17. Uniform Convergence

Concentration of Measure

• Last class. For a single function f, we have

$$|R(f) - \hat{R}(f)| \le \sqrt{\frac{\log(2/\delta)}{2n}}, \quad \text{w. p.1} - \delta$$

- Concentration of measures
 - Markov
 - Chebyshev
 - Chernoff
 - Hoeffding
 - McDiarmid
 - Bernstein

Concentration of Measure

$$|R(f) - \hat{R}(f)| \le \sqrt{\frac{\log(2/\delta)}{2n}}, \quad \text{w.p. } 1 - \delta$$

- **Problem.** True for a fixed f, but not for f chosen post-hoc
 - To see this, let us first recap the ERM
- **ERM.** Given the data $(X_1, Y_1), \ldots, (X_n, Y_n)$, we solve the optimization:

$$\hat{f} = \arg\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(Y_i, f(X_i))$$

$$\vdots = \hat{R}(f)$$

• By doing so, we hope to achieve a near-optimal hypothesis such that

$$R(\hat{f}) - \inf_{f \in \mathscr{F}} R(f) \approx 0$$

Concentration of Measure

Suppose that

$$f^* = \arg\min_{f \in \mathscr{F}} R(f)$$

• Then, we have:

$$\begin{split} R(\hat{f}) - \inf_{f \in \mathcal{F}} R(f) &= R(\hat{f}) - R(f^*) \\ &= \left[R(\hat{f}) - \hat{R}(\hat{f}) \right] + \left[\hat{R}(\hat{f}) - \hat{R}(f^*) \right] + \left[\hat{R}(f^*) - R(f^*) \right] \\ &\leq \left[R(\hat{f}) - \hat{R}(\hat{f}) \right] + \left[\hat{R}(f^*) - R(f^*) \right] \end{split}$$

- **Problem.** The first term is random, and chosen post-hoc
 - A bound that works for a single *f* is not good enough

Example

- To see this, consider the following example:
 - Suppose that we observe all training data

$$(x_1, y_1), \ldots, (x_n, y_n)$$

• Then, we construct the function

$$f(x) = \sum_{i=1}^{n} y_i \cdot \mathbf{1}[x = x_i]$$

- Problem. This will never generalize
 - only return o on unseen data!

Uniform deviation

- A classic way to handle this stochasticity is via uniform deviation
 - That is, we upper-bound as:

$$R(\hat{f}) - \inf_{f \in \mathcal{F}} R(f) \le \left[R(\hat{f}) - \hat{R}(\hat{f}) \right] + \left[\hat{R}(f^*) - R(f^*) \right]$$
$$\le \sup_{f \in \mathcal{F}} \left| R(f) - \hat{R}(f) \right|$$

• The goal will be to get a probabilistic upper bound on this quantity, i.e.,

$$\Pr\left|\sup_{f\in\mathscr{F}}\left|R(f)-\hat{R}(f)\right|>\epsilon\right|\leq\delta$$

Finite case

• This is easy to do, whenever our hypothesis space is finite

Proposition (Finite class).

Suppose that we have $\mathcal{F} = \{f_1, f_2, ..., f_k\}$. Then, with probability at least $1 - \delta$, the following holds:

$$\sup_{f \in \mathcal{F}} |R(f) - \hat{R}(f)| \le \sqrt{\frac{\log(2k/\delta)}{2n}} \le \sqrt{\frac{\log(k)}{2n}} + \sqrt{\frac{\log(2/\delta)}{2n}}$$

• Compare this with the Hoeffding's theorem for a single function

$$|R(f) - \hat{R}(f)| \le \sqrt{\frac{\log(2/\delta)}{2n}}, \quad \text{w.p. } 1 - \delta$$

• We have an extra $\sqrt{\log k/n}$ term.

- Simply a consequence of the union bound + Hoeffding
- Proceed as:

$$\mathbf{Pr} \Big[\sup_{f \in \mathcal{F}} |R(f) - \hat{R}(f)| > \epsilon \Big] = \mathbf{Pr} \Big[|R(f_1) - \hat{R}(f_1)| > \epsilon \quad \mathbf{or} \quad \cdots \quad \mathbf{or} \quad |R(f_k) - \hat{R}(f_k)| > \epsilon \Big]$$

$$\leq \mathbf{Pr} \Big[|R(f_1) - \hat{R}(f_1)| > \epsilon \Big] + \cdots + \mathbf{Pr} \Big[|R(f_k) - \hat{R}(f_k)| > \epsilon \Big]$$

$$\leq k \cdot (2 \exp(-n\epsilon^2))$$

- Thus, we have the first claim.
- The second claim follows from the fact that $\sqrt{a+b} \le \sqrt{a} + \sqrt{b}$

Handling infinite classes

Now we have the bound

$$\max_{i \in [k]} |\hat{R}(f_i) - R(f_i)| \le \sqrt{\frac{\log(2|\mathcal{F}|/\delta)}{2n}}, \quad \text{w.p. } 1 - \delta$$

- **Problem.** For neural nets, we know that $|\mathcal{F}| = \infty$
 - We treat weights as continuous parameters

• Vague idea. Select some representative functions $f_1, ..., f_k$, so that

$$\sup_{f \in \mathcal{F}} \inf_{i} \|f(x) - f_i(x)\| \le \epsilon?$$

- For infinite hypothesis space, we'll use a quantity that is called Rademacher complexity
- Spoiler. RC will provide an upper bound on the expected value of the uniform deviation
 - Here, the expectation is taken over the randomness of the training data
 - In particular, we will show that:

$$\sup_{f \in \mathcal{F}} |R(f) - \hat{R}(f)|$$

$$= \mathbb{E} \sup_{f \in \mathscr{F}} |R(f) - \hat{R}(f)| + \left(\sup_{f \in \mathscr{F}} |R(f) - \hat{R}(f)| - \mathbb{E} \sup_{f \in \mathscr{F}} |R(f) - \hat{R}(f)| \right)$$

≤ (Rademacher Complexity bounds) + (Concentration of Measure bounds)

• To formalize everything, we'll first define the Rademacher random variable

Definition (Rademacher Random Variable).

The Rademacher random variable ε is a binary random variable, with

$$\Pr[\varepsilon = +1] = \Pr[\varepsilon = -1] = \frac{1}{2}$$

Definition (Rademacher Random Vector).

The Rademacher random vector $\vec{\epsilon} \in \mathbb{R}^n$ is a random vector, with entries consisting of n independent Rademacher random variables.

Definition (Rademacher Average).

Given a bounded set $V \subseteq \mathbb{R}^n$, define the Rademacher average of V as

$$\Re(V) := \frac{1}{n} \mathbb{E}_{\varepsilon} \sup_{v \in V} \langle \vec{\varepsilon}, v \rangle$$

- Also known as "Rademacher complexity"
- We will also define a notation for the unnormalized quantity

$$\widetilde{\mathfrak{R}}(V) := \mathbb{E} \sup_{v \in V} \langle \vec{\varepsilon}, v \rangle$$

- **Note.** Supremum is inside the expectation Given some random $\vec{\epsilon}$, we find the best-fitting v
 - If V is rich, we expect a large $\Re(V)$
 - If V is not diverse, we expect a small $\Re(V)$

$$\Re(V) := \frac{1}{n} \mathbb{E}_{\varepsilon} \sup_{v \in V} \langle \vec{\varepsilon}, v \rangle$$

• Example. Consider the case n = 2, and let

$$V_1 = \{(+1, +1), (+1, -1), (-1, +1), (-1, -1)\}$$

 $V_2 = \{v \mid v = (t, t), t \in [-1, +1]\}$

• Then, we have

$$\Re(V_1) =$$

$$\Re(V_2) =$$

• On the other hand, $|V_1| = 4$ and $|V_2| = \infty$

Motivation for RC

• Before formally proving the theorem, let me a hand-wavy explanation on:

"why random binary can be useful for measuring generalization"

• Suppose that we have 2*n* data at hand.

$$Z_1, ..., Z_n, Z_{n+1}, ..., Z_{2n}$$

- Here, Z = (X, Y)
- First half. Used for training

$$\frac{1}{n} \sum_{i=1}^{n} \mathcal{E}_f(Z_i) = \hat{R}(f)$$

• Second half. Used for approximating the test error

$$\frac{1}{n} \sum_{i=1}^{n} \ell_f(Z_i) = \hat{R}(f)$$

Motivation for RC

• If we consider a sequence

$$\vec{\varepsilon} = (+1, ..., +1, -1, ..., -1)$$
n entries

n entries

• Then, the generalization gap can be written as:

$$\hat{R}(f) - R(f) \approx \frac{1}{n} \sum_{i=1}^{2n} \varepsilon_i \cdot \ell_f(Z_i) = \frac{1}{n} \langle \varepsilon_{1:n}, \ell_f(Z_{1:n}) \rangle$$

• Rademacher r.v.s determine whether a sample is on the training side or the test side

Symmetrization

• This intuition is formalized in the following theorem.

Theorem (Symmetrization).

We have

$$\mathbb{E}\sup_{f\in\mathscr{F}}\left(R(f)-\hat{R}(f)\right)\leq 2\cdot\mathbb{E}\Re(\mathscr{C}_{\mathscr{F}}(Z^n))$$

where the set $\ell_{\mathcal{F}}(Z^n)$ denotes the set of length-*n* sequences

$$\ell_{\mathcal{F}}(Z^n) = \left\{ \left(\ell_f(Z_1), \dots, \ell_f(Z_n) \right), \mid f \in \mathcal{F} \right\}$$

• First, we consider "ghost samples" drawn independently from Z^n

$$(Z_1',\ldots,Z_n')$$

• Then, we have:

$$\mathbb{E}_{Z^n} \sup_{f \in \mathscr{F}} \left(R(f) - \hat{R}(f) \right) \leq \mathbb{E}_{Z^n} \mathbb{E}_{Z^n} \sup_{f \in \mathscr{F}} \left(\hat{R}'(f) - \hat{R}(f) \right)$$

- Here, \hat{R}' denotes the empirical risk w.r.t. $Z'_1, ..., Z'_n$ i.e., the ghost samples
- Now, it suffices to show that

$$\mathbb{E}_{Z^n} \mathbb{E}_{Z^n} \sup_{f \in \mathcal{F}} \left(\hat{R}'(f) - \hat{R}(f) \right) \leq 2 \cdot \mathbb{E} \Re(\ell_f(Z^n))$$

Want-to-show:
$$\mathbb{E}_{Z^n}\mathbb{E}_{Z^n}\sup_{f\in\mathscr{F}}\left(\hat{R}'(f)-\hat{R}(f)\right)\leq 2\cdot\mathbb{E}\Re(\ell_f(Z^n))$$

• Take a closer look at the LHS:

$$\mathbb{E}_{Z^n}\mathbb{E}_{Z^n}\sup_{f\in\mathscr{F}}\left(\hat{R}'(f)-\hat{R}(f)\right) = \frac{1}{n}\mathbb{E}_{Z^n}\mathbb{E}_{Z^n}\sup_{f\in\mathscr{F}}\left(\sum_{i=1}^n\mathscr{E}_f(Z_i')-\mathscr{E}_f(Z_i)\right)$$

- We know that $\ell_f(Z_i') \ell_f(Z_i)$ has a symmetric distribution.
 - Thus, we have

$$\ell_f(Z_i') - \ell_f(Z_i) \stackrel{d}{=} \varepsilon(\ell_f(Z_i') - \ell_f(Z_i))$$

• In other words, we have

$$\mathbb{E}_{Z^n}\mathbb{E}_{Z^n}\sup_{f\in\mathscr{F}}\left(\hat{R}'(f)-\hat{R}(f)\right) = \frac{1}{n}\mathbb{E}_{\varepsilon^n}\mathbb{E}_{Z^n}\mathbb{E}_{Z^n}\mathbb{E}_{Z^n}\sup_{f\in\mathscr{F}}\left(\sum_{i=1}^n\varepsilon_i\left(\mathscr{E}_f(Z_i')-\mathscr{E}_f(Z_i)\right)\right)$$

Want-to-show:
$$\frac{1}{n} \mathbb{E}_{\varepsilon^n} \mathbb{E}_{Z^n} \mathbb{E}_{Z^n} \mathbb{E}_{Z^n} \sup_{f \in \mathscr{F}} \left(\sum_{i=1}^n \varepsilon_i \left(\ell_f(Z_i') - \ell_f(Z_i) \right) \right) \le 2 \cdot \mathbb{E} \Re(\ell_f(Z^n))$$

- Now, note that $\sup(X + Y) \le \sup(X) + \sup(Y)$
 - Thus, we have:

$$\frac{1}{n} \mathbb{E}_{\varepsilon^{n}} \mathbb{E}_{Z^{n}} \mathbb{E}_{Z^{n}} \sup_{f \in \mathcal{F}} \left(\sum_{i=1}^{n} \varepsilon_{i} \left(\ell_{f}(Z'_{i}) - \ell_{f}(Z_{i}) \right) \right)$$

$$\leq \frac{1}{n} \mathbb{E}_{\varepsilon^{n}} \mathbb{E}_{Z^{n}} \sup_{f \in \mathcal{F}} \left(\sum_{i=1}^{n} \varepsilon_{i} \cdot \ell_{f}(Z'_{i}) \right) + \frac{1}{n} \mathbb{E}_{\varepsilon^{n}} \mathbb{E}_{Z^{n}} \sup_{f \in \mathcal{F}} \left(\sum_{i=1}^{n} - \varepsilon_{i} \cdot \ell_{f}(Z_{i}) \right)$$

• By the symmetricity of ε , we have:

$$= \frac{2}{n} \mathbb{E}_{\varepsilon^n} \mathbb{E}_{Z^n} \sup_{f \in \mathscr{F}} \left(\sum_{i=1}^n \varepsilon_i \cdot \mathscr{E}_f(Z_i) \right)$$

Next up

- Residual control via McDiarmid
- Analysis on RC