16. Concentration of
Measures




Generalization

o Starting today, we discuss the topic of generalization

e Most intriguing, yet impertect

o Target of analysis. The gap between the training risk and the test risk

e Approximation. How small can our test risk (potentially) be?

e Optimization. How small can our training risk be?

e In asense, generalization links what we have learned so far:

e How can we find the solution for approximation, by solving the optimization?



Why do we expect generalization?

The training risk can be re-written as:

n 1 +«
Rw) == ) £(y, g(xz w) = Ep [£(Y, g(X; w)]
& =1

On the other hand, the test risk is:

R(w) = EplZ(Y, g(X;w))]

By “the law of large numbers” type of results, we have:
P, — P

e Very rough; various senses of convergence

Thus, we expect that IAQ(W) — R(w), for any FIXED w

e Question. But how fast is this convergence?



Concentration of measure

e “Concentration of measure” bounds provide quantitative versions of LLN

 Goal. Nonasymptotic version of the following claim:

o Suppose that we have many independent-ish random variables
Xl:n — (Xl’ Xz, coos Xn)

e If our function f(x,, x,, ..., x,) 1s not overly sensitive to one coordinate,
then the random variable

X, X0 ..y X))

behaves sufficiently deterministically

e l.e., closetoE[f].

e Does this sound too vague?



First tool: Markov’s inequality

e Let us focus on the probability of excess deviations
Pr|| (X}, X,, -+, Xy) —E[f]| > €| <6

Theorem 12.1 (Markov’s inequality).

For any nonnegative random variable X, we have

- X]
Pr(X > ¢] < Ve > 0
€

e Proofidea. Think about the random variable ¢ - 1{X > ¢}



Applying the Markov’s inequality

- X
PriX > ¢] < Ve > 0
€

e Markov’s inequality works for any nonnegative random variable X

e How can we use this to analyze the following?
PI’[ | f(X1, X5, -+, Xy) — ELf]] > 6] <o

e Naive choice. Plugin X = | f(X,.,) — Ef]|
e Requires a bounded absolute mean

e If fis an 1.1.d. sample mean, difficult to get a good n-dependency



Applying the Markov’s inequality

- X
PriX > ¢] < Ve > 0
€

e Target:

Pr||f(X;, Xy, -+, Xy) —E[f1] > €] <6

 Chebyshev’s choice. Plug in X = (f — Ef)”

e Requires a bounded variance

e If fis an1.1.d. sample mean, RHS decays with 1/n dependency

e Question. How far can we push this requirement-dependency tradeoft?



Applying the Markov’s inequality

- X
PriX > ¢] < Ve > 0
€

Pr||f(X;, Xy, -+, Xy) — ELf1] > €] <6

e Chernoff’s choice. Plugin X = exp(t - (f—[Ef )), for some ¢ > O (tunable)

e Then, we get something like

Prlexp(s - (f — Ef)) = exp(te)] <

-[exp(t - (f — Ef))]
exp(ze)

e Tidying up a bit, we get:

—[exp(t - (f — Ef))]

exp(ze)
e Note. To get an absolute value, we can use the union bound

Pr(f—FEf 2 €] <




Subgaussian random variable

—[exp(t - (f — Ef))]

exp(zre)
e For RHS to be finite, the following quantity need to be bounded:

—[exp(z - (f — Ef))]

Pr(f—FEf 2 €] <

Definition (subgaussian).

A random variable Z is subgaussian with mean u and proxy ¢, whenever

1%67
—[exp(A(Z — )] < exp ( )

2
holds for any 4 > 0.



Warm-up

N20?
—[exp(A(Z — )] < exp ( )

2

o Suppose that we have a Gaussian random variable Z ~ 4/(0,p?).

e Question. Is this subgaussian?



Toward the Chernoff’s bound

e Now, consider the case
1 n
X, )=— E X
f( 1.n) n - l

e where all X; are mutually independent and are (0,6%)-subgaussian.

e Then, the previous bound becomes:

“[exp(t-f)] —[H?zlexp(tXi/n)] - H?_l Flexp(zX./n)]

Pr[f > €] <

exp(ze) exp(ze) exp(ze)

2 2

1L e (22) (5r-e)
< = exp — 1€

exp(ze) 2n



Toward the Chernoff’s bound

( t°0” )
Pr(f > €] <exp te

2n

 To minimize the RHS, choose t = ne/c?.

Pr(f > ¢] <exp < n€2>
€
T 207

o More generally, if all variables have different subgaussianity 01.2,

( n’e’ )
Prif > €] <exp
Z”

2
i=1 9

e Then, we get:

we have:




Summary so far

» We were interested in controlling the excess deviation probability:

Pr(|f(X,,) —Elf][2€]l <o
o With particular interests in the case

1 n
fX)==)X. X ~P iid
& =1

e We started from the Markov’s inequality:

4
Pr|Z > ¢e] <—
€

e We saw its various applications:
e Under bounded mean: o= 0O(1)
e Under bounded variance: o6 = O(1/n)

e Under subgaussian tail: o = O(exp(—n - C))



Bounded case

e Now, consider a bounded case — i.e., no tail

e Think about a bounded random variable, i.e.,
Pr|X € [a,b]| = 1

Property.

Var(X) < %(b — a)z, Var(X) < E[(X — a)z]

e Proofidea. Note that

Var(X) = Var(X — a) < E[(X — a)?]
¢ Plug in the right quantity



Hoeffding’s lemma

o With this property, we are now ready to prove the Hoeffding’s lemma:

Lemma (Hoeffding).
Let X € [a, b] almost surely. Then, we know that

1%(b — a)?
= |exp(A(X — EX))| < exp ,  Vi>0

3

o In other words, X is (EX, (b — a)?/4)-subgaussian




Proof sketch

e Assume WLOG that EX = 0.

e Then, we want to show that:

1%(b — a)?
- [exp(/IX)] < exp : Vi>0

3

e Think about the log moment-generating function

w(4) = log E[exp(4X)]

e If suffices to show that

w(4) < A%(b — a)*/8



Proof sketch

show w(1) < A%(b — a)?/8, for w(A) = log E[exp(1X)],

e Derivatives can be written as:

—[ X exp(4X)]
/ ﬂ —
Vi) -[exp(4AX)]
) = C[X? exp(AX))] ( E[ X exp(AX)] )2
’ E lexp(AX)] -lexp(AX)]
e Consider a random variable Z, distributed as
- exp(42)
pAz) = — exp(AX)] Px(2)

e Check by yourself whether this is a valid probability measure

e This trick is called “exponential tilting”
e Then, we know that Pr [Z € |a, b]] = 1



Proof sketch

show w(1) < 1%(b — a)*/8, for w(A) = log

exp(Az)

pAzZ) =

e Think about the mean and variance of Z

_Z=

px(2)

- [exp(4X)]

| X - exp(AX)]

—[exp(4X)]

Var(Z) =

(2] - (E2)’

C[X7Z - exp(4X)]

—[exp(4X)],

—[exp(AX)]

=y (1)

IN

-

(

| X - exp(4X)]

—[exp(AX)]

>2



e We have:

e Thus,

Proof sketch

show w(1) < A%(b — a)?/8, for w(A) = log E[exp(1X)],

w'(A) < (b —a)*l4

w(0) = log E[exp(0 - X)] = logE[1] =0

-1 X 0-X -1 X
(0) = w0y < EXSXPO -1 EIX] _

—[exp(0 - X)] 1
A
W) = [ (
0

T ) /1( T (b _ Cl)2 )
[ w (1) dr | dr < [ J dt | dr
0 0 0 4

0

2 i 201 \2
I “)(def):“b a)
4 O 3



Hoeffding’s theorem

Theorem 12.3 (Hoeffding).

Given independent X, ..., X, with X; € [a;, b;], we have

| 2ne?
Pr —ZXi——XiZG <exp| ——;
L i=1 Zi=l (bl o ai)z

o Application. Let f be some fixed predictor.
o LetZ=1|f(X) # Y]

e l.e., arandom variable indicating the “error” of the predictor on a random sample

e Then, with probability 1 — 0, we have

1 « log(2/6
n = 2n




Other sophisticated results

Theorem (McDiarmid).
Let f( - ) have the bounded difference property, i.e.,
Q0L s X X X s 700 5) = O o X B Xy i) [ S € Ve

Then, for independent X;, ..., X,, we have

2e?
Prl[f—Lf >¢] < exp( 262>

o Also note the Bernstein’s inequality

e Boundedness + Variance bound for a tighter bound



e Uniform convergence



