$||X||_2 \le M, \quad Y \in \{+1, -1\}$$

Logistic loss

$$\mathcal{E}(y, f(x)) = \log(1 + \exp(-y \cdot f(x)))$$

Bounded function space

$$\mathcal{F} = \left\{ x \mapsto w^{\mathsf{T}} x \mid w \in \mathbb{R}^d, \quad \|w\|_2 \le B \right\}$$

• First, we claim that we can "peel off" the loss function

Lemma.

$$\Re(\mathscr{E}_{\mathscr{F}}(Z^n)) \leq \Re(\mathscr{F}(X^n))$$

- Proof idea. Recall the "contraction principle"
 - Let V be a bounded subset of \mathbb{R}^n , and let $\phi_i(\cdot):\mathbb{R}\to\mathbb{R}$ be an M-Lipschitz function. Then,

$$\Re(\phi \circ V) \leq M \cdot \Re(V)$$

• Show that for $y \in \{+1, -1\}$, the following function is 1-Lipschitz

$$\phi(a) = \log(1 + \exp(-y \cdot a))$$

• Now, our target of analysis is:

$$\Re(\mathscr{F}(x^n)) = \frac{1}{n} \mathbb{E} \sup_{\|w\|_2 \le B} \left(\sum_{i=1}^n \varepsilon_i \cdot w^{\mathsf{T}} x_i \right)$$

- This is usually a headache:
 - We expect something that behaves $\sim 1/\sqrt{n}$
 - That is, we expect

$$\mathbb{E} \sup_{\|w\|_2 \le B} \left(\sum_{i=1}^n \varepsilon_i \cdot w^{\mathsf{T}} x_i \right) \sim \sqrt{n}$$

• Naïve approaches, e.g., Cauchy-Schwarz, is doomed.

• In fact, we have the following bound.

Proposition.

$$\mathbb{E} \sup_{\|w\|_2 \le B} \left(\sum_{i=1}^n \varepsilon_i \cdot w^{\mathsf{T}} x_i \right) \le B \cdot \sqrt{\sum_{i=1}^n \|x_i\|^2}$$

- Not a bound that involves the number of parameters!
- Tight
 - consult Khinchine's inequality

Proof sketch

$$\mathbb{E} \sup_{\|w\|_2 \le B} \left(\sum_{i=1}^n \varepsilon_i \cdot w^{\mathsf{T}} x_i \right) \le B \cdot \sqrt{\sum_{i=1}^n \|x_i\|^2}$$

• First, remove supremum:

$$\mathbb{E} \sup_{\|w\|_2 \le B} \left(\sum_{i=1}^n \varepsilon_i \cdot w^\top x_i \right) = B \cdot \mathbb{E} \left\| \sum_{i=1}^n \varepsilon_i \cdot x_i \right\|$$

• Then, apply the Jensen's inequality

$$\mathbb{E}\left\|\sum_{i=1}^{n}\varepsilon_{i}\cdot x_{i}\right\| \leq \sqrt{\mathbb{E}\left\|\sum_{i=1}^{n}\varepsilon_{i}\cdot x_{i}\right\|^{2}}$$

Analyze the cross terms, and confirm they are zero.

• As a corollary, we have:

Corollary.

$$\mathbb{E}\mathfrak{R}(\mathscr{E}_{\mathscr{F}}(Z^n)) \leq \frac{B \cdot \sqrt{\mathrm{Var}(X)}}{\sqrt{n}} \leq \frac{BM}{\sqrt{n}}$$

- Thus, we have a generalization bound of order $1/\sqrt{n}$
- If we train a lot, then *B* can be large:
 - Longer training —> Can overfit

Logistic regression — a variant

• Suppose that we have a 1-norm constraint on the weights.

Proposition.

$$\mathbb{E} \sup_{\|w\|_1 \le B} \left(\sum_{i=1}^n \varepsilon_i \cdot w^{\mathsf{T}} x_i \right) \le B \cdot \max_i \|x_i\|_{\infty} \cdot \sqrt{\frac{\log 2d}{n}}$$

• **Proof idea.** Try yourself;)

Two-layer net

- Consider a slightly different version: Regression with two-layer net
 - Bounded data

$$||x||_2 \le 1, \quad |y| \le 1$$

• Squared loss

$$\mathcal{E}(y, f(x)) = (y - f(x))^2$$

Bounded function space

$$\mathcal{F} = \left\{ x \mapsto w^{\top} \sigma(Ux) \mid w \in \mathbb{R}^m, U \in \mathbb{R}^{m \times d} \quad \|w\|_2 \le B_w, \|u_j\|_2 \le B_u \forall j \in [m] \right\}$$

Two-layer net

• Similarly, begin by peeling off the loss function

Lemma.

$$\Re(\ell_{\mathscr{F}}(Z^n)) \leq 4 \cdot \Re(\mathscr{F}(X^n))$$

• **Proof idea.** Again, inspect the Lipschitz constant of $a \mapsto \|y - a\|^2$

Two-layer net

Now, we can show the following bound

Proposition.

$$\mathbb{E} \sup_{f \in \mathscr{F}} \left(\sum_{i=1}^{n} \varepsilon_i \cdot f(x_i) \right) \le 2B_w B_u \sqrt{mn}$$

- Unfortunately, we have \sqrt{m}
 - Dependent on the number of hidden layer neurons

Proof sketch

Begin by peeling off the second layer

$$\mathbb{E} \sup_{f \in \mathcal{F}} \left(\sum_{i=1}^{n} \varepsilon_{i} \cdot f(x_{i}) \right) = \mathbb{E} \sup_{\|w\|_{2} \leq B_{w}} \sup_{g \in \mathcal{G}} \left(\sum_{i=1}^{n} \varepsilon_{i} \cdot w^{\mathsf{T}} g(x_{i}) \right)$$

$$= \mathbb{E} \sup_{\|w\|_{2} \leq B_{w}} \sup_{g \in \mathcal{G}} w^{\mathsf{T}} \left(\sum_{i=1}^{n} \varepsilon_{i} \cdot g(x_{i}) \right)$$

$$= B_{w} \cdot \mathbb{E} \sup_{g \in \mathcal{G}} \left\| \sum_{i=1}^{n} \varepsilon_{i} \cdot g(x_{i}) \right\|_{2}$$

$$\leq B_{w} \sqrt{m} \cdot \mathbb{E} \sup_{g \in \mathcal{G}} \left\| \sum_{i=1}^{n} \varepsilon_{i} \cdot g(x_{i}) \right\|_{\infty}$$

$$= B_{w} \sqrt{m} \cdot \mathbb{E} \sup_{g \in \mathcal{G}} \max_{j \in [m]} \left| \sum_{i=1}^{n} \varepsilon_{i} \cdot \sigma(u_{j}^{\mathsf{T}} x_{i}) \right|$$

Proof sketch

$$B_{w}\sqrt{m} \cdot \mathbb{E} \sup_{U:\|u_{j}\|_{2} \leq B_{u}} \max_{j \in [m]} \left| \sum_{i=1}^{n} \varepsilon_{i} \cdot \sigma(u_{j}^{\top} x_{i}) \right| = B_{w}\sqrt{m} \cdot \mathbb{E} \sup_{\|u\|_{2} \leq B_{u}} \left| \sum_{i=1}^{n} \varepsilon_{i} \cdot \sigma(u^{\top} x_{i}) \right|$$

$$\leq 2 \cdot B_{w}\sqrt{m} \cdot \mathbb{E} \sup_{\|u\|_{2} \leq B_{u}} \sum_{i=1}^{n} \varepsilon_{i} \cdot \sigma(u^{\top} x_{i})$$

$$\leq 2 \cdot B_{w}\sqrt{m} \cdot \mathbb{E} \sup_{\|u\|_{2} \leq B_{u}} \sum_{i=1}^{n} \varepsilon_{i} \cdot u^{\top} x_{i}$$

$$\leq 2 \cdot B_{w}B_{u}\sqrt{mn}$$

Remarks

$$\mathbb{E} \sup_{f \in \mathcal{F}} \left(\sum_{i=1}^{n} \varepsilon_i \cdot f(x_i) \right) \le 2B_w B_u \sqrt{mn}$$

- The factor \sqrt{m} came from $\|\cdot\|_2 \to \|\cdot\|_{\infty}$, and then coming back to $\|\cdot\|_2$
- Thus, for depth-L nets, we will have the dependency: $(2\sqrt{\text{width}})^{\text{depth}}$
 - But is this true?

Depth-independent bound

Theorem 14.2.

Consider a ReLU net of form

$$x \mapsto \sigma(W_L \sigma(W_{L-1} \cdots \sigma(W_1 x) \cdots), \qquad ||W_i||_F \leq B$$

Then, we have

$$\Re(\mathcal{F}(Z^n)) \le B^L ||X||_F \left(1 + \sqrt{2L \log(2)}\right)$$

- Sadly, won't prove today
- Proof idea. Use the log-exponential trick

$$\mathbb{E} \sup = \mathbb{E} \log \exp \sup \leq \log \mathbb{E} \exp \sup$$

Handle everything inside the log

Next up

Covering number bounds