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This slide
• A brief excursion to the behaviors of neural nets near its random initialization 

• Motivation. Overparametrized nets stay near its initialization after training 
• Little movement = better generalization guarantee



This slide
• We want to show that: 

• if a neural net is 
• overparameterized 
• near its initialization 

then it is can be approximated by its linearization at initialization     (thus generalize well?) 

• See MJT for 
• Full extension to NTK 
• Universal approximation with NTK



Setup
• We consider a bias-free two-layer net 

 

•  

•  

•  

•  

• We study this, under the regime where  

• Assumption. The 2nd layer weights are frozen; we only update 

f(x; W) =
m

∑
i=1

ai ⋅ σ(w⊤
i x)

x ∈ ℝd

wi ∈ ℝd

ai ∈ ℝ

W⊤ = [w1 |w2 |⋯ |wm] ∈ ℝd×m

m → ∞
wi



Initialization
• 2nd layer. Random binary initialization 

 

• 1st layer. Random Gaussian initialization 

 

• Note. Should be scaled by the factors  and  

• But we skip for now, for simple notations

ai ∼ Unif({−1, + 1})

wi ∼ 𝒩(0,Id)

1/ m 1/ d



Taylor approximation
• We are interested in the following approximation 

 

• This is a classic 1st order Taylor approximation 

• The differential  is called the Clarke subdifferential 

• Roughly, the set of all gradient candidates for non-differentiable functions 
• By default, we select the minimum-norm gradient

f0(x; W) := f(x; W0) + ⟨∂W f(x; W0), W − W0⟩

∂W



Taylor approximation
• More tediously, we can write the approximation as: 

 

                            

• This is an affine approximation of  

• Affine with respect to  

• Nonlinear with respect to 

f0(x; W) =
m

∑
i=1

aiσ(w⊤
0,ix) + ∑

i=1

aiσ′￼(w⊤
0,ix)x⊤(wi − w0,i)

=
m

∑
i=1

ai ⋅ (σ(w⊤
0,ix) − σ′￼(w⊤

0,ix)w⊤
0,ix + σ′￼(w⊤

0,ix)w⊤
i x)

f(x; W)
W

x



Nets near init are 
almost linear



Claim
• Roughly. Whenever , then we have 

 

• Smooth activation: easy 
• ReLU: difficult

W ≈ W0

f( ⋅ ; W) ≈ f0( ⋅ ; W)



Claim
• Slightly more concretely, we want results like: 

Claim (informal) 
With a high probability, we have 

 

• Tricky part is that  may have some dependencies on  

• If it is a Frobenius norm…

f(x; W) − f0(x; W) ≤
C ⋅ ∥W − W0∥(pow.)

m(pow.)

∥W − W0∥ m



Nets near initialization
Proposition 4.1. 

Suppose that , and let  be a -smooth function.      (i.e., gradient is -Lipschitz) 

Then, for any parameters , we have 

 

• If we revive the 2nd layer’s scaling factors , we get the desired property.

∥x∥2 ≤ 1 σ : ℝ → ℝ β β
W, W0

f(x; W) − f0(x; W) ≤
β
2

∥W − W0∥2
F

1/ m



Proof idea
 

• Proceed in two steps: 

• Step 1. Show that, for -smooth function, we have: 

 

• Any volunteer? 🙋

f(x; W) − f0(x; W) ≤
β
2

∥W − W0∥2
F

β

|σ(x) − σ(x0) − σ′￼(x0)(x − x0) | ≤
β(x − x0)2

2



Proof idea
 

• Proceed in two steps: 

• Step 1. Show that, for -smooth function, we have: 

 

• Any volunteer? 🙋 

• Taylor’s theorem. 

f(x; W) − f0(x; W) ≤
β
2

∥W − W0∥2
F

β

|σ(x) − σ(x0) − σ′￼(x0)(x − x0) | ≤
β(x − x0)2

2

f(x) = f(a) + f′￼(a)(x − a) + ∫
x

a
f′￼′￼(t)

(x − t)2

2
dt



Proof idea
 

 

• Step 2. Use the step 1 result, to examine the LHS 
• Recall that we had: 

 

• Also recall that we had: 

f(x; W) − f0(x; W) ≤
β
2

∥W − W0∥2
F

|σ(x) − σ(x0) − σ′￼(x0)(x − x0) | ≤
β(x − x0)2

2

f0(x; W) =
m

∑
i=1

ai ⋅ (σ(w⊤
0,ix) − σ′￼(w⊤

0,ix)w⊤
0,ix + σ′￼(w⊤

0,ix)w⊤
i x)

∥x∥2 ≤ 1



Extension to ReLU
• For ReLU, things are not that easy… 

• Tool. Thankfully, we know that, for ReLU: 

 

• Thus, we also have: 

 

                      

σ(x) = x ⋅ σ′￼(x)

f0(x; W) =
m

∑
i=1

ai ⋅ (σ(w⊤
0,ix) − σ′￼(w⊤

0,ix)w⊤
0,ix + σ′￼(w⊤

0,ix)w⊤
i x)

=
m

∑
i=1

ai ⋅ σ′￼(w⊤
0,ix)w⊤

i x



Extension to ReLU
• Thus, we also have: 

 

             

                    (⭐) 

• Question. How do we bound this ⭐?

f(x; W) − f0(x; W) =
m

∑
i=1

ai ⋅ (σ(w⊤
i x) − σ′￼(w⊤

0,ix)w⊤
i x)

=
m

∑
i=1

ai ⋅ w⊤
i x(σ′￼(w⊤

i x) − σ′￼(w⊤
0,ix))

=
m

∑
i=1

ai ⋅ w⊤
i x(1{w⊤

i x ≥ 0} − 1{w⊤
0,ix ≥ 0}) ⋯



Extension to ReLU
        (⭐) 

• Naïve. Maybe use something like Cauchy-Schwarz 
• Will get something like 

 

• Non-diminishing as , even after multiplying  

• Intuition. Exploit the randomness of the matrix 

m

∑
i=1

ai ⋅ w⊤
i x(1{w⊤

i x ≥ 0} − 1{w⊤
0,ix ≥ 0}) ⋯

≤ m∥W∥F

m → ∞ 1/ m

W0



Concentration inequality
• The key intuition is formalized in the following lemma. 
Lemma 4.2. 

Let . Then, for any  and  with , we have: 

 

• Any useful intuitions?

ui ∼ 𝒩(0,Id) τ > 0 x ∈ ℝd ∥x∥ > 0
m

∑
i=1

1{ |u⊤
i x | ≤ τ∥x∥} ≤ mτ + m log(1/δ), with probability at least 1 − δ



Proof sketch
 

• Define . 

• Then, proceed in three steps: 
• Step 1. By rotational invariance, we have 

m

∑
i=1

1{ |u⊤
i x | ≤ τ∥x∥} ≤ mτ + m log(1/δ), with probability at least 1 − δ

Pi = 1{ |u⊤
i x | ≤ τ∥x∥}

Pi = 1{ |ui,1 | ≤ τ}



Proof sketch
 

• Define . 

• Then, proceed in three steps: 
• Step 1. By rotational invariance, we have 

 

• Step 2. Inspecting the Gaussian density, we have: 

m

∑
i=1

1{ |u⊤
i x | ≤ τ∥x∥} ≤ mτ + m log(1/δ), with probability at least 1 − δ

Pi = 1{ |u⊤
i x | ≤ τ∥x∥}

Pi = 1{ |ui,1 | ≤ τ}

Pr[Pi = 1] = ∫
+τ

−τ

exp(−z2/2)

2π
dz ≤

2τ

2π
≤ τ



Proof sketch
 

• Define . 

• Then, proceed in three steps: 
• Step 1. By rotational invariance, we have 

 

• Step 2. Inspecting the Gaussian density, we have: 

 

• Step 3. Apply Hoeffding’s inequality to get the claim

m

∑
i=1

1{ |u⊤
i x | ≤ τ∥x∥} ≤ mτ + m log(1/δ), with probability at least 1 − δ

Pi = 1{ |u⊤
i x | ≤ τ∥x∥}

Pi = 1{ |ui,1 | ≤ τ}

Pr[Pi = 1] = ∫
+τ

−τ

exp(−z2/2)

2π
dz ≤

2τ

2π
≤ τ



The result
• Given the previous lemma, we are ready to prove today’s main result 
Lemma 4.1. 

For any radius , any fixed  with , for any  with , we 
have: 

 

• Rough intuitions: Combine two claims 

• With high probability,  won’t be small 

• Reason: Gaussian initialization  concentrates around its “shell 

•  If  is small, then  will be small for many  

• Putting these together, we know that  and  have same signs quite often!

B ≥ 0 x ∈ ℝd ∥x∥ ≤ 1 W ∈ ℝm×d ∥W − W0∥F ≤ B

f(x; W) − f0(x; W) ≤ m
1
3 ( 2B

4
3 + B (log(1/δ))1/4), with probability at least 1 − δ

∥w⊤
0,ix∥

W0

∥W − W0∥F ∥w − w0,i∥ i

w⊤
i x w⊤

0,ix



Proof sketch
• Concretely, for each index , define the subset of indices: 

 

 

• Claim. These are the only bad cases — i.e.,  and  have different signs

i ∈ [m]

S1 = {i ∈ [m] |w⊤
0,ix | ≤ τ∥x∥}

S2 = {i ∈ [m] ∥wi − w0,i∥ ≥ τ}
w⊤

i x w⊤
0,ix



Proof sketch
• Concretely, for each index , define the subset of indices: 

 

 

• Claim. These are the only bad cases — i.e.,  and  have different signs 

• Suppose that we have . 

• Suppose that we have . 

• As , we know that  is either  or  

• However, we cannot have , as 

 

• Thus, in this case, we have , meaning that they have a same sign

i ∈ [m]

S1 = {i ∈ [m] |w⊤
0,ix | ≤ τ∥x∥}

S2 = {i ∈ [m] ∥wi − w0,i∥ ≥ τ}
w⊤

i x w⊤
0,ix

i ∉ S1 ∪ S2

w⊤
i x > 0

i ∉ S1 w⊤
0,ix > τ∥x∥ < − τ∥x∥

< − τ∥x∥
w⊤

0,ix = w⊤
i x − (w⊤

i − w⊤
0,i)x > 0 − τ∥x∥

w⊤
0,ix > τ∥x∥



Proof sketch
            

• Now, let’s control the size of  

• By the union bound, we have 

 

• : By Lemma 4.2, we know that 

 

• : Notice that 

 

• Thus, we have 

S1 = {i ∈ [m] |w⊤
0,ix | ≤ τ∥x∥} S2 = {i ∈ [m] ∥wi − w0,i∥ ≥ τ}

S1 ∪ S2

|S | := |S1 ∪ S2 | ≤ |S1 | + |S2 |

|S1 |

|S1 | ≤ mτ + m log(1/δ), w.p. at least 1 − δ

|S2 |

B2 ≥ ∥W − W0∥2
F ≥ ∑ 1{i ∈ S2} ⋅ ∥wi − w0,i∥2 ≥ |S2 | ⋅ τ2

|S2 | ≤ B2/τ2



Proof sketch
• Combine these two bounds and optimize the sum w.r.t. , to get: 

      w.p.  

• Plus this into ⭐ and finish the proof

τ

|S | ≤ 2m2/3B2/3 + m log(1/δ) ≤ m2/3 (2B2/3 + log(1/δ)) 1 − δ



Wrapping up
• Takeaway. Wide width = More linearizable 

• If we take an infinite-width limit, perhaps NNs behave just like ?f0



Neural Tangent Kernels



From nets to kernels
• Suppose that we begin optimizing from some , and get  

• We have access to the dataset  

Claim. After performing a single GD step , we have: 

 

• Why?

W0 W
(x1, y1)…, (xn, yn)

W0 → W
W − W0 ∈ span({∂f(x1; W0), …, ∂f(xn; W0)})



Proof idea
• The total gradient is: 

 

                                            

∂ (
n

∑
i=1

ℓ(yi, f(xi; W0))) =
n

∑
i=1

ℓ′￼(yi, f(xi; W0)) ⋅ ∂f(xi; W0)

=
n

∑
i=1

vi ⋅ ∂f(xi; W0)



From nets to kernels
• Thus, a one-step updated  can be rewritten as 

 

• The linear approximation is then: 

 

                      

                           

• Looks very much like a kernel

W
W = W0 + ∂f(X; W0)⊤v

f0(x; W) = f(x; W0) + ⟨∂f(x; W0), W − W0⟩
= f(x; W0) + ⟨∂f(x; W0), ∂f(X; W0)⊤v⟩

= f(x; W0) +
n

∑
i=1

vi⟨∂f(x; W0), ∂f(xi; W0)⟩



Recap: Kernels
• We map data  to some high- or infinite-dimensional feature space 

• We use , for some Hilbert space  

• Hope. In this space, the data may be linearly separable 
• Example. 

•  

•  

•  

•

x1, …, xn

Φ : 𝒳 → ℋ ℋ

x ↦ (1,x, x2, x3, …)
x ↦ (cos(2πω0x), cos(2πω1x), …, )
x ↦ (σ(w⊤

1 x), σ(w⊤
2 x), …)

x ↦ CLIP features(x)



Recap: Kernels
• Kernel-based predictors take the form of 

 

• Recall: Support Vector Machines 

• Kernels are defined as some function 

 

• So that the predictor becomes: 

f(x) =
n

∑
i=1

αi ⋅ ⟨Φ(x), Φ(xi)⟩

k(x, x′￼) := ⟨Φ(x), Φ(x′￼)⟩

f(x) =
n

∑
i=1

αi ⋅ k(x, xi)



Neural Tangent Kernels
• Now, recall that we had: 

 

Definition (Neural Tangent Kernel). The neural tangent kernel is defined as 

 

• Using this definition, we can rewrite as: 

f0(x; W) = f(x; W0) +
n

∑
i=1

vi⟨∂f(x; W0), ∂f(xi; W0)⟩

K(x, x′￼) = ∂f(x; W0)⊤∂f(x′￼; W0)

f0(x; W) = f(x; W0) +
n

∑
i=1

viK(x, xi)



Neural Tangent Kernels
• For two-layer neural nets, we have: 

 

• Thus, the NTK is: 

 

• If the activation function is ReLU, this is: 

∂f(x; W0) = [⋯, aiσ′￼(w⊤
i,0x)x, ⋯]

K(x, x′￼) =
m

∑
i=1

x⊤x′￼σ′￼(w⊤
i,0x)σ′￼(w⊤

i,0x′￼)

K(x, x′￼) =
m

∑
i=1

x⊤x′￼⋅ 1[w⊤
i,0x ≥ 0] ⋅ 1[w⊤

i,0x′￼ ≥ 0]



NTK: Infinite-width limit
• Now, let us take an infinite-width limit, i.e., 

 

(we have revived the term , which has been dropped originally) 

• Then, as the weights are Gaussian-distributed, we have the almost sure convergence: 

K∞(x, x′￼) = lim
m→∞

1
m

m

∑
i=1

x⊤x′￼σ′￼(w⊤
i,0x)σ′￼(w⊤

i,0x′￼)

1/ m

K∞(x, x′￼) = ∫ x⊤x′￼σ′￼(v⊤x)σ′￼(v⊤x′￼) d𝒩(v)



Infinite-width NTK for ReLU
• As an exercise, let’s examine the infinite-width limit for ReLU nets. 

• That is, we are interested in the case 

 

Proposition. For any  with unit norms, we have 

 

• Idea. 
• Use rotational invariance of Gaussians 
• Think geometrically…

K∞(x, x′￼) = ∫ x⊤x′￼1[v⊤x ≥ 0] ⋅ 1[v⊤x′￼ ≥ 0] d𝒩(v)

x, x′￼

K∞(x, x′￼) = x⊤x′￼⋅
π − arccos(x⊤x′￼)

2π



Infinite-width NTK for ReLU
• Once we characterize the NTK, we can invoke universal approximation conditions of kernels 

• See Steinwart and Christmann, “Support Vector Machines,” 2008


