
13. Linearization - 2



This slide
• Utilize classical optimization tools, but for neural nets 

• Idea. Consider the linearized model, i.e., NTK regime 
• Happens near initialization 
• Happens for overparameterized model 

• Today. Happens for scaled-up initial models     

• Mainly follow the proof of Chizat and Bach (2019) 
• “On Lazy Training in Differentiable Programming” NeurIPS 2019

f ↦ α ⋅ f



Recall
• Neural nets near initialization are almost linear: 

 

• For smooth activations, we had: 

 

• For ReLU nets, we had: 

 

• The linearized models are universal approximators

f0(x; w) = f(x; w0) + ⟨∂w f(x; w0), w − w0⟩

f(x; w) − f0(x; w) ≤ C ⋅ ∥w − w0∥2
F /m1/2

f(x; w) − f0(x; w) ≤ C ⋅ ∥w − w0∥4/3
F /m1/3



Setup
• Question. When we run GD, do we stay close to the initialization? 

• Notation. We bake the training set into the predictor 

 

• Problem. The squared loss regression, with a scale factor  

 

f(w) = [ f(x1; w), f(x2; w), ⋯, f(xn; w)]⊤ ∈ ℝn

α

R̂(α ⋅ f(w)) :=
1
2

∥y − α ⋅ f(w)∥2

R̂0 = R̂(α ⋅ f(w(0)))



Setup
• Optimizer. We consider the gradient flow  

 

                

• Here,  denotes the Jacobian 

w(t)
·w(t) := − ∇wR̂(α ⋅ f(w(t)))

= − αJ⊤
t ∇R̂(α ⋅ f(w(t)))

Jt

Jt =
∇f(x1; w(t))⊤

⋯
∇f(xn; w(t))⊤

∈ ℝn×p



Setup
• We denote the linear approximation of  by  

 

• The trajectory of  is given by 

 

                 

• Goal. Show that, for nice , we have 

• Both  and  stays close to   

• i.e., safe to use guarantees for the linearization 

• Both  and  achieves small risks

w(t) u(t)
f0(u) := f(w(0)) + J0(u − w(0))

u(t)
·u(t) = − ∇uR̂(α ⋅ f0(u(t)))

= − α ⋅ J⊤
0 ∇R̂(α ⋅ f0(u(t)))

α
w(t) u(t) w(0) = u(0)

f(w(t)) f0(u(t))



Assumptions
• We impose some assumptions on the Jacobian  

•  

• exact solution exists for the  

•  

•  

•

Jt

rank(J0) = n
f0

σmin := σmin(J0) = λmin(J0J⊤
0 ) > 0

σmax > 0
∥Jw − Jv∥ ≤ β∥w − v∥



Main result
Theorem 8.1. 
Assume that we have 

 

Then, we have: 

•  

•  

Also, we have 

•  

•  

• Exponential convergence of risk & parameter stays within a constant range

α ≥ β 1152 ⋅ σ2
maxR̂0/σ3

min

R̂(α ⋅ f(w(t))) ≤ R̂0 ⋅ exp (−tα2σ2
min/2)

R̂(α ⋅ f0(u(t))) ≤ R̂0 ⋅ exp (−tα2σ2
min/2)

∥w(t) − w(0)∥ ≤ 72 ⋅ σ2
max ⋅ R̂0/α ⋅ σ2

min

∥u(t) − u(0)∥ ≤ 72 ⋅ σ2
max ⋅ R̂0/α ⋅ σ2

min



Main result
• The theorem depends on a lot of quantities 

• Smoothness constant  

• Singular values  

• Initial risk  

• Before proving, let’s get used to these quantities

β
σmin, σmax

R̂0



Case study: Shallow neural net
• Consider a shallow neural net 

 

• Here,  are non-trainable binary weights, i.e.,  

• Jacobian. Can be written as: 

f(x; w) = ∑
j

sjσ(w⊤
j x)

sj sj ∈ {−1, + 1}

Jw =
s1σ′￼(w⊤

1 x1)x⊤
1 , ⋯ smσ′￼(w⊤

mx1)x⊤
1

⋯
s1σ′￼(w⊤

1 xn)x⊤
n , ⋯ smσ′￼(w⊤

mxn)x⊤
n



Case study: Shallow neural net
• Smoothness. If the activation function is -smooth, then we have 

 

  

  

 

β0

∥Jw − Jv∥2 =
n

∑
i=1

m

∑
j=1

s2
j ∥xi∥2(σ′￼(w⊤

j xi) − σ′￼(v⊤
j xi))2

=
n

∑
i=1

∥xi∥2(
m

∑
j=1

(σ′￼(w⊤
j xi) − σ′￼(v⊤

j xi))2)
≤ β2

0

n

∑
i=1

∥xi∥2(
m

∑
j=1

∥wj − vj∥2∥xi∥2)
≤ β2

0 ⋅ (
n

∑
i=1

∥xi∥4) ⋅ ∥w − v∥2



Case study: Shallow neural net
• Singular values. Consider the entries of the matrix 

 

• At initialization, we may assume that each vector of  is an i.i.d. copy of some random  

• Then, we have 

 

                             

• Thus, it is natural to expect that 

(J0J⊤
0 )i,j = ∇f(xi; w(0))⊤ ∇f(xj; w(0))

w(0) v

𝔼(J0J⊤
0 )i,j = 𝔼 [∑

k

s2
k ⋅ σ′￼(wk(0)⊤xi) ⋅ σ′￼(wk(0)⊤xj) ⋅ x⊤

i xj]
= m ⋅ 𝔼 [σ′￼(v⊤xi) ⋅ σ′￼(v⊤xj) ⋅ x⊤

i xj]

σmax, σmin ∝ m



Case study: Shallow neural net
• Initial risk. Suppose that we draw 

 

• Then, we have 

                                 

                                        

                                        

• Combining all these, we see that the assumption  actually means that 
the model is sufficiently wide, comparing with the number of data.

si ∼ Unif({+1, − 1}), wi ∼ P

𝔼R̂0 = 𝔼[
n

∑
i=1

1
2 (yi − α ⋅ f(xi; w(0)))2]

=
1
2

n

∑
i=1

∥yi∥2 +
α2

2

n

∑
i=1

𝔼∥f(xi; w(0))∥2

= Θ(α2mn)

α ≥ β 1152 ⋅ σ2
maxR̂0/σ3

min



Proof plan
• Choose some radius  

• Consider a ball 

 

• Choose 

 

• For any : 

• If  is positive-definite, risk decreases rapidly                     (Lemma 8.1.) 

• Rapid risk decrease —> Cannot travel far                                  (Lemma 8.2.) 

• These holds for , as  is positive-definite 

• For , additional work is needed                                   (Lemma 8.3.; not discussed today)

B

ℬ = {v | ∥v − w(0)∥ ≤ B}

T := inf{t ≥ 0 : ∥w(t) − w(0)∥ > B}

t ∈ [0,T]
JtJ⊤

t

u(t) J0J⊤
0

w(t)



Evolution of predictions
• Let us look at how predictions evolve 

• Original. Difficult to track  

 

                                       

• Linearized. Easier to track — becomes convex quadratic 

 

                                                   

                                                  

• For original to converge, we may need a uniform control over 

Jt
d
dt

αf(w(t)) = αJt
·w(t) = − α2JtJ⊤

t ∇R̂(αf(w(t)))

= − α2JtJ⊤
t (αf(w(t))−y)

d
dt

αf0(u(t)) = αJ0
·u(t)

= − α2J0J⊤
0 ∇R̂(αf0(u(t)))

= − α2J0J⊤
0 (αf0(u(t))−y)

JtJ⊤
t



Rapid decay of risk
Lemma 8.1.  

Suppose that we have some GF trajectory  with 

. 
Define the minimum eigenvalue 

 

Then, for any , we have 

 

• Interpretation. Uniform lower bound means exponential convergence

z(t)
·z(t) = − Q(t)∇R̂(z(t))

λ := inf
t∈[0,τ]

λmin(Q(t)) > 0

t ∈ [0,τ]
R̂(z(t)) ≤ R̂(z(0)) ⋅ exp(−2λt)



Rapid decay of risk
Lemma 8.1.  

Suppose that we have some GF trajectory  with 

. 
Define the minimum eigenvalue 

 

Then, for any , we have 

 

• Interpretation. Uniform lower bound means exponential convergence

z(t)
·z(t) = − Q(t)∇R̂(z(t))

λ := inf
t∈[0,τ]

λmin(Q(t)) > 0

t ∈ [0,τ]
R̂(z(t)) ≤ R̂(z(0)) ⋅ exp(−2λt)



Proof sketch
• Proceed as: 

 

                             

                         

• Then, apply the Grönwall’s inequality

d
dt

1
2

∥z(t) − y∥2 = ⟨−Q(t)(z(t) − y), z(t) − y⟩

≤ − λmin(Q(t)) ⋅ ∥z(t) − y∥2

≤ − 2λ ⋅ ( 1
2

∥z(t) − y∥2)



Trajectory stays within the ball
Lemma 8.2.  
Suppose that 

. 
where we know that 

 

Then, for any , we have 

 

• Interpretation. If eigenvalues admit uniform upper and lower bounds, 
                                 the trajectory stays within some ball

·v(t) = − S(t)⊤ ∇R̂(g(v(t)))

λi(StS⊤
t ) ∈ [λ, λ1] ∀t ∈ [0,τ]

t ∈ [0,τ]

∥v(t) − v(0)∥ ≤
λ1

λ
∥g(v(0)) − y∥ ≤

2λ1R̂(g(v(0))

λ



Proof sketch
• Proceed as: 

 

                          

                         

                         

                        

∥v(t) − v(0)∥ = ∫
t

0

·v(s) ds ≤ ∫
t

0
∥ ·v(s)∥ ds

= ∫
t

0
∥S⊤

t ∇R̂(g(v(s)))∥ ds

≤ λ1 ∫
t

0
∥g(v(s)) − y∥ ds

≤ λ1∥g(v(0)) − y∥ ∫
t

0
exp(−sλ) ds

≤
λ1

λ
∥g(v(0)) − y∥



Eigenvalue analysis
• For , we can evaluate the eigenvalues of  fairly well 

• Simply use  

• For , we need some additional work 

• See Lemma 8.3. in the textbook

u(t) J0J⊤
0

σmin, σmax

w(t)


