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Recap

- K-means. Each cluster is represented by centroid

- Each datum belongs to a cluster with the nearest centroid

- Limitations. Plenty, e.g., cannot handle A

- QOverlapping clusters ® ©
- Wider cluster ®
O O
- Example. Residents in Pohang
@
- Student vs. Locals -~

=> Take a more probabilistic approach



Mixture models



Mixture models

» Idea. Take a generative approach

« Modeling

o FittiNng



Mixture models

« Modeling: Model data generation with probability distributions

e For mixture models:

o P¢(Cluster): (Latent) Group identity <— Not a “real” thing; a human artifact

. Py(teature | cluster): Data distribution of each cluster



Mixture models

e Fitting: Use training data to fit the parameters

o Pyain ® Py (teature)

rain



Mixture models

« Example. Previous example
« Draw Y € {0,1} ~ Bern(p) (O: local, 1: students)

. |fY=O,X~/V(ﬂ0a0§)

. |fY=1,X~«/V(//11a012) ©

« Allows overlap, account for wideness




Generative approach

« Perk. It you have learned a nice probabilistic model from data,
you can also sample a new data from P9,¢( + )




(finite) Mixture models

. Mixture models. A special set of generative models where P( - ) takes the form:

K
p(X) = Z 7, - pi(X), m, € [0,1], Z = 1.
k=1
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(Gaussian Mixture models

- Gaussian MM. Each base distribuion p; is a Gaussian distribution

K
px[0) = ) - N (X|up Zy)
k=1

.+ Here, 0 = (1, 2, ..., fg, 2, Ty, ..., Ty ) iS the total parameter set



(Gaussian Mixture models
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(Gaussian Mixture models

- Question. How do we fit the parameters, given the training data {Xy, ..., X, }?

- Note. Here, we do not care about “real” group identities.



Maximum likelihood

- Basic strategy. As in Naive Bayes, we rely on the maximum likelihood principle:



Maximum likelihood

. Directly consider the likelihood for the mixture distribution

px,,10) = | | p(x;10)
=1

- H Z ity * N (X | iy Zi)

=1 k=1

. Maximize this quantity by tuning @ = {y, X, ;. | k € [K]}



Maximum likelihood

- Transform to the usual log likelihood to make everything about summations:
n K

Z = logp(x;.,|0) = Z log 2 7 - N (X | o 2
i=1 k=1

. Goal. Solve max &
0



Maximum likelihood

- Normally, we would have tried to find optimum by critical point analysis
- However, getting an closed-form solution is very difficult...

- Giveitatry, and let me know if you succeed



Expectation-Maximization

. ldea. Repeat the following steps:
- Fix some variables and optimize others

- Fix the optimized variables and optimize the previously fixed



Expectation-Maximization

- Generally, this is a special case of expectation-maximization (EM) algorithm

« Similar to what we did in K-means

Algorithm 1 k-means algorithm

1: Specify the number £ of clusters to assign.

2: Randomly initialize k centroids.

3: repeat

4: expectation: Assign each point to its closest centroid.

5:  maximization: Compute the new centroid (mean) of each cluster.
6: until The centroid positions do not change.




EM 1n K-means

« Recall that in Hard K-means:

. Randomly initialize centroids { y, }

» Fix the centroid { u, } and optimize the assignment {r;, |

- Optimal, it nearest neighbor

. Fix the assignment {r; } and optimize the centroid {y, }

- Optimal, it mean of the assigned data

- Repeat



EM in GMM

- Similarly, what we want to do is:

. Randomly initialize parameters € = {u,, 2,, 7, } Non-binary, as in soft K-means

/

. Fix the parameters € and optimize the responsibility {7 }
» Optimal, it?

- Fix the responsibility {7;, } and optimize the parameters ¢
» Optimal, it?

- Repeat

. Let us think about the optimality conditions...



Recall: Multivariate Gaussian

- Multivariate Gaussians:

1 1
N(X|p, T) = - ——(x— )T (x — )
(x| pu, ) T eXp( 2(X 1) (X — u)

- By taking log, we get

log NV (X|u,2) = — % - (dlog(Zn) +log|Z| 4+ (x—p)' T (x - ,u))



Recall: Responsibilities

- Responsibilities. How likely each data belongs to a certain cluster

. Soft K-means. The softmax value

exp(=plIx; — el
Fike = 5
Z,- exp(—plIx; — uill5)




Recall: Responsibilities

- GMM. We use

I eV (X | pger 24




ilities
I: Responsibilitie
11

Reca

p(y =
We use
. GMM.

px|y = k)
’ Zk)
m N (X |y,

[ ) .)
) X | pj, 2;
ik ; iV (

AN
p(X,y = k)

p(x)
= K= p(x)
p(y =




Recall: Responsibilities

- GMM. We use

- ﬂk'/’/(x ‘/’tka Zk)

. Note. If ;;, = 1/K and 6, = 1/f, then this is identical to soft K-means



Optimality condition: Mean

« Recall that

n K
Z :=logp(x;.,|0) = Z log ( Z 7 = N (X | e Zk))

=1 k=1

- Partial derivative w.rt. y, is:

LV, N Xy ) &

V, & = = ) rp (X, — ) X =0
H lzZl Z”j«/’/ (Xi‘/’tja Zj) gf - vk

Zi %
Zi Vik

:>//ik:



Optimality condition: Variance

- Do the similar thing, an get

1 n
2y = P Z ridX; = ) (X — ) '
k=1

n

Here, we are using the shorthand n;, = Z Vit
=1

« For derivation, see section 11.2.3 of the main textbook



Optimality condition: Mixture weights

- Do the similar thing, and you get

ﬂk=_
n

- For derivation, see section 11.2.3 of the main textbook

. This one is trickier, as this is constrained; use Lagrange multipliers!



The full algorithm

1. Initialize p,, 35, .
2. E-step: Evaluate responsibilities r,,; for every data point x,, using cur-
rent parameters my, fb;, 2:

N WkN(fUn | s Ek)
nk — .

3. M-step: Reestimate parameters my, W,, 23, using the current responsi-
bilities r,,;, (from E-step):

(11.53)

1 N
— e, 11.5
M= 5 nz::lr K T (11.54)
1 N
= > rae(@n — ) (@ — 1) " (11.55)
k n=1



Original Data k-Means Clustering EM Clustering
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Next lecture

.« A bit more about the EM algorithm, in general
- Why do we call such algorithms Expectation-Maximization?
- Why does EM algorithm converge?

- (Somewhat advanced: not in mid-term)



Cheers



