13. Linearization - 2




This slide

o Utilize classical optimization tools, but for neural nets
e Idea. Consider the linearized model, i.e., NTK regime

e Happens near initialization

 Happens for overparameterized model

e Today. Happens for scaled-up initial models f+— a - f

o Mainly follow the proot of Chizat and Bach (2019)
e “On Lazy Training in Differentiable Programming” NeurIPS 2019



Recall

e Neural nets near initialization are almost linear:

Jo(X; W) = f(X; W) + (0, f(X; Wp), W — W)

e For smooth activations, we had:
fx;w) — fo(x;w) < C - ||lw — wllz/m"”
e For ReLU nets, we had:

£ W) = fi(%; W) < C - [lw = woll 2 /m 3

e The linearized models are universal approximators



Setup

e Question. When we run GD, do we stay close to the initialization?

e Notation. We bake the training set into the predictor

fW) = [f(X; W), f(Xy; W), -, f(X s W)]' € R”

e Problem. The squared loss regression, with a scale factor o
A 1
R(a - f(w)) = EHY —a - f(w)]|”
Ry = R(a - f(w(0)))



Setup

e Optimizer. We consider the gradient flow w(?)
w(1) = — V,R(a - fiw(1)))
= —aJ] VR(a - f(w())

e Here, J, denotes the Jacobian

Vf(X1§ W(t))T
J, = e R
Vf(x,; w(t)'



Setup

e We denote the linear approximation of w(#) by u(r)

Jo(w) := f(w(0)) + Jo(u — w(0))

e The trajectory of u(?) is given by
u(t) = — VyR(a - fy(u(n)))
= —a-J, VR(a - fyu(®))

e Goal. Show that, for nice a, we have
e Both w(7) and u(?) stays close to w(0) = u(0)
e l.e., safe to use guarantees for the linearization

e Both f(w(7)) and f,(u(7)) achieves small risks



Assumptions

 We impose some assumptions on the Jacobian J,
e rank(Jy) =n

e exact solution exists for the f,
e Omin -= Gmin(] O) — \//Imin(‘] ()J (;I' ) > 0

° Gmax > ()

o 11, =Ll < pllw =l




Main result

Theorem 8.1.

Assume that we have

a2 /1152 Gy [ 3,
Then, we have:
. ﬁ(a -f(w(t))) < IAQO : €XP (—tazaz. /2)

min

e R(a-fy(u®)) <Ry -exp (—ta’c?, /2)

min

Also, we have
WO = WO £/ 72 G Ry [+ 02,

o) Ol <1/ 72 G Ry [ 02,

o Exponential convergence of risk & parameter stays within a constant range



Main result

e The theorem depends on a lot of quantities
¢ Smoothness constant /

O.

e Singularvalueso ;.0 ..

1n?

o Initial risk R,

o Before proving, let’s get used to these quantities



Case study: Shallow neural net

e Consider a shallow neural net

flx;w) = ) s0(wx)
J

o Here, s; are non-trainable binary weights, i.e., s; € {—1, + 1}

e Jacobian. Can be written as:

5;06'(WiX)X{, - 5 0(W X)X{

s, 0(W_ X )X

mn n



Case study: Shallow neural net

e« Smoothness. If the activation function is f,-smooth, then we have

I, = LI =) ) slIxlIA(0'(w/x) — o'(v]x,)

i=1 j=1

= 3 il X e wTx) — o vTx)
i=1 i=1

m
2 2 2 2
<3 D IxP( D 11wy = vl



Case study: Shallow neural net

o Singular values. Consider the entries of the matrix
(Jodo )i = Vfx; w(0)" V(x;; w(0))

e At initialization, we may assume that each vector of w(0) is an i.1.d. copy of some random v

e Then, we have

EUodg)i; =E | ) st o wi(0)x) - 6 (wi(0)'x)) - x[x;
k

_ - T T Te

e Thus, it i1s natural to expect that

O.

max? O,

min X Vm



Case study: Shallow neural net

o Initial risk. Suppose that we draw

l

e Then, we have
_ N

A 1 '
Ry =E| ), = (vi—a-fix; wo))?

n

=1

1 ,  a’ 2

_ 52 1| +72 | 1f(x;; wO))
=1 =1

= O(a’mn)

max

o Combining all these, we see that the assumption a > ﬁ\/ 1152 - 62 IQO / aﬁlin actually means that
the model is sufficiently wide, comparing with the number of data.



Proof plan

e Choose some radius B
o Consider a ball
B ={v | |lv-wO) < B}
e Choose
T':=mi{r>0 : [|w(@) —w(O)|| > B}

e Foranyt € [0,T]:
o If JJ' is positive-definite, risk decreases rapidly (Lemma 8.1.)

e Rapid risk decrease —> Cannot travel far (Lemma 8.2.)

o These holds for u(z), as JOJOT is positive-definite

e For w(?), additional work is needed (Lemma 8.3.; not discussed today)



Evolution of predictions

Let us look at how predictions evolve

Original. Difficult to track J,
d A
E(xf(w(t)) = aJw(t) = — a°J.J, VR(af(w(?)))

= — &’ (af(w(1) =)
Linearized. Easier to track — becomes convex quadratic

d

Eajb(u(t)) = aJyu(?)
= — a’JyJ} VR(afy(u(t)))
= — a*JyJ, (afy(u(1)—y)

For original to converge, we may need a uniform control over J.J,'



Rapid decay of risk

Lemma 8.1.
Suppose that we have some GF trajectory z(¢) with
2() = — Q1) VR(2(1)),

Define the minimum eigenvalue

A:= inf A, (0®)) >0

te(0,7]

Then, for any ¢t € [0,7], we have
R(z(1)) < R(2(0)) - exp(—211)

e Interpretation. Uniform lower bound means exponential convergence



Rapid decay of risk

Lemma 8.1.
Suppose that we have some GF trajectory z(¢) with
7(f) = — Q1) VR(2(1)),

Define the minimum eigenvalue

A:= inf A (0®) >0

te[0,7]

Then, for any ¢t € [0,7], we have
R(z(1)) < R(z(0)) - exp(—241)

e Interpretation. Uniform lower bound means exponential convergence



Proof sketch

e Proceed as:
d 1 ,
=75 120 =yl = (= Q0O(@(®) = ). 2(1) = y)
< = Anin(Q®) - llz() — ylI?

I 2
<-24- EHZ(f) -l
e Then, apply the Gronwall’s inequality



Trajectory stays within the ball

Lemma 8.2.

Suppose that

v(t) = — S(t)" VR(g(v(1))).
where we know that

4(SS') €441 Vie[0a]

Then, for any ¢t € [0,7], we have

A

22,R(g(v(0))
V(1) — v(0)|| < \/; 1g(v(0)) — || < \/

A

e Interpretation. If eigenvalues admit uniform upper and lower bounds,
the trajectory stays within some ball



Proof sketch

e Proceed as:

V(D) = v(O)]] = J ¥(s) ds
0

< J 1)l ds
0

J IS," VR(g(v(s)))]| ds

<7 j 1(v(s)) — Il ds

[

< /7 1g(v(0)) =y J exp(—s) ds

Vi
=)

[g(v(0)) =yl

0



Eigenvalue analysis

o For u(7), we can evaluate the eigenvalues of JOJOT fairly well

O.

e Simply use 6,:., G0«

1n°
e For w(7), we need some additional work

e See Lemma 8.3. in the textbook



