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Settings
• For a warm-up, we now consider a two-layer ReLU net + logistic regression 

• Assume that only the first layer is trainable 

 

• Let  denote the parameters at time  

• Then, we have: 
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Settings
• We perform the gradient descent with the logistic loss, i.e., 

                                      

                                     

                                  

• Here is a useful fact: 
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Settings
• From the useful fact, we have: 
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Risk convergence
• Using these, we can prove the following lemma 

Lemma 9.4. (Ji & Telgarsky, 2019) 

Let . Then, for any , we have 

 

where  

 

• Note. We have  

• We have , if  and  have similar activations 
(thus, for convergence, we need to prove that similar activation happens often)
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Proof sketch
 

• Begin from the usual decomposition 

 

• Third term. Proceed as 
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Proof sketch
 

 

• Second term. Proceed as 
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Proof sketch
 

 

• Reordering, we get 

 

• Use the fact that , and telescope to get the claim
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Margin maximization: 
a primer



Setting
• Consider a slightly different setup: Binary classification with separable data 

• Classifier. The function  is locally Lipschitz and -homogeneous 

• e.g., linear model                                                   (followed by  for classification) 

• Loss. We use the exponential loss 

 

• Margin mapping. 

 

• (Unnormalized) risk. 

f(x; w) L
x ↦ ⟨w, x⟩ sgn( ⋅ )

ℓ(y ⋅ f(x; w)) = exp(−y ⋅ f(x; w))

mi(w) := yi ⋅ f(x; w)

ℒ(w) := ∑
i

ℓ(mi(w))



Setting
• We assume separable data, i.e., one can perfectly classify the training data 

Definition (linearly separable).  

A dataset is linearly separable if there exists  such that 

 

Definition ( -separable). 

A dataset is -separable if there exists  such that 

 

• Question. For separable data, is there any way to achieve zero training risk?

w ∈ ℝd

min
i∈[n]

yi ⋅ ⟨w, xi⟩ > 0

⃗m
⃗m w ∈ ℝd
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mi(w) > 0



Infimum not attained
• The answer is no 

Proposition 10.1.  

Suppose that  is -homogeneous in , and there exists  such that . 

Then, we have  and the infimum is not attained. 

• Proof idea. One can always do better by increasing the magnitude.

f(x; w) L w ŵ ℒ(ŵ) < ℓ(0)
inf
w

ℒ(w) = 0



Proof sketch
• First, we have: 

 

• Applying  on both sides, we get  

• Then, we proceed as 
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Margin maximization
• Now, we’ll focus on showing the following claim: 

GD finds (or is implicitly biased toward) the max-margin predictor 

• (Linear) Max-margin predictor. 

 

• In other words, we do not need a hard-margin SVM 

• Question. Why do we need a norm-1 constraint? 
• Answer. To provide a fair comparison: 

ū = argmax∥w∥=1 min
i∈[n]

yi ⋅ ⟨w, xi⟩

mi(w) = ∥w∥L ⋅ mi ( w
∥w∥ )



Margins
Definition (Margins). 
The margin, maximum margin, and the smooth margin is defined as: 

 

 

• Remark. The smooth margin gives us a nice sandwich bound for margin. 
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Properties
• Here are some basic properties of margins 
Proposition 10.2. 

Suppose that the data is -separable. Then, 

•  is well-defined (i.e., maximum attained) 

• For any , we have 

 

• In particular, for  that achieves , we have  

• Proof idea. Invoke continuity and the definition of margins

⃗m
γ̄

w ≠ 0
lim
c→∞

γ̃(cw) = γ(w)

ŵ γ̄ lim
c→∞

γ̃(cŵ) = γ̄



Gradient flow
Lemma 10.1. 

Consider a linearly separable data, and a linear classifier with . 

Also, suppose that . 

Then, we have 

 

 

• Remark. 

• Risk decays as  

• Parameter grows as  

• No discussions on implicit bias yet ;(

w(0) = 0
max
i∈[n]

∥xi∥ ≤ 1

ℒ(w(t)) ≤
1 + log(2ntγ̄2)

2tγ̄2

∥w(t)∥ ≥ log(2tnγ̄2) − log(1 + log(2tnγ̄2))

log t/t
log t



Proof sketch
• First, observe that  is convex, as it is a summation of  convex functions 

• Also, recall that our Theorem 7.4., which states that for convex risk we have: For any  

 

• Claim 1. Plug in , to get: 

 

 

• Plug in  to get the first bound.

ℒ n
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ℒ(w(t)) ≤ ℒ(z) +
1
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=
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∑
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≤
n
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log2(c)
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=

n
c

+
log2(c)

2tγ̄2

c = 2tnγ̄2



Proof sketch
• Claim 2.  

• First, note that as , we have 

 

• Thus, we have 

 

                                                                                                    

• Applying  on both sides, we get what we want.

max
i∈[n]

∥xi∥ ≤ 1

∥w(t)∥ ≥ yi⟨w(t), xi⟩ = mi(w(t)), ∀i ∈ [n]

ℓ(∥wt∥) ≤ ℓ (max
i∈[n]

mi(w(t)) = min
i∈[n]

ℓ (mi(w(t)) ≤
1
n

⋅ ℒ(w(t))

≤
1 + log(2ntγ̄2)

2ntγ̄2

ℓ−1



Margin maximization



Want to show
• Now, we want to prove, either 

• Parameter convergence. 

 

• Margin convergence. 

 

• Problem. We know that 

•  diverges to infinity 

•  diverges to infinity

lim
t→∞

wt → max margin solution

lim
t→∞

min
i∈[n]

mi(wt) = max margin

wt

min
i∈[n]

mi(wt)



Want to show
• Idea. Consider the normalized quantities 

• Normalized weight  

 

•  Normalized max margin 

 

• Then, we can show either 

•  

•                <— We’ll show this!

wt /∥wt∥

ū = arg max
∥w∥=1

min
i∈[N]

yi ⋅ f(xi; w)

lim
t→∞

wt

∥wt∥
= ū

lim
w→∞

min
i∈[n]

mi ( wt

∥wt∥ ) = min
i∈[n]

mi(ū)



Convergence of normalized margins
• Recall the definition of margins: 

• (Normalized) Margin  

 

•  Normalized max margin 

 

• We want to show that 

 

• Problem. Difficult to deal with the limits of min or max

γ(w) = min
i∈[n]

mi ( w
∥w∥ )

γ̄ := max
∥w∥=1

γ(w)

lim
t→∞

γ(wt) = γ̄



Smoothed margin
• The trick is to consider the smoothed margin 

 

• Then, we know that 

 

• Want-to-show. Convergence of the smoothed margin to the max margin 

γ̃(w) :=
ℓ−1(ℒ(w))

∥w∥L

γ̃(w) ≤ γ(w) ≤ γ̃(w) +
log n
∥w∥L

lim
t→∞

γ̃(wt) = γ̄



Linear case
• We prove the claim for the linear model  trained with the gradient flow. 

Theorem 10.1. 

Suppose that . Then, we have 

 

• Remark. By noticing that , we have a sandwich bound: 

 

• Thus the limit converges

f(x; w) = ⟨w, x⟩

max
i∈[n]

∥xi∥ ≤ 1

γ̃(w(t)) ≥ γ̄ −
log n

log t + log(2nγ̄2) − 2 log log(2tneγ̄2)

γ̃(w(t)) ≤ γ(w(t)) ≤ γ̄

γ̄ −
C

log t
≤ γ(w(t)) ≤ γ̄



Proof sketch
• We track the numerator and the denominator of the smoothed margin, separately. 

 

• To bound  from below, we need: 

• A lower bound on 

 

• An upper bound on  

γ̃(w(t)) =
ℓ−1(ℒ(w(t)))

∥w(t)∥1
=:

u(t)
v(t)

γ̃

u(t) = − log(ℒ(w(t)))

v(t) = ∥w(t)∥



Proof sketch
LB on  
• We have that 

 

• To analyze the first term, use the fact that we start GF at 0 

 

• To analyze the second term, we begin by noticing that 

u(t) = − log(ℒ(w(t)))

u(t) = u(0) + ∫
t

0

·u(s) ds

u(0) = ℓ−1 (
n

∑
i=1

ℓ(yi ⋅ ⟨w, xi⟩)) = ℓ−1(n) = − log(n)

·u(s) = ⟨ −∇ℒ(w(s))
ℒ(w(s))

, ·w(s)⟩ =
∥ ·w(s)∥2

ℒ(w(s))



Proof sketch
• Looking at , we have 

 

                                   

                                   

                                  

∥ ·w(s)∥

∥ ·w(s)∥ ≥ ⟨ ·w(s), ū⟩ = ⟨−
n

∑
i=1

xiyiℓ′￼(mi(w(s))), ū⟩
=

n

∑
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n

∑
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= γ̄ ⋅ ℒ(w(s))



Proof sketch
• Plugging in, we get 

 

        

        

       

u(t) = u(0) + ∫
t

0

·u(s) ds

≥ − log(n) + ∫
t

0

∥ ·w(s)∥2

ℒ(w(s))
ds

≥ − log(n) + γ̄ ⋅ ∫
t

0
∥ ·w(s)∥ ds

≥ − log(n) + γ̄ ⋅ ∥ ·w(t)∥



Proof sketch
UB on  
• We have that 

 

• where 

                                

                                             

                                             

• By the risk convergence (Lemma 10.1), we have UB of form  on the RHS 

• Integrate, and get what we want

v(t) = ∥w(t)∥

v(t) = ∥w(t)∥ ≤ ∫
t

0
∥ ·w(s)∥ ds

∥ ·w(s)∥ =
n

∑
i=1

xiyiℓ′￼(mi(w(s)))

≤
n

∑
i=1

ℓ(mi(w(s)))

≤ ℒ(w(s))
log s/s



Next up
• Generalization


