11. Optimization:
Convex(?) optimization




Polyak-Lojasiewicz



Why is convexity useful?

e So far, we have seen that convexity + smoothness makes things easy

o If we have strong convexity, we have an LB on gradient

A A 1 A
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o Interpretation. When suboptimal, GD updates rapidly

o This is paired with an UB on gradient for smooth functions

o 2 . .
IVROI? <~ (Rovg) = Rowp)

e Interpretation. When near-optimal, GD updates small




Polyak-Lojasiewicz

e In fact, it turns out that this gradient-risk bound is all we need

Definition (P-L condition).

A function f( - ) is u-PL whenever it satisfies:

1
EHVf (OI1* 2> u(fx) - iI;ff (x),  Vx

e We automatically have that a A-strongly convex function is also A-PL

o Strong convexity. Requires quadratic growth for any two points

e PL condition. Requires quadratic growth only around the optimum point

o Typically, our assumptions need to hold only locally (e.g., a ball containing initial point)



Polyak-Lojasiewicz

e In fact, it turns out that this gradient-risk bound is all we need

Proposition.

Suppose that R(-)is u-PL and f-smooth. Then, we have

R(w,)) — R(Ww) < (R(wy) — R(W)) - exp (—%‘)

e Proofidea. Same as in the strongly convex case!



Are neural net loss landscape PL?

e When sufficiently overparametrized, people argue that this is the case — c.t.,

e Liuetal., “Loss landscapes and optimization in over-parameterized non-linear systems and
neural networks,” Applied & Computational Harmonic Analysis, 2022

o Islamov et al., “Loss Landscape Characterization of Neural Networks without Over-
Parametrization,” NeurIPS 2024

Local minima Global minima

(a) Loss landscape of under-parameterized models (b) Loss landscape of over-parameterized models

Figure 1: Panel (a): Loss landscape is locally convex at local minima. Panel (b): Loss landscape
incompatible with local convexity as the set of global minima is not locally linear.



Examples

e Here are some examples of PL but nonconvex functions

« Example. f(x) = x* + 3 - sin’(x)




Remarks

o There are many extensions and generalizations, for nonsmooth cases

o Kurdyka-Lojasiewicz condition

e a-f condition



Stochastic Gradients




Motivations

e We rarely use GD per se — instead, we use:
e SGD (or mini-batch GD)

e Memory. Need to store activations

o Generalization. Large batch leads to suboptimal generalization

e Compressed Gradient

e Federated learning. Prune/Quantize

e Zeroth order optimization

o Black-box models. Proprietary models as a part of the pipeline

e Computation. Does not require backward




Stochastic Gradients

 Formally, consider a generalized version of the gradient descent

Wit = W —HE;

e Here, g;1s some estimate of the gradient VIAQ(WZ-)
e Stochastic
e (Quantization noise

e Sometimes, satisties unbiasedness:

-|g;] = VIA{(Wi)

e Goal. Extend the usual analysis to analyze SGD

e Risk convergence



Risk convergence

Lemma 7.2.

Suppose that R is convex, and let G := max || gi||. Lety =1/ \/; Then, for any z, we have
i
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1<t 2\/; 2\/; 1<t

where we use the shorthand €; = (g, — VR(w)), z — w)).

e LHS. Can be lower-bounded by

max { inf R(w,), IA€< Z wl-/t> }

1<t



Risk convergence

Lemma 7.2.

Suppose that R is convex, and let G := max || gi||. Lety =1/ \/; Then, for any z, we have
i

1 R n wo — z||?
=Y Ror) < RQ@+ I~ 2

+ G 4o D
“ Ve
1<t 2\/; 2\/; [ 1<t

where we use the shorthand €; = (g, — VR(w)), z — w)).

e RHS. Requires upper-bounding two quantities — will be discussed after the proof idea

° G L= max ”ng

l
1
_— 2.6
1<t

o Critically, ¢; may be dependent on ¢;



Proof idea

e Proof idea. Like GD, we can decompose the parameter updates:

HW;’+1 — ZH2 = Hwi — Z ‘2 — 277<gi, W; — Z> + ﬂzHgin Add-and-Subtract; to exploit unbiasedness

= |lw; — 2| ‘- 21 Vf?(wi), w; — zZ) + 2n( Vﬁ(wi) — g W; — zZ) + 772“81'”2




Proof idea

e Proof idea. Like GD, we can decompose the parameter updates:

2
Wi —zll"=1llw;—z

WZ_Z‘

WZ_Z‘

| — 2n(g, w; — 2) + 11°11gI*

2 — 277( VI%(WZ), Wi — Z) + 27]( Vé(wl) o gi9 Wi o Z) + ;/]2‘
> = 2n(ROwy) = RQ)) + 20( VROw) = g w; = 2) + 1l

Convexity




Proof idea

e Proof idea. Like GD, we can decompose the parameter updates:

2
Iwip —zllF=llw; —z

WZ_Z‘

WZ_Z‘

| — 2n(g, w; — 2) + 11°11gI*

2 _ 2 VRW), w: — 2) + 2n{ VR(W)) — g, w. — 2) + n°|l;

2 - 2n(R(w;) — R(2)) + 2n{ VR(W)) — g., w; — 2) + n°||g;|I?

e Rearranging and scaling, we get the risk convergence

I O 4 o wo—zllf = llw,—zlI* 1 Tioll2
— ) R(w;) < R(z) + + — €; +—Ilg;
- 2 Row) <R > (e+3lsl?)

1<t
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e We use the shorthand €; = (g; — VIA?(WZ-), Z—w;)

e Select the right



Bounding the RHS

12 2
lZI’AQ(WZ-) < R(2) A Iwo — 2| | G | 1261-
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1<t 1<t

where we use the shorthand €, = (g, — VR(W)),z — w)).

e Now, back to bounding the quantities:

. G :=max|g

T2

1<t

e We want to make sure that they diminish as ¢t — oo



Side Note: Supremum of RVs

o Consider controlling the supremum

G :=max |[g]

l

e Simpler question. Suppose that X, ..., X, ~ /4(0,1). Then, what is a nice UBon ...? &

- [max X;]



Side Note: Supremum of RVs

o Consider controlling the supremum

e Simpler question. Suppose that X, ..., X, ~ /4(0,1). Then, what is a nice UB on ...?

e Idea.

e First, note that

G :=max |[g]

l

- [max X;]

max X; = log(max exp(X)) < log( ) exp(X))

e Then, take expectation to get:

-[max X;| <

l

e That is, at most of log k

log( )" exp(X))

< log(z

- [exp(X;)] )

5 N
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Controlling the gradient noise

e We further analyze

€; = <gi — VR\(Wi)a T — Wi>

e We assume that we have the Martingale property, i.e.,

e Then, we have a nice tool:

Theorem 7.8 (Azuma-Hoeffding).

Suppose that (Z,)'_, is a Martingale difference sequence, i.e.,
Then, with probability at least 1 — 6, we have

(g | we] = VR(W;‘)

-[Z; | Z_;] = 0. Also, let

D 7, < R\/21Tog(175)

o Requires knowing the zero-mean-ness and UB on the mean absolute




Controlling the gradient noise

e Now, examine the case of €, = (g; — Vﬁ(wi), Z—w;)

o Zero-mean. We know that E[¢; | w.,;] = 0.

e UB on mean absolute. We can proceed as:
= | (8 = VR(w), w; = 2)|

Ellgi = VRO - llw; — 2]

(2 - gradient UB) - (param radius)

"61"
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Final form

e Summing up, we have

Lemma 7.3.

Let R be a convex function. Let G, D be uniform UBs on the gradients and parameter differences.
Then, forn = 1/ \/;, the following holds with probability at least 1 — 6
1 X D?2 G2 2GDy/2log(1/5)

< /i 2/ Vi




e NTK...



