
11. Optimization:
Convex(?) optimization

Polyak-Łojasiewicz

Why is convexity useful?
• So far, we have seen that convexity + smoothness makes things easy

• If we have strong convexity, we have an LB on gradient

• Interpretation. When suboptimal, GD updates rapidly

• This is paired with an UB on gradient for smooth functions

• Interpretation. When near-optimal, GD updates small (as GD always reduces risk)

R̂(w) − inf
v

R̂(v) ≤
1
2λ

∥∇R̂(w)∥2

∥∇R̂(w0)∥2 ≤
2

η(2 − βη) (R̂(w0) − R̂(w1))

Polyak-Łojasiewicz
• In fact, it turns out that this gradient-risk bound is all we need

Definition (P-L condition).

A function is -PL whenever it satisfies:

• We automatically have that a -strongly convex function is also -PL

• Strong convexity. Requires quadratic growth for any two points
• PL condition. Requires quadratic growth only around the optimum point

• Typically, our assumptions need to hold only locally (e.g., a ball containing initial point)

f(⋅) μ
1
2

∥∇f(x)∥2 ≥ μ(f(x) − inf
x

f(x)), ∀x

λ λ

Polyak-Łojasiewicz
• In fact, it turns out that this gradient-risk bound is all we need

Proposition.

Suppose that is -PL and -smooth. Then, we have

• Proof idea. Same as in the strongly convex case!

R̂(⋅) μ β

R̂(wt) − R̂(w̄) ≤ (R̂(w0) − R̂(w̄)) ⋅ exp (−
tμ
β)

Are neural net loss landscape PL?
• When sufficiently overparametrized, people argue that this is the case — c.f.,

• Liu et al., “Loss landscapes and optimization in over-parameterized non-linear systems and
neural networks,” Applied & Computational Harmonic Analysis, 2022

• Islamov et al., “Loss Landscape Characterization of Neural Networks without Over-
Parametrization,” NeurIPS 2024

Examples
• Here are some examples of PL but nonconvex functions

• Example. f(x) = x2 + 3 ⋅ sin2(x)

Remarks
• There are many extensions and generalizations, for nonsmooth cases

• Kurdyka-Łojasiewicz condition

• - conditionα β

Stochastic Gradients

Motivations
• We rarely use GD per se — instead, we use:

• SGD (or mini-batch GD)
• Memory. Need to store activations
• Generalization. Large batch leads to suboptimal generalization

• Compressed Gradient
• Federated learning. Prune/Quantize

• Zeroth order optimization
• Black-box models. Proprietary models as a part of the pipeline
• Computation. Does not require backward

Stochastic Gradients
• Formally, consider a generalized version of the gradient descent

• Here, is some estimate of the gradient

• Stochastic
• Quantization noise
• Sometimes, satisfies unbiasedness:

• Goal. Extend the usual analysis to analyze SGD
• Risk convergence

wi+1 = wi − ηgi

gi ∇R̂(wi)

𝔼[gi] = ∇R̂(wi)

Risk convergence
Lemma 7.2.

Suppose that is convex, and let . Let . Then, for any , we have

where we use the shorthand .

• LHS. Can be lower-bounded by

R̂ G := max
i

∥gi∥ η = 1/ t z

1
t ∑

i<t

R̂(wi) ≤ R̂(z) +
∥w0 − z∥2

2 t
+

G2

2 t
+

1
t ∑

i<t

ϵi

ϵi = ⟨gi − ∇R̂(wi), z − wi⟩

max { inf
i<t

R̂(wi), R̂(∑ wi/t)}

Risk convergence
Lemma 7.2.

Suppose that is convex, and let . Let . Then, for any , we have

where we use the shorthand .

• RHS. Requires upper-bounding two quantities — will be discussed after the proof idea

•

•

• Critically, may be dependent on

R̂ G := max
i

∥gi∥ η = 1/ t z

1
t ∑

i<t

R̂(wi) ≤ R̂(z) +
∥w0 − z∥2

2 t
+

G2

2 t
+

1
t ∑

i<t

ϵi

ϵi = ⟨gi − ∇R̂(wi), z − wi⟩

G := max
i

∥gi∥

1
t ∑

i<t

ϵi

ϵi ϵj

Proof idea
• Proof idea. Like GD, we can decompose the parameter updates:

∥wi+1 − z∥2 = ∥wi − z∥2 − 2η⟨gi, wi − z⟩ + η2∥gi∥2

= ∥wi − z∥2 − 2η⟨∇R̂(wi), wi − z⟩ + 2η⟨∇R̂(wi) − gi, wi − z⟩ + η2∥gi∥2

Add-and-Subtract; to exploit unbiasedness

Proof idea

Convexity

• Proof idea. Like GD, we can decompose the parameter updates:

∥wi+1 − z∥2 = ∥wi − z∥2 − 2η⟨gi, wi − z⟩ + η2∥gi∥2

= ∥wi − z∥2 − 2η⟨∇R̂(wi), wi − z⟩ + 2η⟨∇R̂(wi) − gi, wi − z⟩ + η2∥gi∥2

≤ ∥wi − z∥2 − 2η(R̂(wi) − R̂(z)) + 2η⟨∇R̂(wi) − gi, wi − z⟩ + η2∥gi∥2

Proof idea
• Proof idea. Like GD, we can decompose the parameter updates:

• Rearranging and scaling, we get the risk convergence

• We use the shorthand

• Select the right

∥wi+1 − z∥2 = ∥wi − z∥2 − 2η⟨gi, wi − z⟩ + η2∥gi∥2

= ∥wi − z∥2 − 2η⟨∇R̂(wi), wi − z⟩ + 2η⟨∇R̂(wi) − gi, wi − z⟩ + η2∥gi∥2

≤ ∥wi − z∥2 − 2η(R̂(wi) − R̂(z)) + 2η⟨∇R̂(wi) − gi, wi − z⟩ + η2∥gi∥2

1
t ∑

i<t

R̂(wi) ≤ R̂(z) +
∥w0 − z∥2 − ∥wt − z∥2

2ηt
+

1
t ∑

i<t
(ϵi +

η
2

∥gi∥2)
ϵi = ⟨gi − ∇R̂(wi), z − wi⟩

η

Bounding the RHS

where we use the shorthand .

• Now, back to bounding the quantities:

•

•

• We want to make sure that they diminish as

1
t ∑

i<t

R̂(wi) ≤ R̂(z) +
∥w0 − z∥2

2 t
+

G2

2 t
+

1
t ∑

i<t

ϵi

ϵi = ⟨gi − ∇R̂(wi), z − wi⟩

G := max
i

∥gi∥

1
t ∑

i<t

ϵi

t → ∞

Side Note: Supremum of RVs
• Consider controlling the supremum

• Simpler question. Suppose that . Then, what is a nice UB on …? 🙋

G := max
i

∥gi∥

X1, …, Xk ∼ 𝒩(0,1)
𝔼[max

i
Xi]

Side Note: Supremum of RVs
• Consider controlling the supremum

• Simpler question. Suppose that . Then, what is a nice UB on …? 🙋

• Idea.
• First, note that

• Then, take expectation to get:

• That is, at most of

G := max
i

∥gi∥

X1, …, Xk ∼ 𝒩(0,1)
𝔼[max

i
Xi]

max
i

Xi = log(max
i

exp(Xi)) ≤ log(∑ exp(Xi))

𝔼[max
i

Xi] ≤ 𝔼[log(∑ exp(Xi))] ≤ log(∑ 𝔼[exp(Xi)])
log k

Controlling the gradient noise
• We further analyze

• We assume that we have the Martingale property, i.e.,

• Then, we have a nice tool:

Theorem 7.8 (Azuma-Hoeffding).

Suppose that is a Martingale difference sequence, i.e., . Also, let .
Then, with probability at least , we have

• Requires knowing the zero-mean-ness and UB on the mean absolute

ϵi = ⟨gi − ∇R̂(wi), z − wi⟩

𝔼[gi | w≤i] = ∇R̂(wi)

(Zi)n
i=1 𝔼[Zi | Z<i] = 0 𝔼 |Zi | ≤ R

1 − δ

∑
i

Zi ≤ R 2t log(1/δ)

Controlling the gradient noise
• Now, examine the case of

• Zero-mean. We know that .

• UB on mean absolute. We can proceed as:

ϵi = ⟨gi − ∇R̂(wi), z − wi⟩

𝔼[ϵi | w≤i] = 0

𝔼 |ϵi | = 𝔼 |⟨gi − ∇R̂(wi), wi − z⟩ |

≤ 𝔼∥gi − ∇R̂(wi)∥ ⋅ ∥wi − z∥
≤ (2 ⋅ gradient UB) ⋅ (param radius)

Final form
• Summing up, we have

Lemma 7.3.

Let be a convex function. Let , be uniform UBs on the gradients and parameter differences.
Then, for , the following holds with probability at least

R̂ G D
η = 1/ t 1 − δ

1
t ∑

i<t

R̂(wi) ≤ R(z) +
D2

2 t
+

G2

2 t
+

2GD 2 log(1/δ)

t

Next up
• NTK…

