
18. Rademacher Complexity



Last class
• Interested in controlling the uniform deviation 

 

• We give probabilistic upper bound on this stochastic quantity, by: 
• Controlling the mean,        via Rademacher complexity 
• Controlling the residual,    via McDiarmid’s inequality 

• Introduced the notion of Rademacher complexity: 

• Given a bounded set , the RC is defined as 

sup
f∈ℱ

R( f ) − R̂( f )

V ⊆ ℝn

ℜ(V) :=
1
n

𝔼ε sup
v∈V

⟨ ⃗ε, v⟩, εi ∼ Unif({±1})



Last class
• Showed the symmetrization bound: 

Theorem (Symmetrization). 
We have 

 

where the set  denotes the set of length-  sequences 

 

• Thus, we want to upper-bound the RC instead

𝔼 sup
f∈ℱ

(R( f ) − R̂( f )) ≤ 2 ⋅ 𝔼ℜ(ℓℱ(Zn))

ℓℱ(Zn) n

ℓℱ(Zn) = {(ℓf(Z1), …, ℓf(Zn)), f ∈ ℱ}



Today
• Focus on two things: 

• Details about “residual control via McDiarmid” 
• Properties of the RC 

• Basic algebra 
• Finite class lemma 
• Contraction principle 

• Next week. Analyze the RC of neural nets



Residual control
• We want to control the residual: 

 

• Recall. McDiarmid’s inequality states the following 

Theorem (McDiarmid). 

Let  have the bounded difference property, i.e., 

 

Then, for independent , we have 

sup
f∈ℱ

R( f ) − R̂( f ) − 𝔼 sup
f∈ℱ

R( f ) − R̂( f )

f( ⋅ )
| f(x1, ⋯, xi−1, xi, xi+1, ⋯, xn) − f(x1, ⋯, xi−1, x̃i, xi+1, ⋯, xn) | ≤ ci, ∀…

X1, …, Xn

Pr[ f − 𝔼f ≥ ϵ] ≤ exp ( 2ϵ2

∑ c2
i )



Residual control
• Thus, it suffices to check that whether the following quantity has a bounded difference 

 

• That is, we should check whether this quantity satisfies 

 

• Any volunteer? 🙋    (assume that the loss is bounded between [0,1])

g(Zn) = sup
f∈ℱ

R( f ) − R̂( f )

|g(z1:n) − g(z1:i−1, z̃i, zi+1:n) | ≤ ci



Basic properties of RC
• Now, let’s move on to prove some basic properties of the Rademacher complexity 

 

Property#1. 

ℜ(V) :=
1
n

𝔼ε sup
v∈V

⟨ ⃗ε, v⟩, εi ∼ Unif({±1})

ℜ({v}) = 0



Basic properties of RC
 

Property#2. 

ℜ(V) :=
1
n

𝔼ε sup
v∈V

⟨ ⃗ε, v⟩, εi ∼ Unif({±1})

ℜ(U + {v}) = ℜ(U)



Basic properties of RC
 

Property#3. 

ℜ(V) :=
1
n

𝔼ε sup
v∈V

⟨ ⃗ε, v⟩, εi ∼ Unif({±1})

ℜ(U + V) = ℜ(U) + ℜ(V)



Basic properties of RC
 

Property#4. 

ℜ(V) :=
1
n

𝔼ε sup
v∈V

⟨ ⃗ε, v⟩, εi ∼ Unif({±1})

ℜ(c ⋅ U) = |c | ⋅ ℜ(U)



Basic properties of RC
 

Property#5. 

If , then 

ℜ(V) :=
1
n

𝔼ε sup
v∈V

⟨ ⃗ε, v⟩, εi ∼ Unif({±1})

U ⊆ V ℜ(U) ≤ ℜ(V)



Finite class lemma
• Now, recall that we had a very simple bound, whenever the hypothesis space was finite 

• Had the dependency  

• Proved with the union bound 

• Turns out that RC has a similar result 
• We do not lose anything by UB-ing with RC 

Lemma (Finite Class Lemma). 

Let , and let . Then, we have 

log k/n

|V | = k L := max
v∈V

∥v∥2

ℜ(V) ≤
L log k

n



Proof sketch
 

• Select some . Then, proceed as: 

  

                                                                                    

                                                                                   

                                                                                       

• On both sides, take log and divide by . Then, optimize over 

ℜ(V) ≤
L log k

n

t > 0

exp(t ⋅ 𝔼 sup
v∈V

⟨ε, v⟩) ≤ 𝔼 exp( sup
v∈V

⟨ε, t ⋅ v⟩) ≤ 𝔼∑
v∈V

exp(⟨ε, t ⋅ v⟩)

= ∑
v∈V

n

∏
i=1

𝔼 exp(t ⋅ εi ⋅ vi)

≤ ∑
v∈V

n

∏
i=1

exp(t2v2
i /2)

= ∑
v∈V

exp(t2∥v∥2
2/2) = k ⋅ exp(t2L2/2)

t t



Contraction principle
• Another very useful property of RC is the contraction principle 

• Allow us to “peel off” compositions of functions 

Lemma (Contraction principle). 

Let  be a bounded subset of , and let  be an -Lipschitz function. Then, 

 

• Proof Sketch. Let’s make some simplifications… 

• Assume WLOG that  

• Note that we can introduce one  at a time. 

• We assume that we only have , and show 

V ℝd ϕi( ⋅ ) : ℝ → ℝ M
ℜ(ϕ ∘ V) ≤ M ⋅ ℜ(V)

M = 1
ϕi

ϕ1

ℜ((ϕ1, Id, ⋯, Id) ∘ V) ≤ ℜ(V)



Proof sketch
Want-to-show:     

• First, investigate the RHS: 

 

           

           

• Likewise, the LHS can be written as: 

ℜ((ϕ1, Id, ⋯, Id) ∘ V) ≤ ℜ(V)

ℜ(V) =
1
2

⋅
1
n

𝔼 sup
v∈V

(v1 + ⟨ε2:n, v2:n⟩) +
1
2

⋅
1
n

𝔼 sup
v∈V

(− v1 + ⟨ε2:n, v2:n⟩)
=

1
2n

𝔼 [sup
v∈V

(v1 + ⟨ε2:n, v2:n⟩) + sup
v∈V

(− v1 + ⟨ε2:n, v2:n⟩)]
=

1
2n

𝔼 [ sup
v,ṽ∈V

(|v1 − ṽ1 | + ⟨ε2:n, v2:n + ṽ2:n⟩)]

ℜ((ϕ1, Id, ⋯, Id) ∘ V) =
1
2n

⋅ 𝔼 [ sup
v,ṽ∈V

(|ϕ(v1) − ϕ(ṽ1) | + ⟨ε2:n, v2:n + ṽ2:n⟩)]



Next up
• RC of linear models


