
11. Optimization: 
Convex(?) optimization



Polyak-Łojasiewicz



Why is convexity useful?
• So far, we have seen that convexity + smoothness makes things easy 

• If we have strong convexity, we have an LB on gradient 

 

• Interpretation. When suboptimal, GD updates rapidly 

• This is paired with an UB on gradient for smooth functions 

 

• Interpretation. When near-optimal, GD updates small                 (as GD always reduces risk)

R̂(w) − inf
v

R̂(v) ≤
1
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∥∇R̂(w)∥2

∥∇R̂(w0)∥2 ≤
2

η(2 − βη) (R̂(w0) − R̂(w1))



Polyak-Łojasiewicz
• In fact, it turns out that this gradient-risk bound is all we need 

Definition (P-L condition). 

A function  is -PL whenever it satisfies: 

 

• We automatically have that a -strongly convex function is also -PL 

• Strong convexity. Requires quadratic growth for any two points 
• PL condition. Requires quadratic growth only around the optimum point 

• Typically, our assumptions need to hold only locally (e.g., a ball containing initial point)
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∥∇f(x)∥2 ≥ μ( f(x) − inf
x

f(x)), ∀x
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Polyak-Łojasiewicz
• In fact, it turns out that this gradient-risk bound is all we need 

Proposition. 

Suppose that  is -PL and -smooth. Then, we have 

 

• Proof idea. Same as in the strongly convex case!

R̂( ⋅ ) μ β

R̂(wt) − R̂(w̄) ≤ (R̂(w0) − R̂(w̄)) ⋅ exp (−
tμ
β )



Are neural net loss landscape PL?
• When sufficiently overparametrized, people argue that this is the case — c.f., 

• Liu et al., “Loss landscapes and optimization in over-parameterized non-linear systems and 
neural networks,” Applied & Computational Harmonic Analysis, 2022 

• Islamov et al., “Loss Landscape Characterization of Neural Networks without Over-
Parametrization,” NeurIPS 2024



Examples
• Here are some examples of PL but nonconvex functions 

• Example. f(x) = x2 + 3 ⋅ sin2(x)



Remarks
• There are many extensions and generalizations, for nonsmooth cases 

• Kurdyka-Łojasiewicz condition 

• -  conditionα β



Stochastic Gradients



Motivations
• We rarely use GD per se — instead, we use: 

• SGD (or mini-batch GD) 
• Memory. Need to store activations 
• Generalization. Large batch leads to suboptimal generalization 

• Compressed Gradient 
• Federated learning. Prune/Quantize 

• Zeroth order optimization 
• Black-box models. Proprietary models as a part of the pipeline 
• Computation. Does not require backward



Stochastic Gradients
• Formally, consider a generalized version of the gradient descent 

 

• Here,  is some estimate of the gradient  

• Stochastic 
• Quantization noise 
• Sometimes, satisfies unbiasedness: 

 

• Goal. Extend the usual analysis to analyze SGD 
• Risk convergence

wi+1 = wi − ηgi

gi ∇R̂(wi)

𝔼[gi] = ∇R̂(wi)



Risk convergence
Lemma 7.2. 

Suppose that  is convex, and let . Let . Then, for any , we have 

 

where we use the shorthand . 

• LHS. Can be lower-bounded by 

R̂ G := max
i

∥gi∥ η = 1/ t z

1
t ∑

i<t

R̂(wi) ≤ R̂(z) +
∥w0 − z∥2
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+
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+

1
t ∑

i<t

ϵi

ϵi = ⟨gi − ∇R̂(wi), z − wi⟩

max { inf
i<t

R̂(wi), R̂(∑ wi/t)}



Risk convergence
Lemma 7.2. 

Suppose that  is convex, and let . Let . Then, for any , we have 

 

where we use the shorthand . 

• RHS. Requires upper-bounding two quantities — will be discussed after the proof idea 

•  

•  

• Critically,  may be dependent on 

R̂ G := max
i

∥gi∥ η = 1/ t z

1
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Proof idea
• Proof idea. Like GD, we can decompose the parameter updates: 

 

  

∥wi+1 − z∥2 = ∥wi − z∥2 − 2η⟨gi, wi − z⟩ + η2∥gi∥2

= ∥wi − z∥2 − 2η⟨∇R̂(wi), wi − z⟩ + 2η⟨∇R̂(wi) − gi, wi − z⟩ + η2∥gi∥2

Add-and-Subtract; to exploit unbiasedness



Proof idea

Convexity

• Proof idea. Like GD, we can decompose the parameter updates: 

 

   

  

∥wi+1 − z∥2 = ∥wi − z∥2 − 2η⟨gi, wi − z⟩ + η2∥gi∥2

= ∥wi − z∥2 − 2η⟨∇R̂(wi), wi − z⟩ + 2η⟨∇R̂(wi) − gi, wi − z⟩ + η2∥gi∥2

≤ ∥wi − z∥2 − 2η(R̂(wi) − R̂(z)) + 2η⟨∇R̂(wi) − gi, wi − z⟩ + η2∥gi∥2



Proof idea
• Proof idea. Like GD, we can decompose the parameter updates: 

 

   

   

• Rearranging and scaling, we get the risk convergence 

 

• We use the shorthand  

• Select the right 

∥wi+1 − z∥2 = ∥wi − z∥2 − 2η⟨gi, wi − z⟩ + η2∥gi∥2

= ∥wi − z∥2 − 2η⟨∇R̂(wi), wi − z⟩ + 2η⟨∇R̂(wi) − gi, wi − z⟩ + η2∥gi∥2

≤ ∥wi − z∥2 − 2η(R̂(wi) − R̂(z)) + 2η⟨∇R̂(wi) − gi, wi − z⟩ + η2∥gi∥2

1
t ∑

i<t

R̂(wi) ≤ R̂(z) +
∥w0 − z∥2 − ∥wt − z∥2

2ηt
+

1
t ∑

i<t
(ϵi +

η
2

∥gi∥2)
ϵi = ⟨gi − ∇R̂(wi), z − wi⟩

η



Bounding the RHS
 

where we use the shorthand . 

• Now, back to bounding the quantities: 

•  

•  

• We want to make sure that they diminish as 

1
t ∑

i<t

R̂(wi) ≤ R̂(z) +
∥w0 − z∥2
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+
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ϵi

t → ∞



Side Note: Supremum of RVs
• Consider controlling the supremum 

 

• Simpler question. Suppose that . Then, what is a nice UB on …?  🙋 

G := max
i

∥gi∥

X1, …, Xk ∼ 𝒩(0,1)
𝔼[max

i
Xi]



Side Note: Supremum of RVs
• Consider controlling the supremum 

 

• Simpler question. Suppose that . Then, what is a nice UB on …?  🙋 

 

• Idea. 
• First, note that 

 

• Then, take expectation to get: 

 

• That is, at most of 

G := max
i

∥gi∥

X1, …, Xk ∼ 𝒩(0,1)
𝔼[max

i
Xi]

max
i

Xi = log(max
i

exp(Xi)) ≤ log(∑ exp(Xi))

𝔼[max
i

Xi] ≤ 𝔼[log(∑ exp(Xi))] ≤ log(∑ 𝔼[exp(Xi)])
log k



Controlling the gradient noise
• We further analyze 

 

• We assume that we have the Martingale property, i.e.,  

 

• Then, we have a nice tool: 

Theorem 7.8 (Azuma-Hoeffding). 

Suppose that  is a Martingale difference sequence, i.e., . Also, let . 
Then, with probability at least , we have 

 

• Requires knowing the zero-mean-ness and UB on the mean absolute

ϵi = ⟨gi − ∇R̂(wi), z − wi⟩

𝔼[gi | w≤i] = ∇R̂(wi)

(Zi)n
i=1 𝔼[Zi | Z<i] = 0 𝔼 |Zi | ≤ R

1 − δ

∑
i

Zi ≤ R 2t log(1/δ)



Controlling the gradient noise
• Now, examine the case of  

• Zero-mean. We know that . 

• UB on mean absolute. We can proceed as: 

 

    

   

ϵi = ⟨gi − ∇R̂(wi), z − wi⟩

𝔼[ϵi | w≤i] = 0

𝔼 |ϵi | = 𝔼 |⟨gi − ∇R̂(wi), wi − z⟩ |

≤ 𝔼∥gi − ∇R̂(wi)∥ ⋅ ∥wi − z∥
≤ (2 ⋅ gradient UB) ⋅ (param radius)



Final form
• Summing up, we have 

Lemma 7.3. 

Let  be a convex function. Let ,  be uniform UBs on the gradients and parameter differences. 
Then, for , the following holds with probability at least  

R̂ G D
η = 1/ t 1 − δ

1
t ∑

i<t

R̂(wi) ≤ R(z) +
D2

2 t
+

G2

2 t
+

2GD 2 log(1/δ)

t



Next up
• NTK…


