16. Concentration of Measures

Generalization

- Starting today, we discuss the topic of generalization
 - Most intriguing, yet imperfect
- Target of analysis. The gap between the training risk and the test risk
 - Approximation. How small can our test risk (potentially) be?
 - Optimization. How small can our training risk be?
- In a sense, generalization links what we have learned so far:
 - How can we find the solution for approximation, by solving the optimization?

Why do we expect generalization?

• The training risk can be re-written as:

$$\hat{R}(w) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{E}(y_i, g(x_i; w)) = \mathbb{E}_{P_n}[\mathcal{E}(Y, g(X; w))]$$

• On the other hand, the test risk is:

$$R(w) = \mathbb{E}_{P}[\ell(Y, g(X; w))]$$

• By "the law of large numbers" type of results, we have:

$$P_n \to P$$

- Very rough; various senses of convergence
- Thus, we expect that $\hat{R}(w) \to R(w)$, for any FIXED w
 - Question. But how fast is this convergence?

Concentration of measure

- "Concentration of measure" bounds provide quantitative versions of LLN
- Goal. Nonasymptotic version of the following claim:
 - Suppose that we have many independent-ish random variables

$$X_{1:n} = (X_1, X_2, ..., X_n)$$

• If our function $f(x_1, x_2, ..., x_n)$ is not overly sensitive to one coordinate, then the random variable

$$f(X_1, X_2, \ldots, X_n)$$

behaves sufficiently deterministically

- i.e., close to $\mathbb{E}[f]$.
- Does this sound too vague?

First tool: Markov's inequality

Let us focus on the probability of excess deviations

$$\Pr[|f(X_1, X_2, \dots, X_N) - \mathbb{E}[f]| > \epsilon] \le \delta$$

Theorem 12.1 (Markov's inequality).

For any nonnegative random variable X, we have

$$\Pr[X > \epsilon] \le \frac{\mathbb{E}[X]}{\epsilon} \qquad \forall \epsilon > 0$$

• **Proof idea.** Think about the random variable $\epsilon \cdot 1\{X > \epsilon\}$

Applying the Markov's inequality

$$\Pr[X > \epsilon] \le \frac{\mathbb{E}[X]}{\epsilon} \qquad \forall \epsilon > 0$$

- Markov's inequality works for any nonnegative random variable X
 - How can we use this to analyze the following?

$$\mathbf{Pr}\big[|f(X_1, X_2, \dots, X_N) - \mathbb{E}[f]| > \epsilon\big] \le \delta$$

- Naïve choice. Plug in $X = |f(X_{1:n}) \mathbb{E}f|$
 - Requires a bounded absolute mean
 - If f is an i.i.d. sample mean, difficult to get a good n-dependency

Applying the Markov's inequality

$$\Pr[X > \epsilon] \le \frac{\mathbb{E}[X]}{\epsilon} \qquad \forall \epsilon > 0$$

• Target:

$$\Pr[|f(X_1, X_2, \dots, X_N) - \mathbb{E}[f]| > \epsilon] \le \delta$$

- Chebyshev's choice. Plug in $X = (f \mathbb{E}f)^2$
 - Requires a bounded variance
 - If f is an i.i.d. sample mean, RHS decays with 1/n dependency
- Question. How far can we push this requirement-dependency tradeoff?

Applying the Markov's inequality

$$\Pr[X > \epsilon] \le \frac{\mathbb{E}[X]}{\epsilon} \qquad \forall \epsilon > 0$$

$$\Pr[|f(X_1, X_2, \dots, X_N) - \mathbb{E}[f]| > \epsilon] \le \delta$$

- Chernoff's choice. Plug in $X = \exp(t \cdot (f \mathbb{E}f))$, for some t > 0 (tunable)
 - Then, we get something like

$$\Pr[\exp(t \cdot (f - \mathbb{E}f)) \ge \exp(t\epsilon)] \le \frac{\mathbb{E}[\exp(t \cdot (f - \mathbb{E}f))]}{\exp(t\epsilon)}$$

• Tidying up a bit, we get:

$$\Pr[f - \mathbb{E}f \ge \epsilon] \le \frac{\mathbb{E}[\exp(t \cdot (f - \mathbb{E}f))]}{\exp(t\epsilon)}$$

• Note. To get an absolute value, we can use the union bound

Subgaussian random variable

$$\Pr[f - \mathbb{E}f \ge \epsilon] \le \frac{\mathbb{E}[\exp(t \cdot (f - \mathbb{E}f))]}{\exp(t\epsilon)}$$

• For RHS to be finite, the following quantity need to be bounded:

$$\mathbb{E}[\exp(t\cdot(f-\mathbb{E}f))]$$

Definition (subgaussian).

A random variable Z is subgaussian with mean μ and proxy σ^2 , whenever

$$\mathbb{E}[\exp(\lambda(Z-\mu))] \le \exp\left(\frac{\lambda^2\sigma^2}{2}\right)$$

holds for any $\lambda > 0$.

Warm-up

$$\mathbb{E}[\exp(\lambda(Z-\mu))] \le \exp\left(\frac{\lambda^2\sigma^2}{2}\right)$$

- Suppose that we have a Gaussian random variable $Z \sim \mathcal{N}(0, \rho^2)$.
- Question. Is this subgaussian?

Toward the Chernoff's bound

• Now, consider the case

$$f(X_{1:n}) = \frac{1}{n} \sum_{i=1}^{n} X_i$$

- where all X_i are mutually independent and are $(0,\sigma^2)$ -subgaussian.
- Then, the previous bound becomes:

$$\Pr[f \ge \epsilon] \le \frac{\mathbb{E}[\exp(t \cdot f)]}{\exp(t\epsilon)} = \frac{\mathbb{E}[\prod_{i=1}^{n} \exp(tX_{i}/n)]}{\exp(t\epsilon)} = \frac{\prod_{i=1}^{n} \mathbb{E}[\exp(tX_{i}/n)]}{\exp(t\epsilon)}$$
$$\le \frac{\prod_{i=1}^{n} \exp\left(\frac{t^{2}\sigma^{2}}{2n^{2}}\right)}{\exp(t\epsilon)} = \exp\left(\frac{t^{2}\sigma^{2}}{2n} - t\epsilon\right)$$

Toward the Chernoff's bound

$$\Pr[f \ge \epsilon] \le \exp\left(\frac{t^2\sigma^2}{2n} - t\epsilon\right)$$

- To minimize the RHS, choose $t = n\epsilon/\sigma^2$.
 - Then, we get:

$$\Pr[f \ge \epsilon] \le \exp\left(-\frac{n\epsilon^2}{2\sigma^2}\right)$$

• More generally, if all variables have different subgaussianity σ_i^2 , we have:

$$\Pr[f > \epsilon] \le \exp\left(-\frac{n^2 \epsilon^2}{\sum_{i=1}^n \sigma_i^2}\right)$$

Summary so far

• We were interested in controlling the excess deviation probability:

$$\Pr[|f(X_{1:n}) - \mathbb{E}[f]| \ge \epsilon] \le \delta$$

• With particular interests in the case

$$f(X_{1:n}) = \frac{1}{n} \sum_{i=1}^{n} X_i, \qquad X_i \sim P$$
 i.i.d.

• We started from the Markov's inequality:

$$\Pr[Z \ge \epsilon] \le \frac{\mathbb{E}Z}{\epsilon}$$

We saw its various applications:

- Under bounded mean: $\delta = \mathcal{O}(1)$
- Under bounded variance: $\delta = \mathcal{O}(1/n)$
- Under subgaussian tail: $\delta = \mathcal{O}(\exp(-n \cdot C))$

Bounded case

- Now, consider a bounded case i.e., no tail
- Think about a bounded random variable, i.e.,

$$\Pr[X \in [a, b]] = 1$$

Property.

$$Var(X) \le \frac{1}{4}(b-a)^2, \qquad Var(X) \le \mathbb{E}[(X-a)^2]$$

• Proof idea. Note that

$$Var(X) = Var(X - a) \le \mathbb{E}[(X - a)^2]$$

• Plug in the right quantity

Hoeffding's lemma

• With this property, we are now ready to prove the Hoeffding's lemma:

Lemma (Hoeffding).

Let $X \in [a, b]$ almost surely. Then, we know that

$$\mathbb{E}\left[\exp(\lambda(X - \mathbb{E}X))\right] \le \exp\left(\frac{\lambda^2(b - a)^2}{8}\right), \quad \forall \lambda > 0$$

• In other words, X is $(\mathbb{E}X, (b-a)^2/4)$ -subgaussian

- Assume WLOG that $\mathbb{E}X = 0$.
 - Then, we want to show that:

$$\mathbb{E}\left[\exp(\lambda X)\right] \le \exp\left(\frac{\lambda^2(b-a)^2}{8}\right), \qquad \forall \lambda > 0$$

Think about the log moment-generating function

$$\psi(\lambda) = \log \mathbb{E}[\exp(\lambda X)]$$

If suffices to show that

$$\psi(\lambda) \le \lambda^2 (b-a)^2/8$$

show
$$\psi(\lambda) \le \lambda^2 (b-a)^2/8$$
, for $\psi(\lambda) = \log \mathbb{E}[\exp(\lambda X)]$,

• Derivatives can be written as:

$$\psi'(\lambda) = \frac{\mathbb{E}[X \exp(\lambda X)]}{\mathbb{E}[\exp(\lambda X)]}$$

$$\psi''(\lambda) = \frac{\mathbb{E}[X^2 \exp(\lambda X)]}{\mathbb{E}[\exp(\lambda X)]} - \left(\frac{\mathbb{E}[X \exp(\lambda X)]}{\mathbb{E}[\exp(\lambda X)]}\right)^2$$

• Consider a random variable Z, distributed as

$$p_Z(z) = \frac{\exp(\lambda z)}{\mathbb{E}[\exp(\lambda X)]} p_X(z)$$

- Check by yourself whether this is a valid probability measure
- This trick is called "exponential tilting"
- Then, we know that $\Pr[Z \in [a, b]] = 1$

show $\psi(\lambda) \le \lambda^2 (b-a)^2/8$, for $\psi(\lambda) = \log \mathbb{E}[\exp(\lambda X)]$,

$$p_Z(z) = \frac{\exp(\lambda z)}{\mathbb{E}[\exp(\lambda X)]} p_X(z)$$

Think about the mean and variance of Z

$$\mathbb{E}Z = \frac{\mathbb{E}[X \cdot \exp(\lambda X)]}{\mathbb{E}[\exp(\lambda X)]}$$

$$\operatorname{Var}(Z) = \mathbb{E}[Z^{2}] - (\mathbb{E}Z)^{2}$$

$$= \frac{\mathbb{E}[X^{2} \cdot \exp(\lambda X)]}{\mathbb{E}[\exp(\lambda X)]} - \left(\frac{\mathbb{E}[X \cdot \exp(\lambda X)]}{\mathbb{E}[\exp(\lambda X)]}\right)^{2}$$

$$= \psi''(\lambda)$$

$$\leq \frac{1}{4}(b - a)^{2}$$

show $\psi(\lambda) \le \lambda^2 (b-a)^2/8$, for $\psi(\lambda) = \log \mathbb{E}[\exp(\lambda X)]$,

$$\psi''(\lambda) \le (b-a)^2/4$$

• We have:

$$\psi(0) = \log \mathbb{E}[\exp(0 \cdot X)] = \log \mathbb{E}[1] = 0$$

$$\psi'(0) = \psi'(0) = \frac{\mathbb{E}[X \exp(0 \cdot X)]}{\mathbb{E}[\exp(0 \cdot X)]} = \frac{\mathbb{E}[X]}{1} = 0$$

• Thus,

$$\psi(\lambda) = \int_0^{\lambda} \left(\int_0^{\tau} \psi''(t) \, dt \right) d\tau \le \int_0^{\lambda} \left(\int_0^{\tau} \frac{(b-a)^2}{4} \, dt \right) d\tau$$
$$\le \frac{(b-a)^2}{4} \cdot \left(\int_0^{\lambda} \tau \, d\tau \right) = \frac{\lambda^2 (b-a)^2}{8}$$

Hoeffding's theorem

Theorem 12.3 (Hoeffding).

Given independent $X_1, ..., X_n$ with $X_i \in [a_i, b_i]$, we have

$$\Pr\left[\frac{1}{n}\sum_{i=1}^{n}X_{i} - \mathbb{E}X_{i} \ge \epsilon\right] \le \exp\left(-\frac{2n^{2}\epsilon^{2}}{\sum_{i=1}^{n}(b_{i}-a_{i})^{2}}\right)$$

- **Application.** Let *f* be some fixed predictor.
 - Let Z = 1 $[f(X) \neq Y]$
 - i.e., a random variable indicating the "error" of the predictor on a random sample
 - Then, with probability 1δ , we have

$$\left| \frac{1}{n} \sum_{i=1}^{n} Z_i - \mathbb{E} Z \right| \le \sqrt{\frac{\log(2/\delta)}{2n}}$$

Other sophisticated results

Theorem (McDiarmid).

Let $f(\cdot)$ have the bounded difference property, i.e.,

$$|f(x_1, \dots, x_{i-1}, x_i, x_{i+1}, \dots, x_n) - f(x_1, \dots, x_{i-1}, \tilde{x}_i, x_{i+1}, \dots, x_n)| \le c_i, \quad \forall \dots$$

Then, for independent $X_1, ..., X_n$, we have

$$\Pr[f - \mathbb{E}f \ge \epsilon] \le \exp\left(\frac{2\epsilon^2}{\sum c_i^2}\right)$$

- Also note the Bernstein's inequality
 - Boundedness + Variance bound for a tighter bound

Next up

Uniform convergence