17. Uniform Convergence



Concentration of Measure

e Last class. For a single function f, we have

log(2/0)
2n

\R(f)—ﬁ(f)\s\/ , WwW.p.l-0

e Concentration of measures
e Markov
e Chebyshev
e Chernoff
o Hoeffding
e McDiarmid

e Bernstein



Concentration of Measure

R() - R(f)| < \/ 10g(2/9)
n

e Problem. True for a fixed f, but not for f chosen post-hoc
o To see this, let us first recap the ERM

: w.p.1—0

« ERM. Given the data (X, Y), ..., (X, Y,), we solve the optimization:

f = arg min — Z (Y, f(X))

feF n

=R(f)

e By doing so, we hope to achieve a near-optimal hypothesis such that

R(f) — inf R(f) ~ 0

fes#



Concentration of Measure

e Suppose that
f* = arg min R(f)

fes#

e Then, we have:

R(f) — inf R(f) = R(f) — R(f*)

fesF

= [R() = R(D)| + |RGD = R | + [R(PH = RO
< [RG) = RD| + | R - RGP

e Problem. The first term is random, and chosen post-hoc

e A bound that works for a single fis not good enough



Example

e To see this, consider the following example:

e Suppose that we observe all training data

(xla yl)a Ry (xna yn)
e Then, we construct the function

fy =) v+ 1lx = x]
=1

e Problem. This will never generalize

e only return 0 on unseen data!



Uniform deviation

o A classic way to handle this stochasticity is via uniform deviation

e That is, we upper-bound as:

R() = inf R(f) < |R() = R)| + [R(P) = R

fesF

< sup |R(f) — R(f)

feF

o The goal will be to get a probabilistic upper bound on this quantity, i.e.,

feF

Pr [sup R(f) = R(f) >€] <6



Finite case

o This is easy to do, whenever our hypothesis space is finite

Proposition (Finite class).
Suppose that we have & = {f,, />, ..., f;.}. Then, with probability at least 1 — 0, the following holds:

wup [ R(F) — R(F)| < \/ 0g(2k/5) \/ log(k) \/ log(2/6)

fes#

e Compare this with the Hoetfding’s theorem for a single function

log(2/0)

\R(f)—ﬁ(f)\s\/ > wp -0
n

o We have an extra y/log k/n term.



Proof Sketch

Simply a consequence of the union bound + Hoeffding

Proceed as:

Pr|sup [R(N) = R(N| > | =Pr||RG)-RUA)I>e or - or |RUY-RAI>e

fesF

<Pr||R() = RUD| > €| + -+ Pr| |RG) = R | > €

<k-: (2 exp(—nez))

Thus, we have the first claim.

The second claim follows from the fact that \/a + b < \/5 + \/E



Handling infinite classes

e Now we have the bound

max | R(f) — R(f) | S\/og(2| ‘/5), w.p.1 =9

ic[k] n

e Problem. For neural nets, we know that | & | =

e We treat weights as continuous parameters

e Vague idea. Select some representative functions f, ..., f;, so that

supinf [[f(x) — f)]| < €?

feF !



Rademacher Complexity

o For infinite hypothesis space, we’ll use a quantity that is called Rademacher complexity

e Spoiler. RC will provide an upper bound on the expected value of the uniform deviation

e Here, the expectation is taken over the randomness of the training data

e In particular, we will show that:

sup | R(f) — R(f)]

fes#

“sup | R(f) — R(f) | + (sup |R(f) — R(f)| — Esup | R(f) — R(f)] )

fes# fesF fesF

IA

(Rademacher Complexity bounds) + (Concentration of Measure bounds)



Rademacher Complexity

e To formalize everything, we’ll first define the Rademacher random variable

Definition (Rademacher Random Variable).

The Rademacher random variable € is a binary random variable, with

Prie = + 1] = Prle = — 1] = —

2

Definition (Rademacher Random Vector).

The Rademacher random vector € €
Rademacher random variables.

R" is a random vector, with entries consisting of n independent



Rademacher Complexity

Definition (Rademacher Average).

Given a bounded set V C R", define the Rademacher average of V as

R(V) = l = sup(e, v)

n veV

o Also known as “Rademacher complexity”

e We will also define a notation for the unnormalized quantity

R(V) := E sup(, v)

veV
e Note. Supremum is inside the expectation — Given some random &, we find the best-fitting v

o If Visrich, we expect a large R(V)

o If Vis not diverse, we expect a small R(V)



Rademacher Complexity

1 .
R(V) = ; = SUp(€, v)
veV

« Example. Consider the case n = 2, and let
Vi={+1L+D,&1,-1,-1,+1),(-1,—-1)}
Vo={v]|v=(,1), tel[-1,+1]}
e Then, we have

ER(VO —

ER(Vz) —

e On theotherhand, |V,| =4and |V,| = o



Motivation for RC

e Before formally proving the theorem, let me a hand-wavy explanation on:

“why random binary can be useful for measuring generalization”

e Suppose that we have 2n data at hand.
Liy... L Zy1s--sZLn

A % n n

e Here,Z=(X,Y)
e First half. Used for training

1 « A
— ) £4Z) = R(f)
i

e Second half. Used for approximating the test error

| +« A
— ). £4(Z) = R(f)
& =1



Motivation for RC

o If we consider a sequence
e=(+1,....,+1,—-1,...,— 1

N N

n entries n entries

e Then, the generalization gap can be written as:
2n

n 1
R(f) —R(f) = o 1:21 € - ff(Zi) = ;<81:n’ ff(len»

e Rademacher r.v.s determine whether a sample is on the training side or the test side



Symmetrization

e This intuition is formalized in the following theorem.

Theorem (Symmetrization).
We have

= sup (R(f) = R(f)) <2 - ER(Z(ZM)

fes#

where the set £ (Z") denotes the set of length-n sequences

£ (Z") = {(ff(zl), 82, | fe PZ}




Proof Sketch

e First, we consider “ghost samples” drawn independently from Z"
Zi,....2)

e Then, we have:

=sup (R(f) = R(f)) < ELE sup (R(f) — R(f))

feF feF

o Here, R’ denotes the empirical riskw.r.t. Z, ..., Z — 1.e., the ghost samples

e Now, it suffices to show that

= Ezosup (R(f) — R(f)) <2 ER(ZL(Z")

feF




Proof Sketch

Want-to-show: = il 70 SUP (1@’( ) —R(f )) <2-ER( AZ"))

fesF

e Take a closer look at the LHS:

A n 1 L
= znl= 7z SUP (R'(f) — R(f)) = —LEz.Ezn SUP ( Z ¢ (Z;) — ff(Zi)>

fes#F n fesF i=1
o We know that £(Z;) — £(Z;) has a symmetric distribution.

e Thus, we have

(A7) — A7) =

e In other words, we have

e(EAZ)) — £AZ,)

N N 1 L
= Eznsup (R(f) = R(f)) = —E.E,E ;i sup ( Z e:(£/Z) — ff(Zl-))>

fe&# n fe&# i=1



Proof Sketch

1 n
Want-to-show:  —L,.E,[E,. sup ( Z el-(z,”f(Zi’) — ff(Zl-))> <2-EREAZM)

n fef’}' i=1

e Now, note that sup(X + Y) < sup(X) + sup(Y)

e Thus, we have:

1 n
— C nlE Zal 7 SUP ( Z gi(ff(zl{) o ff(zl))>

& JE€F \ i=1
1 L 1 C
JEF \ =1 JEF \ i=1

e By the symmetricity of €, we have:
2 n
— L onll7n Sllp (Z gi ‘ ff(Zz))

L JeF i




Next up

e Residual control via McDiarmid

e Analysis on RC



