11. Optimization: Convex(?) optimization

Polyak-Łojasiewicz

Why is convexity useful?

- So far, we have seen that convexity + smoothness makes things easy
- If we have strong convexity, we have an LB on gradient

$$\hat{R}(w) - \inf_{v} \hat{R}(v) \le \frac{1}{2\lambda} \|\nabla \hat{R}(w)\|^2$$

- Interpretation. When suboptimal, GD updates rapidly
- This is paired with an UB on gradient for smooth functions

$$\|\nabla \hat{R}(w_0)\|^2 \le \frac{2}{\eta(2-\beta\eta)} \left(\hat{R}(w_0) - \hat{R}(w_1)\right)$$

• Interpretation. When near-optimal, GD updates small

(as GD always reduces risk)

Polyak-Łojasiewicz

• In fact, it turns out that this gradient-risk bound is all we need

Definition (P-L condition).

A function $f(\cdot)$ is μ -PL whenever it satisfies:

$$\frac{1}{2}\|\nabla f(x)\|^2 \ge \mu(f(x) - \inf_x f(x)), \quad \forall x$$

- We automatically have that a λ -strongly convex function is also λ -PL
- Strong convexity. Requires quadratic growth for any two points
- PL condition. Requires quadratic growth only around the optimum point
- Typically, our assumptions need to hold only locally (e.g., a ball containing initial point)

Polyak-Łojasiewicz

• In fact, it turns out that this gradient-risk bound is all we need

Proposition.

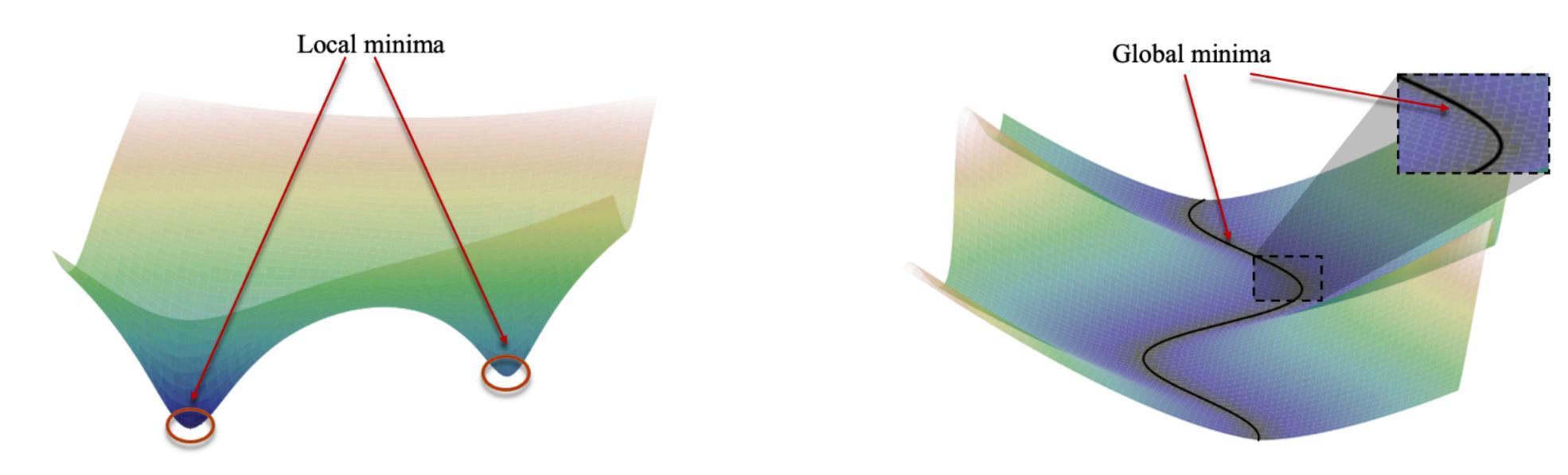
Suppose that $\hat{R}(\cdot)$ is μ -PL and β -smooth. Then, we have

$$\hat{R}(w_t) - \hat{R}(\bar{w}) \le (\hat{R}(w_0) - \hat{R}(\bar{w})) \cdot \exp\left(-\frac{t\mu}{\beta}\right)$$

• **Proof idea.** Same as in the strongly convex case!

Are neural net loss landscape PL?

- When sufficiently overparametrized, people argue that this is the case c.f.,
 - Liu et al., "Loss landscapes and optimization in over-parameterized non-linear systems and neural networks," Applied & Computational Harmonic Analysis, 2022
 - Islamov et al., "Loss Landscape Characterization of Neural Networks without Over-Parametrization," NeurIPS 2024



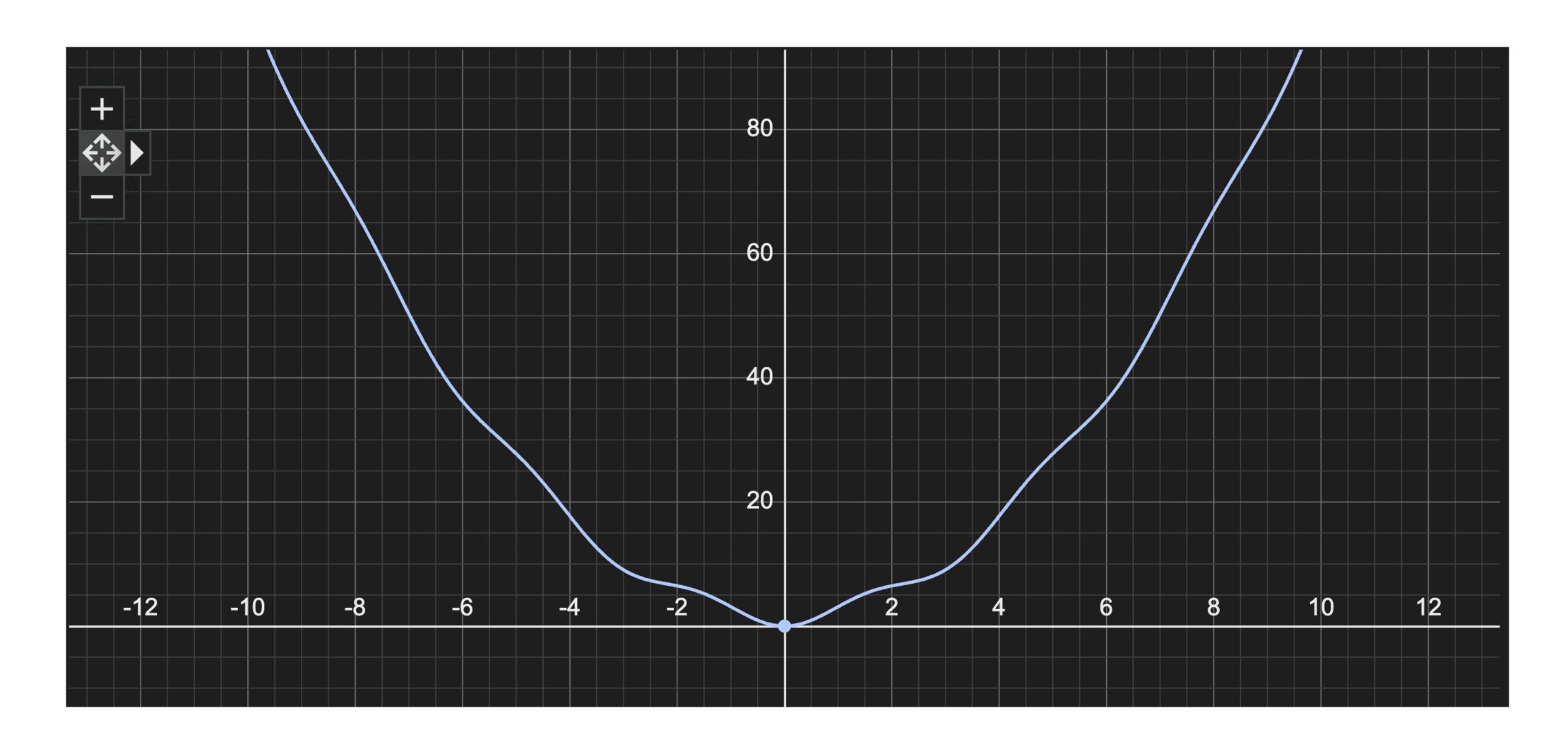
(a) Loss landscape of under-parameterized models

(b) Loss landscape of over-parameterized models

Figure 1: Panel (a): Loss landscape is locally convex at local minima. Panel (b): Loss landscape incompatible with local convexity as the set of global minima is not locally linear.

Examples

- Here are some examples of PL but nonconvex functions
- **Example.** $f(x) = x^2 + 3 \cdot \sin^2(x)$



Remarks

- There are many extensions and generalizations, for nonsmooth cases
 - Kurdyka-Łojasiewicz condition
 - α - β condition

Stochastic Gradients

Motivations

- We rarely use GD per se instead, we use:
 - **SGD** (or mini-batch GD)
 - Memory. Need to store activations
 - Generalization. Large batch leads to suboptimal generalization

• Compressed Gradient

• Federated learning. Prune/Quantize

• Zeroth order optimization

- <u>Black-box models</u>. Proprietary models as a part of the pipeline
- Computation. Does not require backward

Stochastic Gradients

• Formally, consider a generalized version of the gradient descent

$$w_{i+1} = w_i - \eta g_i$$

- Here, g_i is some estimate of the gradient $\nabla \hat{R}(w_i)$
 - Stochastic
 - Quantization noise
 - Sometimes, satisfies unbiasedness:

$$\mathbb{E}[g_i] = \nabla \hat{R}(w_i)$$

- Goal. Extend the usual analysis to analyze SGD
 - Risk convergence

Risk convergence

Lemma 7.2.

Suppose that \hat{R} is convex, and let $G := \max_{i} \|g_i\|$. Let $\eta = 1/\sqrt{t}$. Then, for any z, we have

$$\frac{1}{t} \sum_{i < t} \hat{R}(w_i) \le \hat{R}(z) + \frac{\|w_0 - z\|^2}{2\sqrt{t}} + \frac{G^2}{2\sqrt{t}} + \frac{1}{t} \sum_{i < t} \epsilon_i$$

where we use the shorthand $\epsilon_i = \langle g_i - \nabla \hat{R}(w_i), z - w_i \rangle$.

• LHS. Can be lower-bounded by

$$\max \left\{ \inf_{i < t} \hat{R}(w_i), \hat{R}\left(\sum_{i < t} w_i / t\right) \right\}$$

Risk convergence

Lemma 7.2.

Suppose that \hat{R} is convex, and let $G := \max_{i} \|g_i\|$. Let $\eta = 1/\sqrt{t}$. Then, for any z, we have

$$\frac{1}{t} \sum_{i < t} \hat{R}(w_i) \le \hat{R}(z) + \frac{\|w_0 - z\|^2}{2\sqrt{t}} + \frac{G^2}{2\sqrt{t}} + \frac{1}{t} \sum_{i < t} \epsilon_i$$

where we use the shorthand $\epsilon_i = \langle g_i - \nabla \hat{R}(w_i), z - w_i \rangle$.

- RHS. Requires upper-bounding two quantities will be discussed after the proof idea
 - $G := \max_{i} \|g_i\|$
 - $\frac{1}{t} \sum_{i < t} \epsilon_i$
 - Critically, ϵ_i may be dependent on ϵ_i

Proofidea

• **Proof idea.** Like GD, we can decompose the parameter updates:

$$||w_{i+1} - z||^2 = ||w_i - z||^2 - 2\eta \langle g_i, w_i - z \rangle + \eta^2 ||g_i||^2$$
 Add-and-Subtract; to exploit unbiasedness
$$= ||w_i - z||^2 - 2\eta \langle \nabla \hat{R}(w_i), w_i - z \rangle + 2\eta \langle \nabla \hat{R}(w_i) - g_i, w_i - z \rangle + \eta^2 ||g_i||^2$$

Proofidea

• **Proof idea.** Like GD, we can decompose the parameter updates:

$$\begin{split} \|w_{i+1} - z\|^2 &= \|w_i - z\|^2 - 2\eta \langle g_i, w_i - z \rangle + \eta^2 \|g_i\|^2 \\ &= \|w_i - z\|^2 - 2\eta \langle \nabla \hat{R}(w_i), w_i - z \rangle + 2\eta \langle \nabla \hat{R}(w_i) - g_i, w_i - z \rangle + \eta^2 \|g_i\|^2 \\ &\leq \|w_i - z\|^2 - 2\eta \langle \hat{R}(w_i) - \hat{R}(z) \rangle + 2\eta \langle \nabla \hat{R}(w_i) - g_i, w_i - z \rangle + \eta^2 \|g_i\|^2 \end{split}$$

Convexity

Proofidea

• **Proof idea.** Like GD, we can decompose the parameter updates:

$$\begin{split} \|w_{i+1} - z\|^2 &= \|w_i - z\|^2 - 2\eta \langle g_i, w_i - z \rangle + \eta^2 \|g_i\|^2 \\ &= \|w_i - z\|^2 - 2\eta \langle \nabla \hat{R}(w_i), w_i - z \rangle + 2\eta \langle \nabla \hat{R}(w_i) - g_i, w_i - z \rangle + \eta^2 \|g_i\|^2 \\ &\leq \|w_i - z\|^2 - 2\eta (\hat{R}(w_i) - \hat{R}(z)) + 2\eta \langle \nabla \hat{R}(w_i) - g_i, w_i - z \rangle + \eta^2 \|g_i\|^2 \end{split}$$

• Rearranging and scaling, we get the risk convergence

$$\frac{1}{t} \sum_{i < t} \hat{R}(w_i) \le \hat{R}(z) + \frac{\|w_0 - z\|^2 - \|w_t - z\|^2}{2\eta t} + \frac{1}{t} \sum_{i < t} \left(\epsilon_i + \frac{\eta}{2} \|g_i\|^2 \right)$$

- We use the shorthand $\epsilon_i = \langle g_i \nabla \hat{R}(w_i), z w_i \rangle$
- Select the right η

Bounding the RHS

$$\frac{1}{t} \sum_{i < t} \hat{R}(w_i) \le \hat{R}(z) + \frac{\|w_0 - z\|^2}{2\sqrt{t}} + \frac{G^2}{2\sqrt{t}} + \frac{1}{t} \sum_{i < t} \epsilon_i$$

where we use the shorthand $\epsilon_i = \langle g_i - \nabla \hat{R}(w_i), z - w_i \rangle$.

- Now, back to bounding the quantities:
 - $G := \max_{i} \|g_i\|$
 - $\frac{1}{t} \sum_{i < t} \epsilon_i$
- We want to make sure that they diminish as $t \to \infty$

Side Note: Supremum of RVs

Consider controlling the supremum

$$G := \max_{i} \|g_i\|$$

• Simpler question. Suppose that $X_1, ..., X_k \sim \mathcal{N}(0,1)$. Then, what is a nice UB on ...? $\mathbb{E}[\max_i X_i]$

Side Note: Supremum of RVs

Consider controlling the supremum

$$G := \max_{i} \|g_i\|$$

• Simpler question. Suppose that $X_1, ..., X_k \sim \mathcal{N}(0,1)$. Then, what is a nice UB on ...? $\mathbb{E}[\max_i X_i]$

- Idea.
 - First, note that

$$\max_{i} X_{i} = \log(\max_{i} \exp(X_{i})) \le \log(\sum_{i} \exp(X_{i}))$$

• Then, take expectation to get:

$$\mathbb{E}[\max_{i} X_{i}] \leq \mathbb{E}\left[\log(\sum_{i} \exp(X_{i}))\right] \leq \log\left(\sum_{i} \mathbb{E}[\exp(X_{i})]\right)$$

• That is, at most of log *k*

Controlling the gradient noise

We further analyze

$$\epsilon_i = \langle g_i - \nabla \hat{R}(w_i), z - w_i \rangle$$

• We assume that we have the Martingale property, i.e.,

$$\mathbb{E}[g_i \mid w_{\leq i}] = \nabla \hat{R}(w_i)$$

• Then, we have a nice tool:

Theorem 7.8 (Azuma-Hoeffding).

Suppose that $(Z_i)_{i=1}^n$ is a Martingale difference sequence, i.e., $\mathbb{E}[Z_i \mid Z_{< i}] = 0$. Also, let $\mathbb{E}[Z_i \mid Z_i] \leq R$. Then, with probability at least $1 - \delta$, we have

$$\sum_{i} Z_{i} \leq R\sqrt{2t\log(1/\delta)}$$

• Requires knowing the zero-mean-ness and UB on the mean absolute

Controlling the gradient noise

- Now, examine the case of $\epsilon_i = \langle g_i \nabla \hat{R}(w_i), z w_i \rangle$
- **Zero-mean.** We know that $\mathbb{E}[\epsilon_i \mid w_{< i}] = 0$.
- UB on mean absolute. We can proceed as:

$$\mathbb{E} |\epsilon_i| = \mathbb{E} |\langle g_i - \nabla \hat{R}(w_i), w_i - z \rangle|$$

$$\leq \mathbb{E} ||g_i - \nabla \hat{R}(w_i)|| \cdot ||w_i - z||$$

$$\leq (2 \cdot \text{gradient UB}) \cdot (\text{param radius})$$

Final form

• Summing up, we have

Lemma 7.3.

Let \hat{R} be a convex function. Let G, D be uniform UBs on the gradients and parameter differences. Then, for $\eta = 1/\sqrt{t}$, the following holds with probability at least $1 - \delta$

$$\frac{1}{t} \sum_{i < t} \hat{R}(w_i) \le R(z) + \frac{D^2}{2\sqrt{t}} + \frac{G^2}{2\sqrt{t}} + \frac{2GD\sqrt{2\log(1/\delta)}}{\sqrt{t}}$$

Next up

• NTK...