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Gaussian Mixture Models



Recap
• K-means. Each cluster is represented by centroid 

• Each datum belongs to a cluster with the nearest centroid 

• Limitations. Plenty, e.g., cannot handle 

• Overlapping clusters 

• Wider cluster 

• Example. Residents in Pohang 

• Student vs. Locals 

=> Take a more probabilistic approach



Mixture models
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• Fitting
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• Modeling: Model data generation with probability distributions 

• For mixture models: 

• :                         (Latent) Group identity         <— Not a “real” thing; a human artifact 

• :      Data distribution of each cluster 

• Fitting
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Mixture models
• Idea. Take a generative approach. 

• Modeling: Model data generation with probability distributions 

• For mixture models: 

• :                         (Latent) Group identity         <— Not a “real” thing; a human artifact 

• :      Data distribution of each cluster 

• Fitting: Use training data to fit the parameters 

•

Pϕ(cluster)

Pθ(feature | cluster)

Ptrain ≈ Pθ,ϕ(feature)



Mixture models
• Example. Previous example 

• Draw      (0: local, 1: students) 

• If ,  

• If ,   

• Allows overlap, account for wideness

Y ∈ {0,1} ∼ Bern(p)

Y = 0 X ∼ 𝒩(μ0, σ2
0)

Y = 1 X ∼ 𝒩(μ1, σ2
1)



Generative approach
• Perk. If you have learned a nice probabilistic model from data, 

           you can also sample a new data from Pθ,ϕ( ⋅ )



(finite) Mixture models
• Mixture models. A special set of generative models where  takes the form: P( ⋅ )

p(x) =
K

∑
k=1

πk ⋅ pk(x), πk ∈ [0,1], ∑ πk = 1.



Gaussian Mixture models
• Gaussian MM. Each base distribuion  is a Gaussian distribution 

 

• Here,  is the total parameter set

pk

p(x |θ) =
K

∑
k=1

πk ⋅ 𝒩(x |μk, Σk)

θ = (μ1, Σ1, …, μK, ΣK, π1, …, πK)



Gaussian Mixture models



Gaussian Mixture models
• Gaussian MM. Each base distribuion  is a Gaussian distribution 

 

• Here,  is the total parameter set 

• Question. How do we fit the parameters, given the training data ? 

• Note. Here, we do not care about “real” group identities.

pk

p(x |θ) =
K

∑
k=1

πk ⋅ 𝒩(x |μk, Σk)

θ = (μ1, Σ1, …, μK, ΣK, π1, …, πK)

{x1, …, xn}



Maximum likelihood
• Basic strategy. As in Naïve Bayes, we rely on the maximum likelihood principle:



Maximum likelihood
• Basic strategy. As in Naïve Bayes, we rely on the maximum likelihood principle: 

• Directly consider the likelihood for the mixture distribution 

 

                   

• Maximize this quantity by tuning 

p(x1:n |θ) =
n

∏
i=1

p(xi |θ)

=
n

∏
i=1

K

∑
k=1

πk(i) ⋅ 𝒩(xi |μk(i), Σk(i))

θ = {μk, Σk, πk | k ∈ [K]}



Maximum likelihood
• Transform to the usual log likelihood to make everything about summations: 

 

• Goal. Solve 

ℒ := log p(x1:n |θ) =
n

∑
i=1

log (
K

∑
k=1

πk ⋅ 𝒩(xi |μk, Σk))
max

θ
ℒ



Maximum likelihood
• Transform to the usual log likelihood to make everything about summations: 

 

• Goal. Solve  

• Normally, we would have tried to find optimum by critical point analysis 

• However, getting an closed-form solution is very difficult… 

• Give it a try, and let me know if you succeed

ℒ := log p(x1:n |θ) =
n

∑
i=1

log (
K

∑
k=1

πk ⋅ 𝒩(xi |μk, Σk))
max

θ
ℒ



Expectation-Maximization
• Idea. Repeat the following steps: 

• Fix some variables and optimize others 

• Fix the optimized variables and optimize the previously fixed



Expectation-Maximization
• Idea. Repeat the following steps: 

• Fix some variables and optimize others 

• Fix the optimized variables and optimize the previously fixed 

• Generally, this is a special case of expectation-maximization (EM) algorithm 

• Similar to what we did in K-means



EM in K-means
• Recall that in Hard K-means: 

• Randomly initialize centroids  

• Fix the centroid  and optimize the assignment  

• Optimal, if nearest neighbor 

• Fix the assignment  and optimize the centroid  

• Optimal, if mean of the assigned data 

• Repeat

{μk}

{μk} {rik}

{rik} {μk}



EM in GMM
• Similarly, what we want to do is: 

• Randomly initialize parameters  

• Fix the parameters  and optimize the responsibility  

• Optimal, if? 

• Fix the responsibility  and optimize the parameters  

• Optimal, if? 

• Repeat 

• Let us think about the optimality conditions…

θ = {μk, Σk, πk}

θ {rik}

{rik} θ

Non-binary, as in soft K-means



Recall: Multivariate Gaussian
• Multivariate Gaussians: 

 

• By taking log, we get 

𝒩(x |μ, Σ) =
1

(2π)d |Σ |
⋅ exp (−

1
2

(x − μ)⊤Σ−1(x − μ))

log 𝒩(x |μ, Σ) = −
1
2

⋅ (d log(2π) + log |Σ | + (x − μ)⊤Σ−1(x − μ))



Recall: Responsibilities
• Responsibilities. How likely each data belongs to a certain cluster 

• Soft K-means. The softmax value 

rik =
exp(−β∥xi − μk∥2

2)
∑j exp(−β∥xi − μj∥2

2)



Recall: Responsibilities
• Responsibilities. How likely each data belongs to a certain cluster 
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• GMM. We use 
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exp(−β∥xi − μk∥2

2)
∑j exp(−β∥xi − μj∥2

2)
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Recall: Responsibilities
• Responsibilities. How likely each data belongs to a certain cluster 

• Soft K-means. The softmax value 

 

• GMM. We use 

rik =
exp(−β∥xi − μk∥2

2)
∑j exp(−β∥xi − μj∥2

2)

rik =
πk𝒩(x |μk, Σk)

∑j πj𝒩(x |μj, Σj)

p(y = k |x) =
p(x, y = k)

p(x)
p(x)

p(y = k)
p(x |y = k)



Recall: Responsibilities
• Responsibilities. How likely each data belongs to a certain cluster 

• Soft K-means. The softmax value 

 

• GMM. We use 

 

• Note. If  and , then this is identical to soft K-means

rik =
exp(−β∥xi − μk∥2

2)
∑j exp(−β∥xi − μj∥2

2)

rik =
πk𝒩(x |μk, Σk)

∑j πj𝒩(x |μj, Σj)

πk = 1/K σk = 1/β



Optimality condition: Mean
• Recall that 

 

• Partial derivative w.r.t.  is: 

ℒ := log p(x1:n |θ) =
n

∑
i=1

log (
K

∑
k=1

πk ⋅ 𝒩(xi |μk, Σk))
μk

∇μk
ℒ =

n

∑
i=1

πk ⋅ ∇μk
𝒩(x |μk, Σk)

∑ πj𝒩(xi |μj, Σj)
=

n

∑
i=1

rik(xi − μk)⊤Σ−1
k = 0

⇒ μk =
∑i rikxi

∑i rik



Optimality condition: Variance
• Do the similar thing, an get 

 

• Here, we are using the shorthand  

• For derivation, see section 11.2.3 of the main textbook

Σk =
1
nk

n

∑
i=1

rik(xi − μk)(xi − μk)⊤

nk =
n

∑
i=1

rik



Optimality condition: Mixture weights
• Do the similar thing, and you get 

 

• For derivation, see section 11.2.3 of the main textbook 

• This one is trickier, as this is constrained; use Lagrange multipliers!

πk =
nk

n



The full algorithm





Next lecture
• A bit more about the EM algorithm, in general 

• Why do we call such algorithms Expectation-Maximization? 

• Why does EM algorithm converge? 

• (Somewhat advanced; not in mid-term)



Cheers


