10. Optimization:
Convex optimization




Moving on

e Part 1. Approximation
e For any function g( - ), we can make a NN f( - ) such that ||[f — g|| < €

o Key factors. Model size, smoothness of g( - ), smoothness of activation o( - )

e Part 2. Optimization
e By training with GD, the risk converges ﬁ(ﬁv(”) — ﬁ(v‘v) < (1)
e By training with GD, the parameter converges WO — || < w(f)

e Key factors. Smoothness and convexity of R( - ), step size, ...



Optimization
e In ML, we are trying to find nice ways to solve and analyze

min R(w)
w

e Typically, R(w) is the training risk
A 1 «
Rw) == ) £(f(x).y)
i

e However, will usually encapsulate everything as R(-)



Optimization

e Focus. We analyze how the first-order algorithms work

e Gradient descent
Wal =W, —1 - VR(w)
e Gradient flow
Ww(t) = — VR(w)

e This week. Heavy assumptions, no neural nets



Smoothness



Smoothness

e Two assumptions make it easy: Smoothness & Convexity

Definition (Smoothness).

A function R is f-smooth whenever
[VRW) = VRO < pliw =vll,  Yw,v

o Exercise. How smooth is the case of linear regression, i.e.,
2 _ Tv2
R(w) = |ly —w X||

e ReLU networks are not smooth in general — but we can still draw some insights from smooth cases



Convex upper bound

e Given the smoothness, we can prove that there exists a convex upper bound on risk

Lemma (Convex upper bound).

Suppose that Ris p-smooth. Then, we have

IAQ(V) < IAQ(W) + (VIA{(W), V—w)+ gHW —||?, Yw, v

e« Meaning. A smooth function cannot grow faster than quadratic functions .

e Remark. Gradient descent can be viewed as minimizing this convex UB

e when 1/f is the step size



Convex upper bound

p

IAQ(V) < ﬁ(w) + (VIAQ(W), V—w)+ EHW — VHZ, Yw, v

e Proofidea. Consider a curve t — IQ(W +t(v—w)) N\



GD reduces the risk

e Using the convex UB, we can show that GD always reduces the risk

Lemma (GD reduces the risk)
Let w, be a one-step-GD-updated version of wy, 1.e.,
Wi =WwWyg—1 - Vﬁ(wo)

Then, we have

R(w)) < R(wy) — 1 (1 — ﬁ%) IV R(wy)||?

e This holds for any 7

e Select “useful” values of 7



GD reduces the risk

Wi =Wyg—1 - Vﬁ(wo)

A A Dn A
R(w;) < R(wy) — 17 (1 5 |V R(wp)||*
e Proofidea. Use the convex UB
p

IAQ(V) < R(W) + (VIA?(W), V—w)+—||lw— sz, Yw, v

2



GD reduces the risk

pn
)

R(w) < R(wp) — 1 (1 ) IV Rwy)lI?

e Remark. Sometimes, useful to turn this into a form

L 2 . .
IVROI? <~ (Rov) = Rowp )

e LHS:

e Scale of the gradient

o Scale of the parameter update
e RHS:

e Scale of the current risk

e Scale of the risk decrement



GD does not go far

o Extending this idea, we can prove that the GD arrives at some stationary-ish point

Theorem 7.1.

Let w, be a #-step updated version of w,, with the learning rate < 2//. Then, we have

min HVI’AQ(WI-)H2 <

ni 2 = 1) (R(WO) — i?vf R(W))

e Remark. Pluggingin#»n = 1/f, we get simply

RO, ( . )
min ||VR(w)|[* < — R(wy) — inf R(w)

1<t



GD does not go far

min | VRGP < (22_ = (mw@) - igvfﬁw))

e Proofidea.

e Note that min < avg

e Invoke the previous property

o 2 . .
IVROI? <~ (Rowg) = ko))




GD does not go far

e We can prove similar results for the gradient flow

: A 9) 1 N >
inf ||[VRw(s))||* < — ( (w(0)) — R(W(f))>

s€[0,7] [

e Remark. Much cleaner form
e Noy7y
e Nof



GD does not go far

N 1 /. N
inf ||[VR(w(s))||? < — (R(W(O)) = R(W(f))>
s€[0,7] [

e Proofidea. Use the fact that
A

R(w(t)) — R(W(0)) = J (VR(W(s)), W(s)) ds

0



Convexity



Convexity

e Now, let’s think about another good tool — convexity

Definition (Convex).

A differentiable function R is convex, whenever
Rw") > R(w) + (VR(w),w' — w)

e Remarks.
e Not the general definition, but useful one under differentiability
e Synergy with smoothness

o Recall the convex UB, which is a consequence of smoothness

p

IAQ(W’) < IAQ(W) + (Vﬁ(w), w —w)+ EHW — w’Hz, Yw, v



Risk convergence

e Let’s bring that synergy into action

Theorem 7.3.

Suppose that R is convex and p-smooth. Then, by GD with = 1/ we get: For any z, we have
B
R(w) = R() < (Ilwg — zlI* = lIw, — zl1?).

e We can select the “reference point” 7 freely

e what is the most useful choice? @



Risk convergence

e Let’s bring that synergy into action

Theorem 7.3.

Suppose that R is convex and p-smooth. Then, by GD with = 1/ we get: For any z, we have
B
R(w) = R() < (Ilwg — zlI* = lIw, — zl1?).

e We can select the “reference point” 7 freely

e what is the most useful choice? @

., Answer. Of course, select z = arg min IAQ(z)
<

e Otherwise, LHS can be meaningless

e This leads to the GD risk convergence at rate ~ 1/¢



Risk convergence

Row) = R(2) < 2% (o = 2I12 = [Iw, — 2IP).

e Proofidea. Use the decomposition

2 . | A
Wiy =zl = [Iw; — zl|* - EWR(WZ-)»WZ- —2) + EHVR(W,-)H2



Risk convergence

 Rephrasing, we get
2

A 1 A
ﬁWR(W,-),Wi —2) — EHVR(W,-)HZ = [lw; = zll* = llw;yy — 2ll”

e Blue. Convexity implies
Rw,) > R(z) + ( VR(W), w; — )

e Red. Smoothness implies

IVRODIP < 26 (Rov) = ROv,.))



Risk convergence

e There 1s a stmilar version for GF

Theorem 7.4.

For any 7 € RY GF for a convex R satisfies

Rw(t)) < R(2) +— ([Iw(0) — z|I* = [lw(®) — z||?)

o ¢

¢ Remark.
e Again, no f

o Holds for general reference point



Risk convergence

N N 1 2 2
Rw(1) < R() + — (IIw(0) — z||* = [lw(®) — z||*)

o ¢

e Proof.



Strong Convexity



Strong Convexity

e Consider a stronger assumption

Definition (Strongly convex).

A function R is A-strongly convex whenever

R R " A
RW") > R(w) + { VR(w), w' — W>+5HW’ — w|*

e Remark. Even stronger synergy with the smoothness

IAQ(W’) < IAQ(W) + (VIA{(W), w —w)+ gHw — W’HZ, Yw, v



Strong Convexity

e In fact, this is one of the reasons why we regularize

Proposition.

Suppose that R is convex. Then, the regularized risk ﬁreg = R + A||w]||? is 21-strongly convex

e Proofidea. Invoke the definition

A A A A
R(w’) = R(w) + (VR(W), w' —w) + EHW’ - w]|*



Lower bound on the Gradient

e Strong convexity gives you a lower bound on the scale of the gradient

Lemma 7.1.

Suppose that Ris A-strongly convex. Then, for all w, we have

A A 1 A
R(w) —1nf R(v) < 2—/1”VR(W)H2

e Remark. Compare with the consequence of smoothness

o 2 (s
IVROIP < = (R0w) = Row) )




Lower bound on the Gradient

. . 1 n
R(w) —inf R(v) < EHVR(W)HZ

e Proofidea. For a fixed w, define a convex quadratic LB

A A A
Q,(v) :=R(w) + (VR(W),v —w) EHV - w]|*

e Find the minimum v
e Then, do:

inf R(v) > inf Q, (v) = Q. ()



Risk convergence

o Gilven the strong convexity & smoothness, we can prove a stronger risk convergence bound

Theorem 7.5.

Suppose that R is A-strongly convex and p-smooth, and lety = 1/4.
Then, for the risk minimizer w, we have:

R(w,) — ROW) < (R(wy) — R(W)) - exp ( t; )

e Note. This is an exponential convergence

e Much faster than 1/¢ for the convex case



Risk convergence

R(w) — R(W) < (R(wy) — R(W)) - exp ( t; )

e Proof sketch.

e Smoothness implies “GD reduces risk”
IVRw)II?

R(w;, ) — R(OW) < R(w,) — R(W) — Y

e Lemma 7.1. states

A A 1 A
R(w) —1nf R(v) < 2—/1WR(W)H2



Parameter convergence

Theorem 7.5 (cont’d).

... and also, we have

_ —14
lw, = w||* < \IWO—WH2€XP< 5 )

e Note. The first parameter convergence guarantee



Parameter convergence

_ —14
lw, = w||* < \IWO—WH2€XP< 5 )

e Proofidea.

e Let w'be an updated version of w

e Then, we get
F =2 2 2iup _ I > 2
[w'=w||” = [lw —w|| +E<VR(W),W—W>+ﬁ2HVR(W)H

e UB the 2nd term with the strong convexity
e UB the 3rd term with the smoothness



Next up

o Polyak-Lojasiewicz condition

e Stochastic gradients



