13. Linearization - 2

This slide

- Utilize classical optimization tools, but for neural nets
- Idea. Consider the linearized model, i.e., NTK regime
 - Happens near initialization
 - Happens for overparameterized model
 - Today. Happens for scaled-up initial models $f \mapsto \alpha \cdot f$
 - Mainly follow the proof of Chizat and Bach (2019)
 - "On Lazy Training in Differentiable Programming" NeurIPS 2019

Recall

• Neural nets near initialization are almost linear:

$$f_0(\mathbf{x}; \mathbf{w}) = f(\mathbf{x}; \mathbf{w}_0) + \langle \partial_{\mathbf{w}} f(\mathbf{x}; \mathbf{w}_0), \mathbf{w} - \mathbf{w}_0 \rangle$$

• For smooth activations, we had:

$$f(\mathbf{x}; \mathbf{w}) - f_0(\mathbf{x}; \mathbf{w}) \le C \cdot \|\mathbf{w} - \mathbf{w}_0\|_F^2 / m^{1/2}$$

• For ReLU nets, we had:

$$f(\mathbf{x}; \mathbf{w}) - f_0(\mathbf{x}; \mathbf{w}) \le C \cdot \|\mathbf{w} - \mathbf{w}_0\|_F^{4/3} / m^{1/3}$$

The linearized models are universal approximators

Setup

- Question. When we run GD, do we stay close to the initialization?
- Notation. We bake the training set into the predictor

$$f(\mathbf{w}) = [f(\mathbf{x}_1; \mathbf{w}), f(\mathbf{x}_2; \mathbf{w}), \dots, f(\mathbf{x}_n; \mathbf{w})]^{\mathsf{T}} \in \mathbb{R}^n$$

• **Problem.** The squared loss regression, with a scale factor α

$$\hat{R}(\alpha \cdot f(\mathbf{w})) := \frac{1}{2} ||y - \alpha \cdot f(\mathbf{w})||^2$$
$$\hat{R}_0 = \hat{R}(\alpha \cdot f(\mathbf{w}(0)))$$

Setup

• Optimizer. We consider the gradient flow $\mathbf{w}(t)$

$$\dot{\mathbf{w}}(t) := -\nabla_{\mathbf{w}} \hat{R} \left(\alpha \cdot f(\mathbf{w}(t)) \right)$$
$$= -\alpha J_t^{\mathsf{T}} \nabla \hat{R} \left(\alpha \cdot f(\mathbf{w}(t)) \right)$$

• Here, J_t denotes the Jacobian

$$J_t = \begin{bmatrix} \nabla f(\mathbf{x}_1; \mathbf{w}(t))^\top \\ \cdots \\ \nabla f(\mathbf{x}_n; \mathbf{w}(t))^\top \end{bmatrix} \in \mathbb{R}^{n \times p}$$

Setup

• We denote the linear approximation of $\mathbf{w}(t)$ by $\mathbf{u}(t)$

$$f_0(\mathbf{u}) := f(\mathbf{w}(0)) + J_0(\mathbf{u} - \mathbf{w}(0))$$

• The trajectory of $\mathbf{u}(t)$ is given by

$$\dot{\mathbf{u}}(t) = -\nabla_{\mathbf{u}} \hat{R} \left(\alpha \cdot f_0(\mathbf{u}(t)) \right)$$

$$= -\alpha \cdot J_0^{\mathsf{T}} \nabla \hat{R} \left(\alpha \cdot f_0(\mathbf{u}(t)) \right)$$

- Goal. Show that, for nice α , we have
 - Both $\mathbf{w}(t)$ and $\mathbf{u}(t)$ stays close to $\mathbf{w}(0) = \mathbf{u}(0)$
 - i.e., safe to use guarantees for the linearization
 - Both $f(\mathbf{w}(t))$ and $f_0(\mathbf{u}(t))$ achieves small risks

Assumptions

- ullet We impose some assumptions on the Jacobian J_t
 - $\operatorname{rank}(J_0) = n$
 - exact solution exists for the f_0
 - $\sigma_{\min} := \sigma_{\min}(J_0) = \sqrt{\lambda_{\min}(J_0 J_0^{\mathsf{T}})} > 0$
 - $\sigma_{\text{max}} > 0$
 - $||J_w J_v|| \le \beta ||w v||$

Main result

Theorem 8.1.

Assume that we have

$$\alpha \ge \beta \sqrt{1152 \cdot \sigma_{\max}^2 \hat{R}_0} / \sigma_{\min}^3$$

Then, we have:

•
$$\hat{R}(\alpha \cdot f(\mathbf{w}(t))) \le \hat{R}_0 \cdot \exp(-t\alpha^2 \sigma_{\min}^2/2)$$

•
$$\hat{R}(\alpha \cdot f_0(\mathbf{u}(t))) \le \hat{R}_0 \cdot \exp(-t\alpha^2 \sigma_{\min}^2/2)$$

Also, we have

•
$$\|\mathbf{w}(t) - \mathbf{w}(0)\| \le \sqrt{72 \cdot \sigma_{\text{max}}^2 \cdot \hat{R}_0} / \alpha \cdot \sigma_{\text{min}}^2$$

•
$$\|\mathbf{u}(t) - \mathbf{u}(0)\| \le \sqrt{72 \cdot \sigma_{\max}^2 \cdot \hat{R}_0} / \alpha \cdot \sigma_{\min}^2$$

• Exponential convergence of risk & parameter stays within a constant range

Main result

- The theorem depends on a lot of quantities
 - Smoothness constant β
 - Singular values σ_{\min} , σ_{\max}
 - Initial risk \hat{R}_0
- Before proving, let's get used to these quantities

• Consider a shallow neural net

$$f(\mathbf{x}; \mathbf{w}) = \sum_{j} s_{j} \sigma(\mathbf{w}_{j}^{\mathsf{T}} \mathbf{x})$$

• Here, s_j are non-trainable binary weights, i.e., $s_j \in \{-1, +1\}$

• Jacobian. Can be written as:

$$J_{w} = \begin{bmatrix} s_{1}\sigma'(\mathbf{w}_{1}^{\mathsf{T}}\mathbf{x}_{1})\mathbf{x}_{1}^{\mathsf{T}}, & \cdots & s_{m}\sigma'(\mathbf{w}_{m}^{\mathsf{T}}\mathbf{x}_{1})\mathbf{x}_{1}^{\mathsf{T}} \\ & \cdots & \\ s_{1}\sigma'(\mathbf{w}_{1}^{\mathsf{T}}\mathbf{x}_{n})\mathbf{x}_{n}^{\mathsf{T}}, & \cdots & s_{m}\sigma'(\mathbf{w}_{m}^{\mathsf{T}}\mathbf{x}_{n})\mathbf{x}_{n}^{\mathsf{T}} \end{bmatrix}$$

• **Smoothness.** If the activation function is β_0 -smooth, then we have

$$\begin{split} \|J_{w} - J_{v}\|^{2} &= \sum_{i=1}^{n} \sum_{j=1}^{m} s_{j}^{2} \|\mathbf{x}_{i}\|^{2} (\sigma'(\mathbf{w}_{j}^{\mathsf{T}}\mathbf{x}_{i}) - \sigma'(\mathbf{v}_{j}^{\mathsf{T}}\mathbf{x}_{i}))^{2} \\ &= \sum_{i=1}^{n} \|\mathbf{x}_{i}\|^{2} \Big(\sum_{j=1}^{m} (\sigma'(\mathbf{w}_{j}^{\mathsf{T}}\mathbf{x}_{i}) - \sigma'(\mathbf{v}_{j}^{\mathsf{T}}\mathbf{x}_{i}))^{2} \Big) \\ &\leq \beta_{0}^{2} \sum_{i=1}^{n} \|\mathbf{x}_{i}\|^{2} \Big(\sum_{j=1}^{m} \|\mathbf{w}_{j} - \mathbf{v}_{j}\|^{2} \|\mathbf{x}_{i}\|^{2} \Big) \\ &\leq \beta_{0}^{2} \cdot \Big(\sum_{i=1}^{n} \|\mathbf{x}_{i}\|^{4} \Big) \cdot \|\mathbf{w} - \mathbf{v}\|^{2} \end{split}$$

• Singular values. Consider the entries of the matrix

$$(J_0 J_0^{\mathsf{T}})_{i,j} = \nabla f(\mathbf{x}_i; \mathbf{w}(0))^{\mathsf{T}} \nabla f(\mathbf{x}_j; \mathbf{w}(0))$$

- At initialization, we may assume that each vector of $\mathbf{w}(0)$ is an i.i.d. copy of some random \mathbf{v}
- Then, we have

$$\mathbb{E}(J_0 J_0^{\mathsf{T}})_{i,j} = \mathbb{E}\left[\sum_k s_k^2 \cdot \sigma'(\mathbf{w}_k(0)^{\mathsf{T}} \mathbf{x}_i) \cdot \sigma'(\mathbf{w}_k(0)^{\mathsf{T}} \mathbf{x}_j) \cdot \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j\right]$$
$$= m \cdot \mathbb{E}\left[\sigma'(v^{\mathsf{T}} \mathbf{x}_i) \cdot \sigma'(v^{\mathsf{T}} \mathbf{x}_j) \cdot \mathbf{x}_i^{\mathsf{T}} \mathbf{x}_j\right]$$

• Thus, it is natural to expect that

$$\sigma_{\rm max}, \sigma_{\rm min} \propto \sqrt{m}$$

• Initial risk. Suppose that we draw

$$s_i \sim \text{Unif}(\{+1, -1\}), \quad \mathbf{w}_i \sim P$$

• Then, we have

$$\mathbb{E}\hat{R}_0 = \mathbb{E}\left[\sum_{i=1}^n \frac{1}{2} \left(y_i - \alpha \cdot f(\mathbf{x}_i; \mathbf{w}(0))\right)^2\right]$$

$$= \frac{1}{2} \sum_{i=1}^n ||y_i||^2 + \frac{\alpha^2}{2} \sum_{i=1}^n \mathbb{E}||f(\mathbf{x}_i; \mathbf{w}(0))||^2$$

$$= \Theta(\alpha^2 mn)$$

• Combining all these, we see that the assumption $\alpha \ge \beta \sqrt{1152 \cdot \sigma_{\max}^2 \hat{R}_0 / \sigma_{\min}^3}$ actually means that the model is sufficiently wide, comparing with the number of data.

Proof plan

- Choose some radius *B*
 - Consider a ball

$$\mathcal{B} = \{ \mathbf{v} \mid ||\mathbf{v} - \mathbf{w}(0)|| \le B \}$$

Choose

$$T := \inf\{t \ge 0 : \|\mathbf{w}(t) - \mathbf{w}(0)\| > B\}$$

- For any $t \in [0,T]$:
 - If $J_t J_t^{\mathsf{T}}$ is positive-definite, risk decreases rapidly

(Lemma 8.1.)

• Rapid risk decrease —> Cannot travel far

(Lemma 8.2.)

• These holds for $\mathbf{u}(t)$, as $J_0J_0^{\mathsf{T}}$ is positive-definite

• For $\mathbf{w}(t)$, additional work is needed

(Lemma 8.3.; not discussed today)

Evolution of predictions

- Let us look at how predictions evolve
- Original. Difficult to track J_t

$$\frac{\mathrm{d}}{\mathrm{d}t} \alpha f(\mathbf{w}(t)) = \alpha J_t \dot{\mathbf{w}}(t) = -\alpha^2 J_t J_t^{\top} \nabla \hat{R}(\alpha f(\mathbf{w}(t)))$$
$$= -\alpha^2 J_t J_t^{\top} (\alpha f(\mathbf{w}(t)) - y)$$

• Linearized. Easier to track — becomes convex quadratic

$$\frac{\mathrm{d}}{\mathrm{d}t} \alpha f_0(\mathbf{u}(t)) = \alpha J_0 \dot{\mathbf{u}}(t)$$

$$= -\alpha^2 J_0 J_0^{\mathsf{T}} \nabla \hat{R}(\alpha f_0(\mathbf{u}(t)))$$

$$= -\alpha^2 J_0 J_0^{\mathsf{T}}(\alpha f_0(\mathbf{u}(t)) - y)$$

ullet For original to converge, we may need a uniform control over $J_tJ_t^ op$

Rapid decay of risk

Lemma 8.1.

Suppose that we have some GF trajectory $\mathbf{z}(t)$ with

$$\dot{\mathbf{z}}(t) = -Q(t) \nabla \hat{R}(\mathbf{z}(t)).$$

Define the minimum eigenvalue

$$\lambda := \inf_{t \in [0,\tau]} \lambda_{\min} (Q(t)) > 0$$

Then, for any $t \in [0,\tau]$, we have

$$\hat{R}(\mathbf{z}(t)) \le \hat{R}(\mathbf{z}(0)) \cdot \exp(-2\lambda t)$$

• Interpretation. Uniform lower bound means exponential convergence

Rapid decay of risk

Lemma 8.1.

Suppose that we have some GF trajectory $\mathbf{z}(t)$ with

$$\dot{\mathbf{z}}(t) = -Q(t) \nabla \hat{R}(\mathbf{z}(t)).$$

Define the minimum eigenvalue

$$\lambda := \inf_{t \in [0,\tau]} \lambda_{\min} (Q(t)) > 0$$

Then, for any $t \in [0,\tau]$, we have

$$\hat{R}(\mathbf{z}(t)) \le \hat{R}(\mathbf{z}(0)) \cdot \exp(-2\lambda t)$$

• Interpretation. Uniform lower bound means exponential convergence

Proof sketch

• Proceed as:

$$\frac{\mathrm{d}}{\mathrm{d}t} \frac{1}{2} \|\mathbf{z}(t) - y\|^2 = \langle -Q(t)(\mathbf{z}(t) - y), \mathbf{z}(t) - y \rangle$$

$$\leq -\lambda_{\min} (Q(t)) \cdot \|\mathbf{z}(t) - y\|^2$$

$$\leq -2\lambda \cdot \left(\frac{1}{2} \|\mathbf{z}(t) - y\|^2\right)$$

• Then, apply the Grönwall's inequality

Trajectory stays within the ball

Lemma 8.2.

Suppose that

$$\dot{\mathbf{v}}(t) = -S(t)^{\mathsf{T}} \nabla \hat{R}(g(\mathbf{v}(t))).$$

where we know that

$$\lambda_i(S_t S_t^{\mathsf{T}}) \in [\lambda, \lambda_1] \quad \forall t \in [0, \tau]$$

Then, for any $t \in [0,\tau]$, we have

$$\|\mathbf{v}(t) - \mathbf{v}(0)\| \le \frac{\sqrt{\lambda_1}}{\lambda} \|g(\mathbf{v}(0)) - y\| \le \frac{\sqrt{2\lambda_1} \hat{R}(g(\mathbf{v}(0)))}{\lambda}$$

• Interpretation. If eigenvalues admit uniform upper and lower bounds, the trajectory stays within some ball

Proof sketch

• Proceed as:

$$\|\mathbf{v}(t) - \mathbf{v}(0)\| = \left\| \int_0^t \dot{\mathbf{v}}(s) \, \mathrm{d}s \right\| \le \int_0^t \|\dot{\mathbf{v}}(s)\| \, \mathrm{d}s$$

$$= \int_0^t \|S_t^\top \nabla \hat{R}(g(\mathbf{v}(s)))\| \, \mathrm{d}s$$

$$\le \sqrt{\lambda_1} \int_0^t \|g(\mathbf{v}(s)) - y\| \, \mathrm{d}s$$

$$\le \sqrt{\lambda_1} \|g(\mathbf{v}(0)) - y\| \int_0^t \exp(-s\lambda) \, \mathrm{d}s$$

$$\le \frac{\sqrt{\lambda_1}}{\lambda} \|g(\mathbf{v}(0)) - y\|$$

Eigenvalue analysis

- For $\mathbf{u}(t)$, we can evaluate the eigenvalues of $J_0J_0^{\mathsf{T}}$ fairly well
 - Simply use σ_{\min} , σ_{\max}
- For $\mathbf{w}(t)$, we need some additional work
 - See Lemma 8.3. in the textbook