
16. Concentration of 
Measures



Generalization
• Starting today, we discuss the topic of generalization 

• Most intriguing, yet imperfect 

• Target of analysis. The gap between the training risk and the test risk 
• Approximation. How small can our test risk (potentially) be? 
• Optimization. How small can our training risk be? 

• In a sense, generalization links what we have learned so far: 
• How can we find the solution for approximation, by solving the optimization?



Why do we expect generalization?
• The training risk can be re-written as: 

 

• On the other hand, the test risk is: 

 

• By “the law of large numbers” type of results, we have: 

 

• Very rough; various senses of convergence 

• Thus, we expect that , for any FIXED  

• Question. But how fast is this convergence?

R̂(w) =
1
n

n

∑
i=1

ℓ(yi, g(xi; w)) = 𝔼Pn
[ℓ(Y, g(X; w)]

R(w) = 𝔼P[ℓ(Y, g(X; w))]

Pn → P

R̂(w) → R(w) w



Concentration of measure
• “Concentration of measure” bounds provide quantitative versions of LLN 

• Goal. Nonasymptotic version of the following claim: 
• Suppose that we have many independent-ish random variables 

 

• If our function  is not overly sensitive to one coordinate, 
then the random variable 

 
behaves sufficiently deterministically 

• i.e., close to . 

• Does this sound too vague?

X1:n = (X1, X2, …, Xn)
f(x1, x2, …, xn)

f(X1, X2, …, Xn)

𝔼[ f ]



First tool: Markov’s inequality
• Let us focus on the probability of excess deviations 

 

Theorem 12.1 (Markov’s inequality). 

For any nonnegative random variable , we have 

 

• Proof idea. Think about the random variable 

Pr[ | f(X1, X2, ⋯, XN) − 𝔼[ f ] | > ϵ] ≤ δ

X

Pr[X > ϵ] ≤
𝔼[X]

ϵ
∀ϵ > 0

ϵ ⋅ 1{X > ϵ}



Applying the Markov’s inequality
 

• Markov’s inequality works for any nonnegative random variable  

• How can we use this to analyze the following? 

 

• Naïve choice. Plug in  

• Requires a bounded absolute mean 

• If  is an i.i.d. sample mean, difficult to get a good -dependency

Pr[X > ϵ] ≤
𝔼[X]

ϵ
∀ϵ > 0

X

Pr[ | f(X1, X2, ⋯, XN) − 𝔼[ f ] | > ϵ] ≤ δ

X = | f(X1:n) − 𝔼f |

f n



Applying the Markov’s inequality
 

• Target: 

 

• Chebyshev’s choice. Plug in  

• Requires a bounded variance 

• If  is an i.i.d. sample mean, RHS decays with  dependency 

• Question. How far can we push this requirement-dependency tradeoff?

Pr[X > ϵ] ≤
𝔼[X]

ϵ
∀ϵ > 0

Pr[ | f(X1, X2, ⋯, XN) − 𝔼[ f ] | > ϵ] ≤ δ

X = ( f − 𝔼f )2

f 1/n



Applying the Markov’s inequality
 

 

• Chernoff’s choice. Plug in , for some  (tunable) 

• Then, we get something like 

 

• Tidying up a bit, we get: 

 

• Note. To get an absolute value, we can use the union bound

Pr[X > ϵ] ≤
𝔼[X]

ϵ
∀ϵ > 0

Pr[ | f(X1, X2, ⋯, XN) − 𝔼[ f ] | > ϵ] ≤ δ

X = exp(t ⋅ ( f − 𝔼f )) t > 0

Pr[exp(t ⋅ ( f − 𝔼f )) ≥ exp(tϵ)] ≤
𝔼[exp(t ⋅ ( f − 𝔼f ))]

exp(tϵ)

Pr[ f − 𝔼f ≥ ϵ] ≤
𝔼[exp(t ⋅ ( f − 𝔼f ))]

exp(tϵ)



Subgaussian random variable
 

• For RHS to be finite, the following quantity need to be bounded: 

 

Definition (subgaussian). 

A random variable  is subgaussian with mean  and proxy , whenever 

 

holds for any .

Pr[ f − 𝔼f ≥ ϵ] ≤
𝔼[exp(t ⋅ ( f − 𝔼f ))]

exp(tϵ)

𝔼[exp(t ⋅ ( f − 𝔼f ))]

Z μ σ2

𝔼[exp(λ(Z − μ))] ≤ exp ( λ2σ2

2 )
λ > 0



Warm-up
 

• Suppose that we have a Gaussian random variable . 

• Question. Is this subgaussian?

𝔼[exp(λ(Z − μ))] ≤ exp ( λ2σ2

2 )
Z ∼ 𝒩(0,ρ2)



Toward the Chernoff’s bound
• Now, consider the case 

 

• where all  are mutually independent and are -subgaussian. 

• Then, the previous bound becomes: 

 

f(X1:n) =
1
n

n

∑
i=1

Xi

Xi (0,σ2)

Pr[ f ≥ ϵ] ≤
𝔼[exp(t ⋅ f )]

exp(tϵ)
=

𝔼[∏n
i=1 exp(tXi/n)]

exp(tϵ)
=

∏n
i=1 𝔼[exp(tXi/n)]

exp(tϵ)

≤
∏n

i=1 exp ( t2σ2

2n2 )
exp(tϵ)

= exp ( t2σ2

2n
− tϵ)



Toward the Chernoff’s bound
 

• To minimize the RHS, choose . 

• Then, we get: 

 

• More generally, if all variables have different subgaussianity , we have: 

Pr[ f ≥ ϵ] ≤ exp ( t2σ2

2n
− tϵ)

t = nϵ/σ2

Pr[ f ≥ ϵ] ≤ exp (−
nϵ2

2σ2 )
σ2

i

Pr[ f > ϵ] ≤ exp (−
n2ϵ2

∑n
i=1 σ2

i )



Summary so far
• We were interested in controlling the excess deviation probability: 

 

• With particular interests in the case 

 

• We started from the Markov’s inequality: 

 

• We saw its various applications: 

• Under bounded mean:             

• Under bounded variance:        

• Under subgaussian tail:          

Pr[ | f(X1:n) − 𝔼[ f ] | ≥ ϵ] ≤ δ

f(X1:n) =
1
n

n

∑
i=1

Xi, Xi ∼ P i.i.d.

Pr[Z ≥ ϵ] ≤
𝔼Z
ϵ

δ = 𝒪(1)
δ = 𝒪(1/n)
δ = 𝒪(exp(−n ⋅ C))



Bounded case
• Now, consider a bounded case — i.e., no tail 

• Think about a bounded random variable, i.e.,  

 

Property. 

 

• Proof idea. Note that 

 

• Plug in the right quantity

Pr[X ∈ [a, b]] = 1

Var(X) ≤
1
4

(b − a)2, Var(X) ≤ 𝔼[(X − a)2]

Var(X) = Var(X − a) ≤ 𝔼[(X − a)2]



Hoeffding’s lemma
• With this property, we are now ready to prove the Hoeffding’s lemma: 

Lemma (Hoeffding). 

Let  almost surely. Then, we know that 

 

• In other words,  is -subgaussian 

X ∈ [a, b]

𝔼[exp(λ(X − 𝔼X))] ≤ exp ( λ2(b − a)2

8 ), ∀λ > 0

X (𝔼X, (b − a)2/4)



Proof sketch
• Assume WLOG that . 

• Then, we want to show that: 

 

• Think about the log moment-generating function 

 

• If suffices to show that 

𝔼X = 0

𝔼[exp(λX)] ≤ exp ( λ2(b − a)2

8 ), ∀λ > 0

ψ(λ) = log 𝔼[exp(λX)]

ψ(λ) ≤ λ2(b − a)2/8



Proof sketch
show , for ,     

• Derivatives can be written as: 

 

 

• Consider a random variable , distributed as 

 

• Check by yourself whether this is a valid probability measure 
• This trick is called “exponential tilting” 

• Then, we know that 

ψ(λ) ≤ λ2(b − a)2/8 ψ(λ) = log 𝔼[exp(λX)]

ψ′￼(λ) =
𝔼[X exp(λX)]
𝔼[exp(λX)]

ψ′￼′￼(λ) =
𝔼[X2 exp(λX)]

𝔼[exp(λX)]
− ( 𝔼[X exp(λX)]

𝔼[exp(λX)] )
2

Z

pZ(z) =
exp(λz)

𝔼[exp(λX)]
pX(z)

Pr[Z ∈ [a, b]] = 1



Proof sketch
show , for ,     

 

• Think about the mean and variance of  

 

 

                                                             

                                                        

                                                        

ψ(λ) ≤ λ2(b − a)2/8 ψ(λ) = log 𝔼[exp(λX)]

pZ(z) =
exp(λz)

𝔼[exp(λX)]
pX(z)

Z

𝔼Z =
𝔼[X ⋅ exp(λX)]

𝔼[exp(λX)]
Var(Z) = 𝔼[Z2] − (𝔼Z)2

=
𝔼[X2 ⋅ exp(λX)]

𝔼[exp(λX)]
− ( 𝔼[X ⋅ exp(λX)]

𝔼[exp(λX)] )
2

= ψ′￼′￼(λ)

≤
1
4

(b − a)2



Proof sketch
show , for ,     

 

• We have: 

 

 

• Thus, 

 

                                                                         

ψ(λ) ≤ λ2(b − a)2/8 ψ(λ) = log 𝔼[exp(λX)]

ψ′￼′￼(λ) ≤ (b − a)2/4

ψ(0) = log 𝔼[exp(0 ⋅ X)] = log 𝔼[1] = 0

ψ′￼(0) = ψ′￼(0) =
𝔼[X exp(0 ⋅ X)]
𝔼[exp(0 ⋅ X)]

=
𝔼[X]

1
= 0

ψ(λ) = ∫
λ

0 (∫
τ

0
ψ′￼′￼(t) dt) dτ ≤ ∫

λ

0 (∫
τ

0

(b − a)2

4
dt) dτ

≤
(b − a)2

4
⋅ (∫

λ

0
τ dτ) =

λ2(b − a)2

8



Hoeffding’s theorem
Theorem 12.3 (Hoeffding). 

Given independent  with , we have 

 

• Application. Let  be some fixed predictor. 

• Let  

• i.e., a random variable indicating the “error” of the predictor on a random sample 

• Then, with probability , we have 

 

X1, …, Xn Xi ∈ [ai, bi]

Pr [ 1
n

n

∑
i=1

Xi − 𝔼Xi ≥ ϵ] ≤ exp (−
2n2ϵ2

∑n
i=1 (bi − ai)2 )

f
Z = 1 [f(X) ≠ Y]

1 − δ

1
n

n

∑
i=1

Zi − 𝔼Z ≤
log(2/δ)

2n



Other sophisticated results
Theorem (McDiarmid). 

Let  have the bounded difference property, i.e., 

 

Then, for independent , we have 

 

• Also note the Bernstein’s inequality 
• Boundedness + Variance bound for a tighter bound

f( ⋅ )
| f(x1, ⋯, xi−1, xi, xi+1, ⋯, xn) − f(x1, ⋯, xi−1, x̃i, xi+1, ⋯, xn) | ≤ ci, ∀…

X1, …, Xn

Pr[ f − 𝔼f ≥ ϵ] ≤ exp ( 2ϵ2

∑ c2
i )



Next up
• Uniform convergence


