18. Rademacher Complexity



Last class

e Interested in controlling the uniform deviation
sup | R(f) = R(f)
fe&

o We give probabilistic upper bound on this stochastic quantity, by:

o Controlling the mean, via Rademacher complexity

e Controlling the residual, via McDiarmid’s inequality

e Introduced the notion of Rademacher complexity:

e Given a bounded set V C R”, the RC is defined as

1
R(V) = —E, sup(e, v), e, ~ Unif({£1})
veV




Last class

e Showed the symmetrization bound:

Theorem (Symmetrization).
We have

= sup (R(f) = R(f)) <2 - ER(Z(ZM)

fes#

where the set £ (Z") denotes the set of length-n sequences

£ (Z") = {(ff(zl), 42, | fe 9}}

e Thus, we want to upper-bound the RC instead



Today

e Focus on two things:
e Details about “residual control via McDiarmid”
e Properties of the RC
e Basic algebra
e Finite class lemma

e Contraction principle

e Next week. Analyze the RC of neural nets



e We want to control the residual:

sup | R(f) — R(f)

fes

- sup

fesF

e Recall. McDiarmid’s inequality states the following

Theorem (McDiarmid).

Let f( - ) have the bounded difference property, i.e.,

| f OOy == X1 X Xy g5 =005 X)) — JXps s X Xy Xy o005 %) | S ¢

Then, for independent X, ..

., X, we have

(37)
Prif—LEf > €] <exp

Residual control

R(f) — R(f)

2. €}

V...



Residual control

e Thus, it suffices to check that whether the following quantity has a bounded difference
g(Z") = sup | R(f) = R(f)
fe&F

o That is, we should check whether this quantity satisfies

\8(len) — 8(21.i_15 Zj» Zi+1:n)‘ < ¢

e Any volunteer? &



Basic properties of RC

e Now, let’s move on to prove some basic properties of the Rademacher complexity

RV) = l - sup(e, v), g~ Unif({£1})

n veV

Property#1.
REvH =0



Basic properties of RC

R(V) = l - sup(e, v), e ~ Unif({£1})

n veV

Property#2.
RWU + {v}) =R()



Basic properties of RC

R(V) = l - sup(e, v), e ~ Unif({£1})

n veV

Property#3.
RWU+V)=RWU)+R(V)



Basic properties of RC

R(V) = l - sup(e, v), e ~ Unif({£1})

n veV

Property#4.
RMRc-U) =|c|-RWU)



Basic properties of RC

R(V) = l - sup(e, v), e ~ Unif({£1})

n veV

Property#5.
If U CV,then R(U) < R(V)



Finite class lemmma

 Now, recall that we had a very simple bound, whenever the hypothesis space was finite

o Had the dependency 4/log k/n

e Proved with the union bound

e Turns out that RC has a similar result
e We do not lose anything by UB-ing with RC

Lemma (Finite Class Lemma).

Let | V| = k, and let L := max ||v||,. Then, we have

veV
L+/logk

n

RV) <



Proof sketch

Ly/logk

n

RV) <

e Select some ¢ > (. Then, proceed as:

exp(t- - sup <8,V>> < —exp(sup (e,t-v)) < —Zexp((e,t-v})

veV veV veV

= Zﬁ—exp(t-ei-vi)

veV i=1

< Z ﬁexp(tzviz/ 2)

veV i=1
= Z 6Xp(l‘2HVH%/2) = k - exp(t*L?/2)

veV

e On both sides, take log and divide by ¢. Then, optimize over ¢



Contraction principle

e Another very useful property of RC is the contraction principle

o Allow us to “peel off” compositions of functions

Lemma (Contraction principle).
Let V be a bounded subset of R%, and let ¢ -): R = R be an M-Lipschitz function. Then,

R(@eV)<M-R(V)

e Proof Sketch. Let’s make some simplifications...
e Assume WLOG that M =1
e Note that we can introduce one ¢, at a time.

e We assume that we only have ¢, and show

Ry, Id, -+, Id) o V) < R(V)



Proof sketch

Want-to-show: R((¢;,1d, ---,1d) o V) < R(V)
e First, investigate the RHS:

1 1 1
SR(V) = — - —LESUp (Vl + <82:n’ V2:n>> +—-—Lsup <_ V|t <82:n’ V2:n>>
2 n vevV 2 n vevV
1
= —[C | Sup (Vl + <82:n’ V2:n>) T SUp (_ V1 + <82:n’ V2:n>)
2n vevV veV

| . -
= —IC SUp (‘ Vi —Vq ‘ T <82:n’ Von + V2:n>)
2n v,veV

e Likewise, the LHS can be written as:

R((py.1d, . 1d) e V) = — - F [

o SUp (‘ ¢(V1) o ¢(‘71) ‘ T <82:n9 Vo T ‘72n>>:|

v,vevV



e RC of linear models



