15. ReLU net optimization & Implicit bias - 2

Settings

- For a warm-up, we now consider a two-layer ReLU net + logistic regression
 - Assume that only the first layer is trainable

$$f(x; w) = \frac{1}{\sqrt{m}} \sum_{j} a_j \sigma(\langle x, w_j \rangle), \qquad a_j \in \{\pm 1\}, \quad ||x|| \le 1$$

- Let $W_s \in \mathbb{R}^{m \times d}$ denote the parameters at time s
- Then, we have:

$$\nabla f(x; W) = \frac{1}{\sqrt{m}} \cdot \begin{bmatrix} a_1 \sigma'(w_1^\top x) x \\ \cdots \\ a_m \sigma'(w_m^\top x) x \end{bmatrix}$$

$$\parallel \nabla f(x; W) \parallel_F^2 = \frac{1}{m} \sum_{j=1}^m \parallel \sigma'(w_j^\top x) x \parallel_2^2 \le \frac{1}{m} \sum_{j=1}^m \|x\|_2^2 \le 1$$

Settings

• We perform the gradient descent with the logistic loss, i.e.,

$$\ell'(z) = \log(1 + \exp(-z))$$

$$\ell'(z) = \frac{-\exp(-z)}{1 + \exp(-z)} \in (-1,0)$$

$$\hat{R}(W) := \frac{1}{n} \sum_{k=1}^{n} \ell(y_k \cdot f(x_k; W))$$

• Here is a useful fact:

$$|\ell'(z)| = -\ell'(z) \le \ell(z)$$

Settings

• From the useful fact, we have:

$$\nabla \hat{R}(W) = \frac{1}{n} \sum_{k=1}^{n} \mathcal{E}'(y_k \cdot f(x_k; W)) \cdot y_k \cdot \nabla f(x_k; W)$$

$$\left\| \nabla \hat{R}(W) \right\|_{F} \leq \frac{1}{n} \sum_{k=1}^{n} \left| \mathcal{C}'(y_{k} \cdot f(x_{k}; W)) \right| \cdot \left\| y_{k} \cdot \nabla f(x_{k}; W) \right\|_{F}$$

$$\leq \frac{1}{n} \sum_{k=1}^{n} \left| \mathcal{C}'(y_{k} \cdot f(x_{k}; W)) \right|$$

$$\leq \min\{1, \hat{R}(W)\}$$

Risk convergence

• Using these, we can prove the following lemma

Lemma 9.4. (Ji & Telgarsky, 2019)

Let $\eta \leq 1$. Then, for any Z, we have

$$\sum_{i \le t} \frac{1}{t} \hat{R}(W_i) - \sum_{i \le t} \frac{2}{t} \hat{R}^{(i)}(Z) \le \frac{\|W_0 - Z\|_F^2 - \|W_t - Z\|_F^2}{\eta \cdot t}$$

where

$$\hat{R}^{(i)}(Z) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y_k \cdot \langle Z, \nabla f(x_k; W_i) \rangle)$$

- Note. We have $\hat{R}^{(i)}(W_i) = \hat{R}(W_i)$
 - We have $\hat{R}^{(i)}(Z) \approx \hat{R}(Z)$, if W_i and Z have similar activations (thus, for convergence, we need to prove that similar activation happens often)

$$\sum_{i < t} \frac{1}{t} \hat{R}(W_i) - \sum_{i < t} \frac{2}{t} \hat{R}^{(i)}(Z) \le \frac{\|W_0 - Z\|_F^2 - \|W_t - Z\|_F^2}{\eta \cdot t}$$

Begin from the usual decomposition

$$||W_{i+1} - Z||_F^2 = ||W_i - Z||_F^2 - 2\eta \langle \nabla \hat{R}(W_i), W_i - Z \rangle + \eta^2 ||\nabla \hat{R}(W_i)||_F^2$$

• Third term. Proceed as

$$\|\nabla \hat{R}(W_i)\|_F^2 \le (\min\{1,\hat{R}(W_i)\})^2 \le \hat{R}(W_i)$$

$$\sum_{i < t} \frac{1}{t} \hat{R}(W_i) - \sum_{i < t} \frac{2}{t} \hat{R}^{(i)}(Z) \le \frac{\|W_0 - Z\|_F^2 - \|W_t - Z\|_F^2}{\eta \cdot t}$$

$$||W_{i+1} - Z||_F^2 \le ||W_i - Z||_F^2 - 2\eta \langle \nabla \hat{R}(W_i), W_i - Z \rangle + \eta^2 \hat{R}(W_i)$$

• Second term. Proceed as

$$\begin{split} \langle \nabla \hat{R}(W_i), Z - W_i \rangle &= \frac{1}{n} \sum_{k=1}^n y_k \cdot \ell'(y_k \cdot f(x_k; W_i)) \cdot \langle \nabla f(x_k; W_i), Z - W_i \rangle \\ &= \frac{1}{n} \sum_{k=1}^n \ell'(y_k \cdot f(x_k; W_i)) \cdot \left(\langle y_k \cdot \nabla f(x_k; W_i), Z \rangle - y_k \cdot f(x_k; W_i) \right) \\ &\leq \frac{1}{n} \sum_{k=1}^n \ell \left(\langle y_k \cdot \nabla f(x_k; W_i), Z \rangle \right) - \ell \left(y_k \cdot f(x_k; W_i) \right) \\ &\leq \hat{R}^{(i)}(Z) - \hat{R}(W_i) \end{split}$$

$$\sum_{i < t} \frac{1}{t} \hat{R}(W_i) - \sum_{i < t} \frac{2}{t} \hat{R}^{(i)}(Z) \le \frac{\|W_0 - Z\|_F^2 - \|W_t - Z\|_F^2}{\eta \cdot t}$$

$$||W_{i+1} - Z||_F^2 \le ||W_i - Z||_F^2 + 2\eta \hat{R}^{(i)}(Z) - 2\eta \hat{R}(W_i) + \eta^2 \hat{R}(W_i)$$

Reordering, we get

$$(2 - \eta)\hat{R}(W_i) - 2\hat{R}^{(i)}(Z) \le \frac{\|W_i - Z\|_F^2 - \|W_{i+1} - Z\|_F^2}{\eta}$$

• Use the fact that $1 \le 2 - \eta$, and telescope to get the claim

Margin maximization: a primer

Setting

- Consider a slightly different setup: Binary classification with separable data
- Classifier. The function f(x; w) is locally Lipschitz and L-homogeneous
 - e.g., linear model $x \mapsto \langle w, x \rangle$

(followed by sgn(·) for classification)

• Loss. We use the exponential loss

$$\ell(y \cdot f(x; w)) = \exp(-y \cdot f(x; w))$$

• Margin mapping.

$$m_i(w) := y_i \cdot f(x; w)$$

• (Unnormalized) risk.

$$\mathscr{L}(w) := \sum_{i} \ell(m_{i}(w))$$

Setting

• We assume separable data, i.e., one can perfectly classify the training data

Definition (linearly separable).

A dataset is linearly separable if there exists $w \in \mathbb{R}^d$ such that

$$\min_{i \in [n]} y_i \cdot \langle w, x_i \rangle > 0$$

Definition (\overrightarrow{m} -separable).

A dataset is \overrightarrow{m} -separable if there exists $w \in \mathbb{R}^d$ such that

$$\min_{i \in [n]} m_i(w) > 0$$

• Question. For separable data, is there any way to achieve zero training risk?

Infimum not attained

• The answer is no

Proposition 10.1.

Suppose that f(x; w) is L-homogeneous in w, and there exists \hat{w} such that $\mathcal{L}(\hat{w}) < \ell(0)$. Then, we have $\inf \mathcal{L}(w) = 0$ and the infimum is not attained.

• Proof idea. One can always do better by increasing the magnitude.

• First, we have:

$$\mathcal{E}(0) > \mathcal{L}(\hat{w}) = \sum_{i=1}^{n} \mathcal{E}(m_i(\hat{w})) > \max_{i \in [n]} \mathcal{E}(m_i(\hat{w}))$$

- Applying ℓ^{-1} on both sides, we get $0 < \min_{i \in [n]} m_i(\hat{w})$
- Then, we proceed as

$$0 \leq \inf_{w} \mathcal{L}(\hat{w}) \leq \limsup_{c \to \infty} \mathcal{L}(c\hat{w})$$

$$= \sum_{i=1}^{n} \limsup_{c \to \infty} \mathcal{L}(m_{i}(c\hat{w}))$$

$$= \sum_{i=1}^{n} \limsup_{c \to \infty} \mathcal{L}(c^{L}m_{i}(\hat{w})) = 0$$

Margin maximization

• Now, we'll focus on showing the following claim:

GD finds (or is implicitly biased toward) the max-margin predictor

• (Linear) Max-margin predictor.

$$\bar{u} = \operatorname{argmax}_{\|w\|=1} \min_{i \in [n]} y_i \cdot \langle w, x_i \rangle$$

- In other words, we do not need a hard-margin SVM
- Question. Why do we need a norm-1 constraint?
- Answer. To provide a fair comparison:

$$m_i(w) = \|w\|^L \cdot m_i \left(\frac{w}{\|w\|}\right)$$

Margins

Definition (Margins).

The margin, maximum margin, and the smooth margin is defined as:

$$\gamma(w) = \min_{i \in [n]} m_i \left(\frac{w}{\|w\|} \right) = \frac{1}{\|w\|^L} \min_{i \in [n]} m_i(w)
\bar{\gamma} := \max_{\|w\|=1} \gamma(w), \qquad \tilde{\gamma}(w) := \frac{\ell^{-1}(\mathcal{L}(w))}{\|w\|^L}$$

• Remark. The smooth margin gives us a nice sandwich bound for margin.

$$\mathcal{E}^{-1}(\mathcal{L}(w)) \le \mathcal{E}^{-1}(\max_{i} \mathcal{E}(m_{i}(w))) = \min_{i \in [n]} m_{i}(w)$$

$$\min_{i \in [n]} m_{i}(w) \le \mathcal{E}^{-1}\left(\frac{1}{n} \sum_{i=1}^{n} \mathcal{E}(m_{i}(w))\right) = \mathcal{E}^{-1}(\mathcal{L}(w)) + \log(n)$$

Properties

Here are some basic properties of margins

Proposition 10.2.

Suppose that the data is \overrightarrow{m} -separable. Then,

- $\bar{\gamma}$ is well-defined (i.e., maximum attained)
- For any $w \neq 0$, we have

$$\lim_{c \to \infty} \tilde{\gamma}(cw) = \gamma(w)$$

- In particular, for \hat{w} that achieves $\bar{\gamma}$, we have $\lim_{c\to\infty} \tilde{\gamma}(c\hat{w}) = \bar{\gamma}$
- Proof idea. Invoke continuity and the definition of margins

Gradient flow

Lemma 10.1.

Consider a linearly separable data, and a linear classifier with $w(0) = \mathbf{0}$.

Also, suppose that $\max_{i \in [n]} ||x_i|| \le 1$.

Then, we have

$$\mathcal{L}(w(t)) \le \frac{1 + \log(2nt\bar{\gamma}^2)}{2t\bar{\gamma}^2}$$
$$||w(t)|| \ge \log(2tn\bar{\gamma}^2) - \log(1 + \log(2tn\bar{\gamma}^2))$$

• Remark.

- Risk decays as $\log t/t$
- Parameter grows as log t
- No discussions on implicit bias yet;(

- First, observe that \mathcal{L} is convex, as it is a summation of n convex functions
- Also, recall that our Theorem 7.4., which states that for convex risk we have: For any $z \in \mathbb{R}^d$

$$\mathcal{L}(w(t)) \le \mathcal{L}(z) + \frac{1}{2t} \left(\|w(0) - z\|^2 - \|w(t) - z\|^2 \right)$$

• Claim 1. Plug in $z = \log(c) \cdot \bar{u}/\bar{\gamma}$, to get:

$$\mathcal{L}(w(t)) \le \mathcal{L}(z) + \frac{\|z\|^2}{2t} = \sum_{i=1}^n \ell\left(\log c \cdot \frac{m_i(\bar{u})}{\bar{\gamma}}\right) + \frac{\log^2(c)}{2t\bar{\gamma}^2}$$

$$\le \sum_{i=1}^n \exp\left(-\log c\right) + \frac{\log^2(c)}{2t\bar{\gamma}^2} = \frac{n}{c} + \frac{\log^2(c)}{2t\bar{\gamma}^2}$$

• Plug in $c = 2tn\bar{\gamma}^2$ to get the first bound.

• Claim 2.

• First, note that as $\max_{i \in [n]} ||x_i|| \le 1$, we have

$$||w(t)|| \ge y_i \langle w(t), x_i \rangle = m_i(w(t)), \quad \forall i \in [n]$$

• Thus, we have

$$\mathcal{E}(\|w_t\|) \le \mathcal{E}\left(\max_{i \in [n]} m_i(w(t))\right) = \min_{i \in [n]} \mathcal{E}\left(m_i(w(t))\right) \le \frac{1}{n} \cdot \mathcal{L}(w(t))$$
$$\le \frac{1}{n} \cdot \mathcal{L}(w(t))$$
$$\le \frac{1 + \log(2nt\bar{\gamma}^2)}{2nt\bar{\gamma}^2}$$

• Applying ℓ^{-1} on both sides, we get what we want.

Margin maximization

Want to show

- Now, we want to prove, either
 - Parameter convergence.

 $\lim_{t\to\infty} w_t \to \max \text{ margin solution}$

• Margin convergence.

 $\lim_{t\to\infty} \min_{i\in[n]} m_i(w_t) = \max_{t\to\infty} \max_{i\in[n]}$

- Problem. We know that
 - w_t diverges to infinity
 - $\min_{i \in [n]} m_i(w_t)$ diverges to infinity

Want to show

- Idea. Consider the normalized quantities
 - Normalized weight

$$w_t / \|w_t\|$$

Normalized max margin

$$\bar{u} = \underset{\|w\|=1}{\text{arg max min }} y_i \cdot f(x_i; w)$$

• Then, we can show either

$$\lim_{t \to \infty} \frac{w_t}{\|w_t\|} = \bar{u}$$

$$\lim_{w\to\infty} \min_{i\in[n]} m_i \left(\frac{w_t}{\|w_t\|}\right) = \min_{i\in[n]} m_i(\bar{u}) \qquad <- \text{We'll show this!}$$

Convergence of normalized margins

- Recall the definition of margins:
 - (Normalized) Margin

$$\gamma(w) = \min_{i \in [n]} m_i \left(\frac{w}{\|w\|} \right)$$

Normalized max margin

$$\bar{\gamma} := \max_{\|w\|=1} \gamma(w)$$

We want to show that

$$\lim_{t\to\infty}\gamma(w_t)=\bar{\gamma}$$

• Problem. Difficult to deal with the limits of min or max

Smoothed margin

• The trick is to consider the smoothed margin

$$\tilde{\gamma}(w) := \frac{\mathscr{C}^{-1}(\mathscr{L}(w))}{\|w\|^L}$$

Then, we know that

$$\tilde{\gamma}(w) \le \gamma(w) \le \tilde{\gamma}(w) + \frac{\log n}{\|w\|^L}$$

• Want-to-show. Convergence of the smoothed margin to the max margin

$$\lim_{t\to\infty}\tilde{\gamma}(w_t)=\bar{\gamma}$$

Linear case

• We prove the claim for the linear model $f(x; w) = \langle w, x \rangle$ trained with the gradient flow.

Theorem 10.1.

Suppose that $\max_{i \in [n]} ||x_i|| \le 1$. Then, we have

$$\tilde{\gamma}(w(t)) \ge \bar{\gamma} - \frac{\log n}{\log t + \log(2n\bar{\gamma}^2) - 2\log\log(2tne\bar{\gamma}^2)}$$

• **Remark.** By noticing that $\tilde{\gamma}(w(t)) \leq \gamma(w(t)) \leq \bar{\gamma}$, we have a sandwich bound:

$$\bar{\gamma} - \frac{C}{\log t} \le \gamma(w(t)) \le \bar{\gamma}$$

Thus the limit converges

• We track the numerator and the denominator of the smoothed margin, separately.

$$\tilde{\gamma}(w(t)) = \frac{\mathscr{C}^{-1}(\mathscr{L}(w(t)))}{\|w(t)\|^1} =: \frac{u(t)}{v(t)}$$

- To bound $\tilde{\gamma}$ from below, we need:
 - A lower bound on

$$u(t) = -\log(\mathcal{L}(w(t)))$$

• An upper bound on

$$v(t) = \|w(t)\|$$

LB on $u(t) = -\log(\mathcal{L}(w(t)))$

We have that

$$u(t) = u(0) + \int_0^t \dot{u}(s) \, \mathrm{d}s$$

• To analyze the first term, use the fact that we start GF at o

$$u(0) = \mathcal{E}^{-1}\left(\sum_{i=1}^{n} \mathcal{E}(y_i \cdot \langle w, x_i \rangle)\right) = \mathcal{E}^{-1}(n) = -\log(n)$$

To analyze the second term, we begin by noticing that

$$\dot{u}(s) = \left\langle \frac{-\nabla \mathcal{L}(w(s))}{\mathcal{L}(w(s))}, \dot{w}(s) \right\rangle = \frac{\|\dot{w}(s)\|^2}{\mathcal{L}(w(s))}$$

• Looking at $\|\dot{w}(s)\|$, we have

$$\begin{aligned} \|\dot{w}(s)\| &\geq \langle \dot{w}(s), \bar{u} \rangle = \left\langle -\sum_{i=1}^{n} x_{i} y_{i} \ell'(m_{i}(w(s))), \bar{u} \right\rangle \\ &= \sum_{i=1}^{n} \ell(m_{i}(w(s))) \cdot \langle y_{i} x_{i}, \bar{u} \rangle \\ &\geq \bar{\gamma} \cdot \sum_{i=1}^{n} \ell(m_{i}(w(s))) \\ &= \bar{\gamma} \cdot \mathcal{L}(w(s)) \end{aligned}$$

• Plugging in, we get

$$u(t) = u(0) + \int_0^t \dot{u}(s) \, \mathrm{d}s$$

$$\geq -\log(n) + \int_0^t \frac{||\dot{w}(s)||^2}{\mathscr{L}(w(s))} \, \mathrm{d}s$$

$$\geq -\log(n) + \bar{\gamma} \cdot \int_0^t ||\dot{w}(s)|| \, \mathrm{d}s$$

$$\geq -\log(n) + \bar{\gamma} \cdot ||\dot{w}(t)||$$

UB on v(t) = ||w(t)||

We have that

$$v(t) = ||w(t)|| \le \int_0^t ||\dot{w}(s)|| \, \mathrm{d}s$$

where

$$\|\dot{w}(s)\| = \left\| \sum_{i=1}^{n} x_i y_i \mathcal{E}'(m_i(w(s))) \right\|$$

$$\leq \sum_{i=1}^{n} \mathcal{E}(m_i(w(s)))$$

$$\leq \mathcal{L}(w(s))$$

- By the risk convergence (Lemma 10.1), we have UB of form log *s/s* on the RHS
 - Integrate, and get what we want

Next up

Generalization