15. ReLU net optimization
& Implicit bias - 2



Settings

 For a warm-up, we now consider a two-layer ReLLU net + logistic regression

o Assume that only the first layer is trainable

1
fw) =—=) ao((x,w)), € {x1}, x| <1

m ;

e Let W, € R™ denote the parameters at time s

e Then, we have:

i a,6'(w; X)x
Vo, W) = '
m  la o'(w' x)x
1 m 9) m
[ VW || =— 2 || o0sTox || <— 2 lIxI3 <1




Settings

e We perform the gradient descent with the logistic loss, 1.e.,

£ (z) = log(1 + exp(—=z))
£1(z) = — P e (-1.0)
1 + exp(—2)

A 1 <
ROW) == D £ (v flg W)
k=1

e Here is a useful fact:

17| =-7"(2) < 0(2)



Settings
e From the useful fact, we have:

R 1 «
VROW) == ) /(3 flgs W) -y - Vg W)
k=1

n

A 1
” VR(W) ” - < ;,; f’(Yk‘f(xk; W)) ' ” i+ VIO W) || i

1 n

< — Z £ (v - fxis W))
=1

< min{ lﬁ(W)}




Risk convergence

o Using these, we can prove the following lemma

Lemma 9.4. (Ji1 & Telgarsky, 2019)

Let n < 1. Then, for any Z, we have

1 . 2 . W, = Z|I% = ||W. = Z||
t t n-t

1<t 1<t

where

- I ¢
ROZ) = — D LOn - (Z Vs W)))
=1

e Note. We have IAQ(i)(Wl-) = IAQ(Wi)

e We have ﬁ(i)(Z) ~ IAQ(Z), if W. and Z have similar activations
(thus, for convergence, we need to prove that similar activation happens often)



Proof sketch

Wy — ZI|%— || W, — Z||2
n-t

| A 2 A
2Ry = 2, =R@) <

1<t 1<t

e Begin from the usual decomposition
Wit = ZII7 = IW; = ZII7 = 20{ VR(W), W; = Z) + n*[VR(W) |7

e Third term. Proceed as
IVR(W)||2 < (min{1,R(W))})? < R(W))



Proof sketch

1 . 2. W, = ZIIZ = ||W. — Z||2
Z—R(WG)—Z—R(”(Z)S |Wo = Zl|lz = [|W, = Z||£
t t n-t

1<t 1<t

W, = Z||2 < |W, = Z||% = 25{ VR(W)), W, — Z) + n*R(W,)

e Second term. Proceed as

(VR(W),Z - W) = Zyk £ fos W) - ( V(e W), Z — W)
k—l

— —Z C' Vg S W) - <<)’k° Vs W, Z) = v - 11 Wi))

< Zf Ve - VIO W), Z)) = £(y; - flgs W)

R(’)(Z) R(W))



Proof sketch

Wy — ZI|%— || W, — Z||2
n-t

1 . 2 .
—R(W) =Y —RUO(Z) <
Zt (W) Zt (Z) <
1<t 1<t
W, — Z|I2 < ||W, = Z||2 + 2qR(Z) — 2nR(W)) + > R(W)
e Reordering, we get
W — Z||% = |Wyy, — Z||%
n

(2 —n)R(W)) —2RV(Z) <

e Usethefactthat 1 <2 — », and telescope to get the claim



Margin maximization:
a primer



Setting

e Consider a slightly different setup: Binary classification with separable data

e Classifier. The function f(x; w) is locally Lipschitz and L-homogeneous

e e.g., linear model x — (w, x)

e Loss. We use the exponential loss

C(y - Jx;w)) = exp(=y - fx; w))
e Margin mapping.

m(w) = y; - flx;w)
¢ (Unnormalized) risk.

Lw) = ) Lmw))



Setting

e We assume separable data, 1.e., one can perfectly classify the training data

Definition (linearly separable).
A dataset is linearly separable if there exists w € R such that

miny; - (w,x;) > 0
1€|nj

Definition (777-separable).
A dataset is m-separable if there exists w € R¢ such that

min m.(w) > 0
1€|n]

e Question. For separable data, is there any way to achieve zero training risk?



Infimum not attained

e The answer 1s no

Proposition 10.1.
Suppose that f(x; w) is L-homogeneous in w, and there exists w such that Z(w) < £(0).

Then, we have inf £ (w) = 0 and the infimum is not attained.
w

e Proofidea. One can always do better by increasing the magnitude.



Proof sketch

e First, we have:
£(0) > L() = Y £(m(W)) > max £(m(W))
1 1€[n]

Applying #~! on both sides, we get 0 < min m.(w)
1€|n]

e Then, we proceed as

0 < inf Z(W) < lim sup L(cW)

cC—> Q0

— Z lim sup f(ml(cw))

=1 €7

= ) lim sup £(cm()) = 0

=1 €7



Margin maximization

e Now, we'll focus on showing the following claim:

GD finds (or 1s implicitly biased toward) the max-margin predictor

¢ (Linear) Max-margin predictor.

il = argmaxj,,_i m[n}yi (W, x;)
e\n

e In other words, we do not need a hard-margin SVM

e Question. Why do we need a norm-1 constraint?

e Answer. To provide a fair comparison:




Margins

Definition (Margins).

The margin, maximum margin, and the smooth margin is defined as:

y(w) = min m, ( i ) = min m,(w)
=t |w| HWHL i€[n]
—1
. 3 (Z(w))
7= max y(w),  y(w):= 3
Iwll=1 |wl|

e Remark. The smooth margin gives us a nice sandwich bound for margin.

£ (L w) <~ 1(max £(m(w))) = min m,(w)

1€|n|

1€ n|

min m(w) < £~ (l Z f(mi(w))> = 71 (ZL(w)) + log(n)
& =1



Properties

 Here are some basic properties of margins

Proposition 10.2.

Suppose that the data is m-separable. Then,
e 71s well-defined (i.e., maximum attained)
e For any w # 0, we have

lim y(cw) = y(w)

cC—>QO0

. In particular, for w that achieves 7, we have lim y(cw) =¥

cC— 00

 Proof idea. Invoke continuity and the definition of margins



Gradient flow

Lemma 10.1.

Consider a linearly separable data, and a linear classifier with w(0) = 0.

Also, suppose that max ||x;|| < 1.
i€[n]

Then, we have
1 + log(2nti?)
21y?
lw(®)|| > log(2tny*) — log(1 + log(2tny?))

Z(W(1)) <

e Remark.
e Risk decays as log ¢/t

e Parameter grows as log ¢

e No discussions on implicit bias yet ;(



Proof sketch

o First, observe that £ is convex, as it is a summation of n convex functions

e Also, recall that our Theorem 7.4., which states that for convex risk we have: For any 7 € R4

1 2 2
Lw(n) < L)+ (1lw(0) — z||I* = lIw(2) — z|I*)

e Claim 1. Plugin z = log(c) - u/y, to get:

lzl? m@)\  log*(c)
L) < L@+ - = i_zlf(logc. ) =

Y

L _logz(c) n  log*(c)
< exp (—logc) 4 = —
B Z‘ p(~logc) 2ty C 2177

e Plugin ¢ = 2tny” to get the first bound.




Proof sketch

e Claim 2.

, First, note that as max ||x;|| < 1, we have
1€[n]

W@ || = yw(D), x;) = m(w(@), Vi€ [n]
e Thus, we have

C(w ) £ (max ml-(w(t)> =min? (mi(w(t)) < l . Lw(d))

ie[n] i€[n] n

1 + loe(2nty?
< + log(2nty~)

2nty?
o Applying #~! on both sides, we get what we want.



Margin maximization




Want to show

e Now, we want to prove, either

e Parameter convergence.

lim w, = max margin solution

[— 0

¢ Margin convergence.

lim min m,(w,) = max margin
t—o00 I€|n]

e Problem. We know that
o w, diverges to infinity

min m;(w,) diverges to infinity
1€|n]



Want to show

e Idea. Consider the normalized quantities

e Normalized weight
wil ||wil
e Normalized max margin

U = arg max miny; - f(x; w)

Iwll=1i€[N]
e Then, we can show either
. Wl‘ —
, lm = U
t—oo |[w]|
: : W; : _ : .
lim min m, = min m.(i) <— We’'ll show this!

* oo icln] |w,|| ic[n)



Convergence of normalized margins

o Recall the definition of margins:

e (Normalized) Margin

o
y(w) = min m, ( )
i€[n] |w]|

Y ;= max y(w)
[wl[=1

e Normalized max margin

e We want to show that

lim y(w) =¥

[— 0

e Problem. Difficult to deal with the limits of min or max



Smoothed margin

e The trick is to consider the smoothed margin
£~ (L w))

[l

W) =

e Then, we know that
log n

[wll*

y(w) < y(w) < 7(w) A

e Want-to-show. Convergence of the smoothed margin to the max margin

lim y(w) =7

[I— 0



Linear case

e We prove the claim for the linear model f(x; w) = (w, x) trained with the gradient flow.

Theorem 10.1.

Suppose that max ||x;|| < 1. Then, we have
1€|n]

log n
log ¢ + log(2ny?) — 2 log log(2tney?)

yw() 27 —

e Remark. By noticing that y(w(?)) < y(w(?)) < 7, we have a sandwich bound:

C
Y — <yw()) <y
log ¢

e Thus the limit converges



Proof sketch

e We track the numerator and the denominator of the smoothed margin, separately.
CNL (@) u)

% [)) = )
o) = o V()

e To bound ¥ from below, we need:

e A lower bound on

u(t) = — log(Z(w(1))

e An upper bound on

(@) = [lw()|



Proof sketch

LB on u(t) = — log(Z(w(?)))

e We have that
A

u(t) = u(0) + J u(s) ds
0
e To analyze the first term, use the fact that we start GF at o

u(0) = £~ (2 £ (w, xl->>> = £7(n) = — log(n)
=1

e To analyze the second term, we begin by noticing that

o <—V§/”(W(S)) . > ~w)II7
u(s) = ,W(s) ) =
L (w(s)) Z(w(s))




Proof sketch

e Looking at |[W(s)]||, we have

[W(s)|| = (W(s), it) = <_ Z Xy (m(w(s))), ’/_i>

=1

= 2 £(m(w(s))) - (Vix;, ih)
=1

> 7 ) £m(w(s)))
=1

=7 Z(W(s))



Proof sketch

e Plugging in, we get
[

u(t) = u(0) + J u(s) ds

0
ATOIE
> — ] + d
og() I L w(s))

[

> —log(n) +7- [ [Ww(s)l| ds
0

> —log(n) +7 - |[w@®)||

\)



Proof sketch

UB on v(?) = ||lw(?)]|

e We have that
[

W(0) = ()| < J ()l ds

0
e where

n

Wl = || D xyi (m(w(s)))

=1

< ) Emw(s)))
=1

< Z(w(s))
e By the risk convergence (Lemma 10.1), we have UB of form log s/s on the RHS

e Integrate, and get what we want



e Generalization



