10. Optimization: Convex optimization

Moving on

- Part 1. Approximation
 - For any function $g(\cdot)$, we can make a NN $f(\cdot)$ such that $||f g|| \le \epsilon$
 - **Key factors.** Model size, smoothness of $g(\cdot)$, smoothness of activation $\sigma(\cdot)$

- Part 2. Optimization
 - By training with GD, the risk converges $\hat{R}(\hat{w}^{(t)}) \hat{R}(\bar{w}) \leq \phi(t)$
 - By training with GD, the parameter converges $\|\hat{w}^{(t)} \bar{w}\| \le \psi(t)$
 - **Key factors.** Smoothness and convexity of $R(\cdot)$, step size, ...

Optimization

• In ML, we are trying to find nice ways to solve and analyze

$$\min_{w} \hat{R}(w)$$

• Typically, $\hat{R}(w)$ is the training risk

$$\hat{R}(w) = \frac{1}{n} \sum_{i=1}^{n} \mathcal{E}(f(x_i), y_i)$$

• However, will usually encapsulate everything as $\hat{R}(\cdot)$

(we'll use w instead of w to lower the chance of typo)

Optimization

- Focus. We analyze how the first-order algorithms work
 - Gradient descent

$$w_{t+1} = w_t - \eta \cdot \nabla \hat{R}(w)$$

Gradient flow

$$\dot{w}(t) = -\nabla \hat{R}(w)$$

• This week. Heavy assumptions, no neural nets

Smoothness

Smoothness

• Two assumptions make it easy: Smoothness & Convexity

Definition (Smoothness).

A function \hat{R} is β -smooth whenever

$$\|\nabla \hat{R}(w) - \nabla \hat{R}(v)\| \le \beta \|w - v\|, \qquad \forall w, v$$

• Exercise. How smooth is the case of linear regression, i.e.,

$$\hat{R}(w) = \|y - w^{\mathsf{T}} X\|^2$$

• ReLU networks are not smooth in general — but we can still draw some insights from smooth cases

Convex upper bound

• Given the smoothness, we can prove that there exists a convex upper bound on risk

Lemma (Convex upper bound).

Suppose that \hat{R} is β -smooth. Then, we have

$$\hat{R}(v) \le \hat{R}(w) + \langle \nabla \hat{R}(w), v - w \rangle + \frac{\beta}{2} ||w - v||^2, \quad \forall w, v$$

- Meaning. A smooth function cannot grow faster than quadratic functions \
- Remark. Gradient descent can be viewed as minimizing this convex UB
 - when $1/\beta$ is the step size

Convex upper bound

$$\hat{R}(v) \le \hat{R}(w) + \langle \nabla \hat{R}(w), v - w \rangle + \frac{\beta}{2} ||w - v||^2, \quad \forall w, v$$

• **Proof idea.** Consider a curve $t \mapsto \hat{R}(w + t(v - w))$

GD reduces the risk

• Using the convex UB, we can show that GD always reduces the risk

Lemma (GD reduces the risk)

Let w_1 be a one-step-GD-updated version of w_0 , i.e.,

$$w_1 = w_0 - \eta \cdot \nabla \hat{R}(w_0)$$

Then, we have

$$\hat{R}(w_1) \le \hat{R}(w_0) - \eta \left(1 - \frac{\beta \eta}{2}\right) \|\nabla \hat{R}(w_0)\|^2$$

- This holds for any η
 - Select "useful" values of η

GD reduces the risk

$$w_1 = w_0 - \eta \cdot \nabla \hat{R}(w_0)$$

$$\hat{R}(w_1) \le \hat{R}(w_0) - \eta \left(1 - \frac{\beta \eta}{2}\right) \|\nabla \hat{R}(w_0)\|^2$$

• Proof idea. Use the convex UB

$$\hat{R}(v) \le \hat{R}(w) + \langle \nabla \hat{R}(w), v - w \rangle + \frac{\beta}{2} ||w - v||^2, \quad \forall w, v$$

GD reduces the risk

$$\hat{R}(w_1) \le \hat{R}(w_0) - \eta \left(1 - \frac{\beta \eta}{2}\right) \|\nabla \hat{R}(w_0)\|^2$$

• Remark. Sometimes, useful to turn this into a form

$$\|\nabla \hat{R}(w_0)\|^2 \le \frac{2}{\eta(2-\beta\eta)} \left(\hat{R}(w_0) - \hat{R}(w_1)\right)$$

- LHS:
 - Scale of the gradient
 - Scale of the parameter update
- RHS:
 - Scale of the current risk
 - Scale of the risk decrement

• Extending this idea, we can prove that the GD arrives at some stationary-ish point

Theorem 7.1.

Let w_t be a t-step updated version of w_0 , with the learning rate $\eta \le 2/\beta$. Then, we have

$$\min_{i < t} \|\nabla \hat{R}(w_i)\|^2 \le \frac{2}{t\eta(2 - \eta\beta)} \left(\hat{R}(w_0) - \inf_{w} \hat{R}(w)\right)$$

• **Remark.** Plugging in $\eta = 1/\beta$, we get simply

$$\min_{i < t} \|\nabla \hat{R}(w_i)\|^2 \le \frac{2\beta}{t} \left(\hat{R}(w_0) - \inf_{w} \hat{R}(w)\right)$$

$$\min_{i < t} \|\nabla \hat{R}(w_i)\|^2 \le \frac{2}{t\eta(2 - \eta\beta)} \left(\hat{R}(w_0) - \inf_{w} \hat{R}(w)\right)$$

• Proof idea.

- Note that $\min \leq avg$
- Invoke the previous property

$$\|\nabla \hat{R}(w_0)\|^2 \le \frac{2}{\eta(2-\beta\eta)} \left(\hat{R}(w_0) - \hat{R}(w_1)\right)$$

• We can prove similar results for the gradient flow

$$\inf_{s \in [0,t]} \|\nabla \hat{R}(w(s))\|^2 \le \frac{1}{t} \left(\hat{R}(w(0)) - \hat{R}(w(t)) \right)$$

- Remark. Much cleaner form
 - No η
 - No β

$$\inf_{s \in [0,t]} \|\nabla \hat{R}(w(s))\|^2 \le \frac{1}{t} \left(\hat{R}(w(0)) - \hat{R}(w(t)) \right)$$

• Proof idea. Use the fact that

$$\hat{R}(w(t)) - \hat{R}(w(0)) = \int_0^t \langle \nabla \hat{R}(w(s)), \dot{w}(s) \rangle ds$$

Convexity

Convexity

• Now, let's think about another good tool — convexity

Definition (Convex).

A differentiable function \hat{R} is convex, whenever

$$\hat{R}(w') \ge \hat{R}(w) + \langle \nabla \hat{R}(w), w' - w \rangle$$

- Remarks.
 - Not the general definition, but useful one under differentiability
 - Synergy with smoothness
 - Recall the convex UB, which is a consequence of smoothness

$$\hat{R}(w') \le \hat{R}(w) + \langle \nabla \hat{R}(w), w' - w \rangle + \frac{\beta}{2} ||w - w'||^2, \quad \forall w, v$$

Let's bring that synergy into action

Theorem 7.3.

Suppose that \hat{R} is convex and β -smooth. Then, by GD with $\eta = 1/\beta$ we get: For any z, we have

$$\hat{R}(w_t) - \hat{R}(z) \le \frac{\beta}{2t} \left(\|w_0 - z\|^2 - \|w_t - z\|^2 \right).$$

- We can select the "reference point" z freely
 - what is the most useful choice? 🙋

Let's bring that synergy into action

Theorem 7.3.

Suppose that \hat{R} is convex and β -smooth. Then, by GD with $\eta = 1/\beta$ we get: For any z, we have

$$\hat{R}(w_t) - \hat{R}(z) \le \frac{\beta}{2t} \left(\|w_0 - z\|^2 - \|w_t - z\|^2 \right).$$

- We can select the "reference point" z freely
 - what is the most useful choice?
 - Answer. Of course, select $z = \arg\min_{z} \hat{R}(z)$
 - Otherwise, LHS can be meaningless
 - This leads to the GD risk convergence at rate $\sim 1/t$

$$\hat{R}(w_t) - \hat{R}(z) \le \frac{\beta}{2t} \left(\|w_0 - z\|^2 - \|w_t - z\|^2 \right).$$

• Proof idea. Use the decomposition

$$||w_{i+1} - z||^2 = ||w_i - z||^2 - \frac{2}{\beta} \langle \nabla \hat{R}(w_i), w_i - z \rangle + \frac{1}{\beta^2} ||\nabla \hat{R}(w_i)||^2$$

• Rephrasing, we get

$$\frac{2}{\beta} \langle \nabla \hat{R}(w_i), w_i - z \rangle - \frac{1}{\beta^2} ||\nabla \hat{R}(w_i)||^2 = ||w_i - z||^2 - ||w_{i+1} - z||^2$$

• Blue. Convexity implies

$$\hat{R}(w_i) \ge \hat{R}(z) + \langle \nabla \hat{R}(w), w_i - z \rangle$$

• Red. Smoothness implies

$$\|\nabla \hat{R}(w_i)\|^2 \le 2\beta \left(\hat{R}(w_i) - \hat{R}(w_{i+1})\right)$$

• There is a similar version for GF

Theorem 7.4.

For any $z \in \mathbb{R}^d$, GF for a convex \hat{R} satisfies

$$\hat{R}(w(t)) \le \hat{R}(z) + \frac{1}{2t} \left(\|w(0) - z\|^2 - \|w(t) - z\|^2 \right)$$

- Remark.
 - Again, no β
 - Holds for general reference point

$$\hat{R}(w(t)) \le \hat{R}(z) + \frac{1}{2t} \left(\|w(0) - z\|^2 - \|w(t) - z\|^2 \right)$$

• Proof.

$$\frac{1}{2} \left(\|w(t) - z\|^2 - \|w(0) - z\|^2 \right) = \int_0^t \frac{\mathrm{d}}{\mathrm{d}s} \|w(s) - z\|^2 \, \mathrm{d}s$$

$$= \int_0^t \left\langle \frac{\mathrm{d}w}{\mathrm{d}s}, w(s) - z \right\rangle \, \mathrm{d}s$$

$$= \int_0^t \left\langle \nabla \hat{R}(w(s)), z - w(s) \right\rangle \, \mathrm{d}s$$

$$\leq \int_0^t \left(\hat{R}(z) - \hat{R}(w(s)) \right) \, \mathrm{d}s$$

Strong Convexity

Strong Convexity

Consider a stronger assumption

Definition (Strongly convex).

A function \hat{R} is λ -strongly convex whenever

$$\hat{R}(w') \ge \hat{R}(w) + \langle \nabla \hat{R}(w), w' - w \rangle + \frac{\lambda}{2} ||w' - w||^2$$

• Remark. Even stronger synergy with the smoothness

$$\hat{R}(w') \le \hat{R}(w) + \langle \nabla \hat{R}(w), w' - w \rangle + \frac{\beta}{2} ||w - w'||^2, \quad \forall w, w'$$

Strong Convexity

• In fact, this is one of the reasons why we regularize

Proposition.

Suppose that \hat{R} is convex. Then, the regularized risk $\hat{R}_{\text{reg}} := \hat{R} + \lambda ||w||^2$ is 2λ -strongly convex

• **Proof idea.** Invoke the definition

$$\hat{R}(w') \ge \hat{R}(w) + \langle \nabla \hat{R}(w), w' - w \rangle + \frac{\lambda}{2} ||w' - w||^2$$

Lower bound on the Gradient

• Strong convexity gives you a lower bound on the scale of the gradient

Lemma 7.1.

Suppose that \hat{R} is λ -strongly convex. Then, for all w, we have

$$\hat{R}(w) - \inf_{v} \hat{R}(v) \le \frac{1}{2\lambda} \|\nabla \hat{R}(w)\|^2$$

• Remark. Compare with the consequence of smoothness

$$\|\nabla \hat{R}(w)\|^2 \le \frac{2}{\eta(2-\beta\eta)} \left(\hat{R}(w) - \hat{R}(w')\right)$$

Lower bound on the Gradient

$$\hat{R}(w) - \inf_{v} \hat{R}(v) \le \frac{1}{2\lambda} \|\nabla \hat{R}(w)\|^2$$

• **Proof idea.** For a fixed w, define a convex quadratic LB

$$Q_w(v) := \hat{R}(w) + \langle \nabla \hat{R}(w), v - w \rangle + \frac{\lambda}{2} ||v - w||^2$$

- Find the minimum \hat{v}
- Then, do:

$$\inf_{v} \hat{R}(v) \ge \inf_{v} Q_{w}(v) = Q_{w}(\hat{v})$$

• Given the strong convexity & smoothness, we can prove a stronger risk convergence bound

Theorem 7.5.

Suppose that \hat{R} is λ -strongly convex and β -smooth, and let $\eta = 1/\beta$. Then, for the risk minimizer \bar{w} , we have:

$$\hat{R}(w_t) - \hat{R}(\bar{w}) \le (\hat{R}(w_0) - \hat{R}(\bar{w})) \cdot \exp\left(-\frac{t\lambda}{\beta}\right)$$

- Note. This is an exponential convergence
 - Much faster than 1/t for the convex case

$$\hat{R}(w_t) - \hat{R}(\bar{w}) \le (\hat{R}(w_0) - \hat{R}(\bar{w})) \cdot \exp\left(-\frac{t\lambda}{\beta}\right)$$

• Proof sketch.

• Smoothness implies "GD reduces risk"

$$\hat{R}(w_{i+1}) - \hat{R}(\bar{w}) \le \hat{R}(w_i) - \hat{R}(\bar{w}) - \frac{\|\nabla \hat{R}(w_i)\|^2}{2\beta}$$

• Lemma 7.1. states

$$\hat{R}(w) - \inf_{v} \hat{R}(v) \le \frac{1}{2\lambda} \|\nabla \hat{R}(w)\|^2$$

Parameter convergence

Theorem 7.5 (cont'd).

... and also, we have

$$||w_t - \bar{w}||^2 \le ||w_0 - \bar{w}||^2 \exp\left(\frac{-t\lambda}{\beta}\right)$$

• Note. The first parameter convergence guarantee

Parameter convergence

$$||w_t - \bar{w}||^2 \le ||w_0 - \bar{w}||^2 \exp\left(\frac{-t\lambda}{\beta}\right)$$

• Proof idea.

- Let w' be an updated version of w
- Then, we get

$$\|w' - \bar{w}\|^2 = \|w - \bar{w}\|^2 + \frac{2}{\beta} \langle \nabla \hat{R}(w), \bar{w} - w \rangle + \frac{1}{\beta^2} \|\nabla \hat{R}(w)\|^2$$

- UB the 2nd term with the strong convexity
- UB the 3rd term with the smoothness

Next up

- Polyak-Łojasiewicz condition
- Stochastic gradients