

EECE454 Intro. to Machine Learning Systems Gaussian Mixture Models

Recap

- K-means. Each cluster is represented by centroid
	- Each datum belongs to a cluster with the nearest centroid

- Limitations. Plenty, e.g., cannot handle
	- Overlapping clusters
	- Wider cluster
	- Example. Residents in Pohang
		- Student vs. Locals

=> Take a more probabilistic approach

- · Idea. Take a generative approach
	- · Modeling

• Fitting

- Idea. Take a generative approach
	- Modeling: Model data generation with probability distributions
		- For mixture models:
			- (Latent) Group identity \leq \sim Not a "real" thing; a human artifact • P_{ϕ} (cluster):
			- Data distribution of each cluster • P_{θ} (feature | cluster):
	- Fitting

- Idea. Take a generative approach.
	- Modeling: Model data generation with probability distributions
		- For mixture models:
			- P_{ϕ} (cluster):
			- P_{θ} (feature | cluster): Data distribution of each cluster
	- Fitting: Use training data to fit the parameters
		- $P_{\text{train}} \approx P_{\theta, \phi}(\text{feature})$

(Latent) Group identity \leq \leq Not a "real" thing; a human artifact

- Example. Previous example
	- Draw $Y \in \{0,1\} \sim \text{Bern}(p)$ (0: local, 1: students)
		- If $Y=0$, $Y = 0, X \sim \mathcal{N}(\mu_0, \sigma_0^2)$
		- If $Y=1$, $Y = 1, X \sim \mathcal{N}(\mu_1, \sigma_1^2)$
	- Allows overlap, account for wideness

Generative approach

• Perk. If you have learned a nice probabilistic model from data, you can also sample a new data from $P_{\theta,\phi}(\ \cdot \)$

(finite) Mixture models

• **Mixture models.** A special set of generative models where $P(\cdot)$ takes the form:

 $\pi_k \cdot p_k(\mathbf{x}), \qquad \pi_k \in [0,1], \sum \pi_k = 1.$

Gaussian Mixture models

• Gaussian MM. Each base distribuion p_k is a Gaussian distribution

• Here, $\theta = (\mu_1, \Sigma_1, ..., \mu_K, \Sigma_K, \pi_1, ..., \pi_K)$ is the total parameter set

$$
\sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)
$$

Gaussian Mixture models

 $p(x | \theta) = 0.5 \mathcal{N}(x | -2, \frac{1}{2}) + 0.2 \mathcal{N}(x | 1, 2) + 0.3 \mathcal{N}(x | 4, 1)$

Gaussian Mixture models

• Gaussian MM. Each base distribuion p_k is a Gaussian distribution

- Here, $\theta = (\mu_1, \Sigma_1, ..., \mu_K, \Sigma_K, \pi_1, ..., \pi_K)$ is the total parameter set
- Question. How do we fit the parameters, given the training data $\{x_1, ..., x_n\}$?
	- Note. Here, we do not care about "real" group identities.

$$
\sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)
$$

• Basic strategy. As in Naïve Bayes, we rely on the maximum likelihood principle:

- Basic strategy. As in Naïve Bayes, we rely on the maximum likelihood principle:
	- Directly consider the likelihood for the mixture distribution

$$
p(\mathbf{x}_{1:n} | \theta) = \prod_{i=1}^{n} p(\mathbf{x}_i | \theta)
$$

$$
= \prod_{i=1}^{n} \sum_{k=1}^{K} \pi_{k(i)} \cdot \mathcal{N}(\mathbf{x}_i)
$$

• Maximize this quantity by tuning $\theta = {\mu_k, \Sigma_k, \pi_k \mid k \in [K]}$

 $\pi_{k(i)} \cdot \mathcal{N}(\mathbf{x}_i | \mu_{k(i)}, \Sigma_{k(i)})$

• Goal. Solve max *θ* \mathscr{L}

• Transform to the usual log likelihood to make everything about summations:

log (*K* ∑ *k*=1 $\pi_k \cdot \mathcal{N}(\mathbf{x}_i | \mu_k, \Sigma_k)$ \int

• Transform to the usual log likelihood to make everything about summations:

- Normally, we would have tried to find optimum by critical point analysis
	- However, getting an closed-form solution is very difficult…
		- Give it a try, and let me know if you succeed

log (*K* ∑ *k*=1 $\pi_k \cdot \mathcal{N}(\mathbf{x}_i | \mu_k, \Sigma_k)$ $\overline{ }$

- · Idea. Repeat the following steps:
	- Fix some variables and optimize others
	- Fix the optimized variables and optimize the previously fixed

Expectation-Maximization

Expectation-Maximization

maximization: Compute the new centroid (mean) of each cluster.

- Idea. Repeat the following steps:
	- Fix some variables and optimize others
	- Fix the optimized variables and optimize the previously fixed
- Generally, this is a special case of **expectation-maximization (EM)** algorithm
	- Similar to what we did in K-means

Algorithm 1 k -means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- $3:$ repeat
- **expectation:** Assign each point to its closest centroid. 4:
- $5:$
- 6: **until** The centroid positions do not change.

- Recall that in Hard K-means:
	- Randomly initialize centroids $\{\mu_k\}$
	- Fix the centroid $\{\mu_k\}$ and optimize the assignment $\{r_{ik}\}$
		- Optimal, if nearest neighbor
	- Fix the assignment $\{r_{ik}\}$ and optimize the centroid $\{\mu_k\}$
		- Optimal, if mean of the assigned data
	- Repeat

EM in K-means

EM in GMM

- Similarly, what we want to do is:
	- Randomly initialize parameters $\theta = {\mu_k, \Sigma_k, \pi_k}$
	- Fix the parameters θ and optimize the **responsibility** $\{r_{ik}\}$
		- Optimal, if?
	- Fix the **responsibility** $\{r_{ik}\}$ and optimize the parameters θ
		- Optimal, if?
	- Repeat
- Let us think about the optimality conditions…

Non-binary, as in soft K-means

Recall: Multivariate Gaussian

• Multivariate Gaussians:

• By taking log, we get

 $\log \mathcal{N}(\mathbf{x}|\mu, \Sigma) = -\frac{1}{2}$ 2

 \cdot $(d \log(2\pi) + \log |\Sigma| + (\mathbf{x} - \mu)^T \Sigma^{-1}(\mathbf{x} - \mu))$

$$
\mathcal{N}(\mathbf{x} | \mu, \Sigma) = \frac{1}{\sqrt{(2\pi)^d |\Sigma|}} \cdot \exp\left(-\frac{1}{2}(\mathbf{x} - \mu)^{\top} \Sigma^{-1}(\mathbf{x} - \mu)\right)
$$

- Responsibilities. How likely each data belongs to a certain cluster
	- Soft K-means. The softmax value

$$
\frac{\exp(-\beta||\mathbf{x}_i - \mu_k||_2^2)}{\sum_j \exp(-\beta||\mathbf{x}_i - \mu_j||_2^2)}
$$

- Responsibilities. How likely each data belongs to a certain cluster
	- Soft K-means. The softmax value

GMM. We use

 $exp(-\beta ||\mathbf{x}_i - \mu_k||_2^2)$ $\sum_j \exp(-\beta ||\mathbf{x}_i - \mu_j||_2^2)$

 $\pi_k \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)$ $\sum_j \pi_j \mathcal{N}(\mathbf{x} | \mu_j, \Sigma_j)$

- Responsibilities. How likely each data belongs to a certain cluster
	- Soft K-means. The softmax value

 $exp(-\beta ||\mathbf{x}_i - \mu_k||_2^2)$

- Responsibilities. How likely each data belongs to a certain cluster
	- Soft K-means. The softmax value

GMM. We use

 $r_{ik} =$

• Note. If $\pi_k = 1/K$ and $\sigma_k = 1/\beta$, then this is identical to soft K-means

 $exp(-\beta ||\mathbf{x}_i - \mu_k||_2^2)$ $\sum_j \exp(-\beta ||\mathbf{x}_i - \mu_j||_2^2)$

 $\pi_k \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)$ $\sum_j \pi_j \mathcal{N}(\mathbf{x} | \mu_j, \Sigma_j)$

Optimality condition: Mean

• Recall that

- $\mathscr{L} := \log p(\mathbf{x}_{1:n} | \theta) =$ *n* ∑ *i*=1
- Partial derivative w.r.t. μ_k is:

log (*K* ∑ *k*=1 $\pi_k \cdot \mathcal{N}(\mathbf{x}_i | \mu_k, \Sigma_k)$ \int

= *n* ∑ *i*=1 $r_{ik}(\mathbf{x}_i - \mu_k)^{\top} \Sigma_k^{-1}$ $\frac{1}{k} = 0$

$$
\nabla_{\mu_k} \mathcal{L} = \sum_{i=1}^n \frac{\pi_k \cdot \nabla_{\mu_k} \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)}{\sum \pi_j \mathcal{N}(\mathbf{x}_i | \mu_j, \Sigma_j)}
$$

$$
\Rightarrow \mu_k = \frac{\sum_i r_{ik} \mathbf{x}_i}{\sum_i r_{ik}}
$$

Optimality condition: Variance

• Do the similar thing, an get

 $r_{ik}(\mathbf{x}_i - \mu_k)(\mathbf{x}_i - \mu_k)$ ⊤

• For derivation, see section 11.2.3 of the main textbook

 $\Sigma_k =$

1

nk

n

∑

i=1

Optimality condition: Mixture weights

• Do the similar thing, and you get

- For derivation, see section 11.2.3 of the main textbook
- This one is trickier, as this is constrained; use Lagrange multipliers!

$$
\pi_k = \frac{n_k}{n}
$$

1. Initialize μ_k, Σ_k, π_k . rent parameters π_k, μ_k, Σ_k :

$$
r_{nk} = \frac{\pi_k \mathcal{N}(\boldsymbol{x}_n \,|\, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\boldsymbol{x}_n \,|\, \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.
$$
(11.53)

bilities r_{nk} (from E-step):

$$
\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^N r_{nk} \boldsymbol{x}_n ,
$$
\n
$$
\boldsymbol{\Sigma}_k = \frac{1}{N_k} \sum_{n=1}^N r_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^\top ,
$$
\n
$$
\pi_k = \frac{N_k}{N} .
$$

The full algorithm

2. *E-step*: Evaluate responsibilities r_{nk} for every data point x_n using cur-

3. *M-step*: Reestimate parameters π_k , μ_k , Σ_k using the current responsi-

 (11.54)

 (11.55)

 (11.56)

Next lecture

- A bit more about the EM algorithm, in general
	- Why do we call such algorithms Expectation-Maximization?
	- Why does EM algorithm converge?
	- (Somewhat advanced; not in mid-term)

Cheers