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This slide

e A brief excursion to the behaviors of neural nets near its random initialization

e Motivation. Overparametrized nets stay near its initialization after training

o Little movement = better generalization guarantee



This slide

We want to show that:
e if a neural net is
e overparameterized
e near its initialization

then it i1s can be approximated by its linearization at initialization

See MJT for
e Full extension to NTK

o Universal approximation with NTK



Setup

e We consider a bias-free two-layer net
m

fx; W) = ) a; o(w]x)
=1
e x € R?

® CZlER

e W' =[w,|w,| - |w, ] € R

e We study this, under the regime where m — oo

e Assumption. The 2nd layer weights are frozen; we only update w;,



Inittalization

 2nd layer. Random binary initialization
a ~ Unif({—1,+1})

o 1stlayer. Random Gaussian initialization

e Note. Should be scaled by the factors 1/ \% and 1/ \/c_z’

o But we skip for now, for simple notations




Taylor approximation

e We are interested in the following approximation

Jox; W) = f(x; W) + (Owf(x; W), W — W)

e Thisis a classic 1st order Taylor approximation
o The differential dyy is called the Clarke subdifferential

 Roughly, the set of all gradient candidates for non-differentiable functions

o By default, we select the minimum-norm gradient



Taylor approximation

e More tediously, we can write the approximation as:
m

fx:W) = ) ao(wix) + ) ac/(w X)X (W, — W)
=1

~
lm

— Z a; (a(wg, X) — o'(Wy X)Wy X + o'(w, l-X)WlTX)
i=1

e This is an affine approximation of f(x; W)
e Affine with respect to W

e Nonlinear with respect to x



Nets near jnit are
almost near




Claim

« Roughly. Whenever W ~ W,,, then we have
fC-5W) R fy( -5 W)

e Smooth activation: easy
e ReLU: difficult



Claim

o Slightly more concretely, we want results like:

Claim (informal)
With a high probability, we have

C- [[W — W, o)
JX; W) —fo(x; W) <

117(POW.)

o Tricky part is that ||W — W|| may have some dependencies on m

e Ifitis a Frobenius norm...



Nets near inittialization

Proposition 4.1.
Suppose that ||x||, < I, and let6 : R — R be a f-smooth function. (i.e., gradient is /-Lipschitz)

Then, for any parameters W, W, we have

p

foxs W) = folx; W) < ZIW W ll%

o If we revive the 2nd layer’s scaling factors 1/4/m, we get the desired property.



Proof idea

p

foxs W) = folxs W) < ZIW W, ll%

e Proceed in two steps:

e Step 1. Show that, for /-smooth function, we have:

px — x0)2

| o(x) — 6(xp) — o' (xp)(x — xp) | < 5

e Any volunteer? &



Proof idea

JX; W) — fo(x; W) < gHW - Wyl

e Proceed in two steps:

e Step 1. Show that, for /-smooth function, we have:

2
| 6(x) — 6(xy) — 6'(xp)(x — xp) | < plx . Xp)
e Any volunteer? @&
e Taylor’s theorem.
A2
Jx) = fla) + fa)x — a) +J f”(t)( p) )



Proof idea

p

foxs W) = folxs W) < ZIW W, ll%

plx — xo)z
2

[ o(x) = 6(xp) — o' (x)(x — Xp) | <

o Step 2. Use the step 1 result, to examine the LHS
e Recall that we had:

m

fo(x; W) = Z a; - (a(wg, X) — G'(Wg, ix)wg’ X + 6'(W8: ix)w?x)
i=1
e Also recall that we had:

Ixll; < 1



Extension to RelLU

e For ReLU, things are not that easy...

e Tool. Thankfully, we know that, for ReLU:

o(x) = x - o'(x)

e Thus, we also have:

m
. T T T T T
Jo(x; W) = Z a; - (5(“’0,1") — G’(WO,Z-X)WOJ-X + GI(WO, X)W, X)
i=1
m
al
i=1

- o(W) X)W, X



Extension to RelLU

e Thus, we also have:

f(xX; W) — fo(x; W) = i a; - (G(WTX) — 6’(Wg, Z.X)Wl.TX)
=1
i a; - W (a(w X) — o'(W, lX))

1

l

ial W, x(l{w x>0}—1{wox>0}) e ()

=1

e (Question. How do we bound this . ?



Extension to RelLU

Z a; - W,-TX(I{WZ-TX >0} — 1{w) x> 0}) e ()
i=1
e Nailve. Maybe use something like Cauchy-Schwarz

<\/m||W||,

o Non-diminishing as m — oo, even after multiplying 1/ \%

e Will get something like

e Intuition. Exploit the randomness of the matrix W,



Concentration inequality

e The key intuition i1s formalized in the following lemma.

Lemma 4.2.
Letu, ~ 4(0,l)). Then, forany z > 0 and x € R? with ||x|| > 0, we have:

Z 1{ \uiTX\ < THXH} < mrt+ \/m log(1/6), with probability at least 1 — o
i=1

e Any useful intuitions?



Proof sketch

Z 1{ \uiTX\ < THXH} < mrt+ \/m log(1/6), with probability at least 1 — o
i=1

o Define P, = 1{ |u/x| < 7||x]| }.
e Then, proceed in three steps:

e Step 1. By rotational invariance, we have
Pi=1{‘ui,1| <17}



Proof sketch

Z 1{ \uiTX\ < THXH} < mrt+ \/m log(1/6), with probability at least 1 — o
i=1

o Step 2. Inspecting the Gaussian density, we have:

+7 _2/2 9)
Pr[Pl-=1]=J exp(—z )dZS T <

w2z Var




Proof sketch

Z 1{ \uiTX\ < THXH} < mrt+ \/m log(1/6), with probability at least 1 — o
i=1

o Step 3. Apply Hoeftding’s inequality to get the claim



The result

e Given the previous lemma, we are ready to prove today’s main result

Lemma 4.1.
For any radius B > 0, any fixed x € R? with ||x|| < 1, for any W € R with ||W — Wyl < B, we
have:

f W) — foxs W | < mi (\/EB% + B (log(1/8))" 4), with probability at least 1 — &

e Rough intuitions: Combine two claims
o With high probability, ||w, x|| won’t be small

e Reason: Gaussian initialization W, concentrates around its “shell

o If||W — W||issmall, then ||w — w ;|| will be small for many :

o Putting these together, we know that Wl.TX and Wg X have same signs quite often!



Proof sketch

e Concretely, for each index i € [m], define the subset of indices:

S| = {ie |m] |W(_£iX‘ ST”XH}

5 = {i € [m] | |lw; —w,ll = T}

o Claim. These are the only bad cases —1.e., w. X and w, X have different signs



Proof sketch

Concretely, for each index i € [m], define the subset of indices:

S| = {ie |m] |W(_£iX‘ ST”XH}

5 = {i € [m] | |lw; —w,ll = T}

Claim. These are the only bad cases — i.e., W, X and W, X have different signs

Suppose that we have i & §; U 5.

Suppose that we have WiTX > (.

e Asi & §;, we know that ng.x is either > 7||x]|| or < — 7||X]

e However, we cannot have < — z||x]|, as

T

WO,iX = W

o Thus, in this case, we have w

T
0,1

T

T T

X > 7(|x||, meaning that they have a same sign



Proof sketch

S| = {i e |m] \W(L.X\ < THXH} S, = {i € [m] | |lw; — wy,ll = T}

e Now, let’s control the size of §, U $,

e By the union bound, we have

|ST:=15 U8 <[5 [+1S]

e |S,|: By Lemma 4.2, we know that

1S, | < mt+ \/m log(1/6), w.p. atleast 1 — o

| S, | : Notice that
B2 > [W=Wll2> Y 1{i € Sy} - [w; — w [ > | S, - 77

e Thus, we have |S,| < B*/t*



Proof sketch

e Combine these two bounds and optimize the sum w.r.t. 7, to get:

S| < 2m*3B%3 4 \/m1og(1/6) < m*’ (232/3 + \/log(l/é)) wp. 1=

e Plus this into . and finish the proot



Wrapping up

e Takeaway. Wide width = More linearizable

o If we take an infinite-width limit, perhaps NNs behave just like f,?



Neural Tangent Kernels




From nets to kernels

e Suppose that we begin optimizing from some W, and get W

e We have access to the dataset (x, y;)..., (X, y,)

Claim. After performing a single GD step W, — W, we have:
W -W, span({@f(xl; W), ..., 0f(x,; WO)})

e Why?



Proof idea

o The total gradient is:

0 ( Z (i JX33 WO))> = Z C'(yi J(X;3 Wo)) - 9f(x;; W)
=1 i=1

=) ;- 0f(x;; W)
=1



From nets to kernels

e Thus, a one-step updated W can be rewritten as

W =W, + of(X; W) v

e The linear approximation is then:
Joxs W) = f(x; W) + (df(x; W(), W — W)
= f(x; W) + (9f(x; W), of(X; W) 'v)

= f(x; Wo) + ) vi(0f(x: W), 9f(x;; W)
=1

e Looks very much like a kernel



Recap: Kernels

e We map data x, ..., X, to some high- or infinite-dimensional feature space

e Weuse® : X — A, for some Hilbert space #

e Hope. In this space, the data may be linearly separable

o Example.

o X (1,x,x2,x3, )
e X (cos(27za)0x),cos(27za)1x), ,)
e X (a(wlTx),a(szx), )

e x — CLIP features(x)



Recap: Kernels

o Kernel-based predictors take the form of
fx) = ) ;- (D(x), D(x,))
i=1

e Recall: Support Vector Machines

e Kernels are defined as some function
k(x,X') := (D(x), D(x))

e So that the predictor becomes:

fx) =) o k(x.x)
=1



Neural Tangent Kernels

e Now, recall that we had:

folxs W) = f(xs Wo) + ) viaf(x: W), f(x;; W)
=1

Definition (Neural Tangent Kernel). The neural tangent kernel is defined as
K(x,x") = of(x; Wo)Taf(X,Q Wo)

e Using this definition, we can rewrite as:
n

foxs W) = fx; Wo) + ) vK(x.X)

=1




Neural Tangent Kernels

e For two-layer neural nets, we have:
of(x; W) = [+, 4,6/ (W] X)X, -]
e Thus, the NTK is:

m
K(x,x) = Z X' X'6'(W, X)o'(W, X)
i=1

e If the activation function is RelLU, this is:
m

K(x,x") = Z X'x’ I[WIOX > 0] - I[WZOX/ > 0]
i=1



NTK: Infinite-width limit

e Now, let us take an infinite-width limit, i.e.,

m

/ : 1 T/ f<xr | 1 xxr |~
K_(x,x) = lim —ZX X'c'(W, X)o' (W, X)
m—oo0 M 1 ’ ’

 Then, as the weights are Gaussian-distributed, we have the almost sure convergence:

K_(x,X') = JXTX’G’(VTX)U’(VTX’) d.V(v)



Infinite-width NTK for RelLU

e As an exercise, let’s examine the infinite-width limit for ReLLU nets.

e That is, we are interested in the case

K _(x,X) = JXTX’I[VTX > 0] - 1[v'x’ > 0] dA (V)

Proposition. For any X, X’ with unit norms, we have
b
7 — arccos(x ' x')

K _(x,X') = x'x’
21

e Idea.
e Use rotational invariance of Gaussians

e Think geometrically...



Infinite-width NTK for RelLU

 Once we characterize the NTK, we can invoke universal approximation conditions of kernels

e See Steinwart and Christmann, “Support Vector Machines,” 2008

Theorem 4.56 (A test for universality). Let X be a compact metric space
and k be a continuous kernel on X with k(x,x) > 0 for allxz € X. Suppose that

we have an injective feature map @ : X — Uy of k. We write ®,, : X — R for its

n-th component, i.e., ®(x) = (P (x))nen, * € X. If A :=span{®,, : n € N}

18 an algebra, then k is universal.



