
12. Linearization - 1

This slide
• A brief excursion to the behaviors of neural nets near its random initialization

• Motivation. Overparametrized nets stay near its initialization after training
• Little movement = better generalization guarantee

This slide
• We want to show that:

• if a neural net is
• overparameterized
• near its initialization

then it is can be approximated by its linearization at initialization (thus generalize well?)

• See MJT for
• Full extension to NTK
• Universal approximation with NTK

Setup
• We consider a bias-free two-layer net

•

•

•

•

• We study this, under the regime where

• Assumption. The 2nd layer weights are frozen; we only update

f(x; W) =
m

∑
i=1

ai ⋅ σ(w⊤
i x)

x ∈ ℝd

wi ∈ ℝd

ai ∈ ℝ

W⊤ = [w1 |w2 |⋯ |wm] ∈ ℝd×m

m → ∞
wi

Initialization
• 2nd layer. Random binary initialization

• 1st layer. Random Gaussian initialization

• Note. Should be scaled by the factors and

• But we skip for now, for simple notations

ai ∼ Unif({−1, + 1})

wi ∼ 𝒩(0,Id)

1/ m 1/ d

Taylor approximation
• We are interested in the following approximation

• This is a classic 1st order Taylor approximation

• The differential is called the Clarke subdifferential

• Roughly, the set of all gradient candidates for non-differentiable functions
• By default, we select the minimum-norm gradient

f0(x; W) := f(x; W0) + ⟨∂W f(x; W0), W − W0⟩

∂W

Taylor approximation
• More tediously, we can write the approximation as:

• This is an affine approximation of

• Affine with respect to

• Nonlinear with respect to

f0(x; W) =
m

∑
i=1

aiσ(w⊤
0,ix) + ∑

i=1

aiσ′￼(w⊤
0,ix)x⊤(wi − w0,i)

=
m

∑
i=1

ai ⋅ (σ(w⊤
0,ix) − σ′￼(w⊤

0,ix)w⊤
0,ix + σ′￼(w⊤

0,ix)w⊤
i x)

f(x; W)
W

x

Nets near init are
almost linear

Claim
• Roughly. Whenever , then we have

• Smooth activation: easy
• ReLU: difficult

W ≈ W0

f(⋅ ; W) ≈ f0(⋅ ; W)

Claim
• Slightly more concretely, we want results like:

Claim (informal)
With a high probability, we have

• Tricky part is that may have some dependencies on

• If it is a Frobenius norm…

f(x; W) − f0(x; W) ≤
C ⋅ ∥W − W0∥(pow.)

m(pow.)

∥W − W0∥ m

Nets near initialization
Proposition 4.1.

Suppose that , and let be a -smooth function. (i.e., gradient is -Lipschitz)

Then, for any parameters , we have

• If we revive the 2nd layer’s scaling factors , we get the desired property.

∥x∥2 ≤ 1 σ : ℝ → ℝ β β
W, W0

f(x; W) − f0(x; W) ≤
β
2

∥W − W0∥2
F

1/ m

Proof idea

• Proceed in two steps:

• Step 1. Show that, for -smooth function, we have:

• Any volunteer? 🙋

f(x; W) − f0(x; W) ≤
β
2

∥W − W0∥2
F

β

|σ(x) − σ(x0) − σ′￼(x0)(x − x0) | ≤
β(x − x0)2

2

Proof idea

• Proceed in two steps:

• Step 1. Show that, for -smooth function, we have:

• Any volunteer? 🙋

• Taylor’s theorem.

f(x; W) − f0(x; W) ≤
β
2

∥W − W0∥2
F

β

|σ(x) − σ(x0) − σ′￼(x0)(x − x0) | ≤
β(x − x0)2

2

f(x) = f(a) + f′￼(a)(x − a) + ∫
x

a
f′￼′￼(t)

(x − t)2

2
dt

Proof idea

• Step 2. Use the step 1 result, to examine the LHS
• Recall that we had:

• Also recall that we had:

f(x; W) − f0(x; W) ≤
β
2

∥W − W0∥2
F

|σ(x) − σ(x0) − σ′￼(x0)(x − x0) | ≤
β(x − x0)2

2

f0(x; W) =
m

∑
i=1

ai ⋅ (σ(w⊤
0,ix) − σ′￼(w⊤

0,ix)w⊤
0,ix + σ′￼(w⊤

0,ix)w⊤
i x)

∥x∥2 ≤ 1

Extension to ReLU
• For ReLU, things are not that easy…

• Tool. Thankfully, we know that, for ReLU:

• Thus, we also have:

σ(x) = x ⋅ σ′￼(x)

f0(x; W) =
m

∑
i=1

ai ⋅ (σ(w⊤
0,ix) − σ′￼(w⊤

0,ix)w⊤
0,ix + σ′￼(w⊤

0,ix)w⊤
i x)

=
m

∑
i=1

ai ⋅ σ′￼(w⊤
0,ix)w⊤

i x

Extension to ReLU
• Thus, we also have:

 (⭐)

• Question. How do we bound this ⭐?

f(x; W) − f0(x; W) =
m

∑
i=1

ai ⋅ (σ(w⊤
i x) − σ′￼(w⊤

0,ix)w⊤
i x)

=
m

∑
i=1

ai ⋅ w⊤
i x(σ′￼(w⊤

i x) − σ′￼(w⊤
0,ix))

=
m

∑
i=1

ai ⋅ w⊤
i x(1{w⊤

i x ≥ 0} − 1{w⊤
0,ix ≥ 0}) ⋯

Extension to ReLU
 (⭐)

• Naïve. Maybe use something like Cauchy-Schwarz
• Will get something like

• Non-diminishing as , even after multiplying

• Intuition. Exploit the randomness of the matrix

m

∑
i=1

ai ⋅ w⊤
i x(1{w⊤

i x ≥ 0} − 1{w⊤
0,ix ≥ 0}) ⋯

≤ m∥W∥F

m → ∞ 1/ m

W0

Concentration inequality
• The key intuition is formalized in the following lemma.
Lemma 4.2.

Let . Then, for any and with , we have:

• Any useful intuitions?

ui ∼ 𝒩(0,Id) τ > 0 x ∈ ℝd ∥x∥ > 0
m

∑
i=1

1{ |u⊤
i x | ≤ τ∥x∥} ≤ mτ + m log(1/δ), with probability at least 1 − δ

Proof sketch

• Define .

• Then, proceed in three steps:
• Step 1. By rotational invariance, we have

m

∑
i=1

1{ |u⊤
i x | ≤ τ∥x∥} ≤ mτ + m log(1/δ), with probability at least 1 − δ

Pi = 1{ |u⊤
i x | ≤ τ∥x∥}

Pi = 1{ |ui,1 | ≤ τ}

Proof sketch

• Define .

• Then, proceed in three steps:
• Step 1. By rotational invariance, we have

• Step 2. Inspecting the Gaussian density, we have:

m

∑
i=1

1{ |u⊤
i x | ≤ τ∥x∥} ≤ mτ + m log(1/δ), with probability at least 1 − δ

Pi = 1{ |u⊤
i x | ≤ τ∥x∥}

Pi = 1{ |ui,1 | ≤ τ}

Pr[Pi = 1] = ∫
+τ

−τ

exp(−z2/2)

2π
dz ≤

2τ

2π
≤ τ

Proof sketch

• Define .

• Then, proceed in three steps:
• Step 1. By rotational invariance, we have

• Step 2. Inspecting the Gaussian density, we have:

• Step 3. Apply Hoeffding’s inequality to get the claim

m

∑
i=1

1{ |u⊤
i x | ≤ τ∥x∥} ≤ mτ + m log(1/δ), with probability at least 1 − δ

Pi = 1{ |u⊤
i x | ≤ τ∥x∥}

Pi = 1{ |ui,1 | ≤ τ}

Pr[Pi = 1] = ∫
+τ

−τ

exp(−z2/2)

2π
dz ≤

2τ

2π
≤ τ

The result
• Given the previous lemma, we are ready to prove today’s main result
Lemma 4.1.

For any radius , any fixed with , for any with , we
have:

• Rough intuitions: Combine two claims

• With high probability, won’t be small

• Reason: Gaussian initialization concentrates around its “shell

• If is small, then will be small for many

• Putting these together, we know that and have same signs quite often!

B ≥ 0 x ∈ ℝd ∥x∥ ≤ 1 W ∈ ℝm×d ∥W − W0∥F ≤ B

f(x; W) − f0(x; W) ≤ m
1
3 (2B

4
3 + B (log(1/δ))1/4), with probability at least 1 − δ

∥w⊤
0,ix∥

W0

∥W − W0∥F ∥w − w0,i∥ i

w⊤
i x w⊤

0,ix

Proof sketch
• Concretely, for each index , define the subset of indices:

• Claim. These are the only bad cases — i.e., and have different signs

i ∈ [m]

S1 = {i ∈ [m] |w⊤
0,ix | ≤ τ∥x∥}

S2 = {i ∈ [m] ∥wi − w0,i∥ ≥ τ}
w⊤

i x w⊤
0,ix

Proof sketch
• Concretely, for each index , define the subset of indices:

• Claim. These are the only bad cases — i.e., and have different signs

• Suppose that we have .

• Suppose that we have .

• As , we know that is either or

• However, we cannot have , as

• Thus, in this case, we have , meaning that they have a same sign

i ∈ [m]

S1 = {i ∈ [m] |w⊤
0,ix | ≤ τ∥x∥}

S2 = {i ∈ [m] ∥wi − w0,i∥ ≥ τ}
w⊤

i x w⊤
0,ix

i ∉ S1 ∪ S2

w⊤
i x > 0

i ∉ S1 w⊤
0,ix > τ∥x∥ < − τ∥x∥

< − τ∥x∥
w⊤

0,ix = w⊤
i x − (w⊤

i − w⊤
0,i)x > 0 − τ∥x∥

w⊤
0,ix > τ∥x∥

Proof sketch

• Now, let’s control the size of

• By the union bound, we have

• : By Lemma 4.2, we know that

• : Notice that

• Thus, we have

S1 = {i ∈ [m] |w⊤
0,ix | ≤ τ∥x∥} S2 = {i ∈ [m] ∥wi − w0,i∥ ≥ τ}

S1 ∪ S2

|S | := |S1 ∪ S2 | ≤ |S1 | + |S2 |

|S1 |

|S1 | ≤ mτ + m log(1/δ), w.p. at least 1 − δ

|S2 |

B2 ≥ ∥W − W0∥2
F ≥ ∑ 1{i ∈ S2} ⋅ ∥wi − w0,i∥2 ≥ |S2 | ⋅ τ2

|S2 | ≤ B2/τ2

Proof sketch
• Combine these two bounds and optimize the sum w.r.t. , to get:

 w.p.

• Plus this into ⭐ and finish the proof

τ

|S | ≤ 2m2/3B2/3 + m log(1/δ) ≤ m2/3 (2B2/3 + log(1/δ)) 1 − δ

Wrapping up
• Takeaway. Wide width = More linearizable

• If we take an infinite-width limit, perhaps NNs behave just like ?f0

Neural Tangent Kernels

From nets to kernels
• Suppose that we begin optimizing from some , and get

• We have access to the dataset

Claim. After performing a single GD step , we have:

• Why?

W0 W
(x1, y1)…, (xn, yn)

W0 → W
W − W0 ∈ span({∂f(x1; W0), …, ∂f(xn; W0)})

Proof idea
• The total gradient is:

∂ (
n

∑
i=1

ℓ(yi, f(xi; W0))) =
n

∑
i=1

ℓ′￼(yi, f(xi; W0)) ⋅ ∂f(xi; W0)

=
n

∑
i=1

vi ⋅ ∂f(xi; W0)

From nets to kernels
• Thus, a one-step updated can be rewritten as

• The linear approximation is then:

• Looks very much like a kernel

W
W = W0 + ∂f(X; W0)⊤v

f0(x; W) = f(x; W0) + ⟨∂f(x; W0), W − W0⟩
= f(x; W0) + ⟨∂f(x; W0), ∂f(X; W0)⊤v⟩

= f(x; W0) +
n

∑
i=1

vi⟨∂f(x; W0), ∂f(xi; W0)⟩

Recap: Kernels
• We map data to some high- or infinite-dimensional feature space

• We use , for some Hilbert space

• Hope. In this space, the data may be linearly separable
• Example.

•

•

•

•

x1, …, xn

Φ : 𝒳 → ℋ ℋ

x ↦ (1,x, x2, x3, …)
x ↦ (cos(2πω0x), cos(2πω1x), …,)
x ↦ (σ(w⊤

1 x), σ(w⊤
2 x), …)

x ↦ CLIP features(x)

Recap: Kernels
• Kernel-based predictors take the form of

• Recall: Support Vector Machines

• Kernels are defined as some function

• So that the predictor becomes:

f(x) =
n

∑
i=1

αi ⋅ ⟨Φ(x), Φ(xi)⟩

k(x, x′￼) := ⟨Φ(x), Φ(x′￼)⟩

f(x) =
n

∑
i=1

αi ⋅ k(x, xi)

Neural Tangent Kernels
• Now, recall that we had:

Definition (Neural Tangent Kernel). The neural tangent kernel is defined as

• Using this definition, we can rewrite as:

f0(x; W) = f(x; W0) +
n

∑
i=1

vi⟨∂f(x; W0), ∂f(xi; W0)⟩

K(x, x′￼) = ∂f(x; W0)⊤∂f(x′￼; W0)

f0(x; W) = f(x; W0) +
n

∑
i=1

viK(x, xi)

Neural Tangent Kernels
• For two-layer neural nets, we have:

• Thus, the NTK is:

• If the activation function is ReLU, this is:

∂f(x; W0) = [⋯, aiσ′￼(w⊤
i,0x)x, ⋯]

K(x, x′￼) =
m

∑
i=1

x⊤x′￼σ′￼(w⊤
i,0x)σ′￼(w⊤

i,0x′￼)

K(x, x′￼) =
m

∑
i=1

x⊤x′￼⋅ 1[w⊤
i,0x ≥ 0] ⋅ 1[w⊤

i,0x′￼ ≥ 0]

NTK: Infinite-width limit
• Now, let us take an infinite-width limit, i.e.,

(we have revived the term , which has been dropped originally)

• Then, as the weights are Gaussian-distributed, we have the almost sure convergence:

K∞(x, x′￼) = lim
m→∞

1
m

m

∑
i=1

x⊤x′￼σ′￼(w⊤
i,0x)σ′￼(w⊤

i,0x′￼)

1/ m

K∞(x, x′￼) = ∫ x⊤x′￼σ′￼(v⊤x)σ′￼(v⊤x′￼) d𝒩(v)

Infinite-width NTK for ReLU
• As an exercise, let’s examine the infinite-width limit for ReLU nets.

• That is, we are interested in the case

Proposition. For any with unit norms, we have

• Idea.
• Use rotational invariance of Gaussians
• Think geometrically…

K∞(x, x′￼) = ∫ x⊤x′￼1[v⊤x ≥ 0] ⋅ 1[v⊤x′￼ ≥ 0] d𝒩(v)

x, x′￼

K∞(x, x′￼) = x⊤x′￼⋅
π − arccos(x⊤x′￼)

2π

Infinite-width NTK for ReLU
• Once we characterize the NTK, we can invoke universal approximation conditions of kernels

• See Steinwart and Christmann, “Support Vector Machines,” 2008

