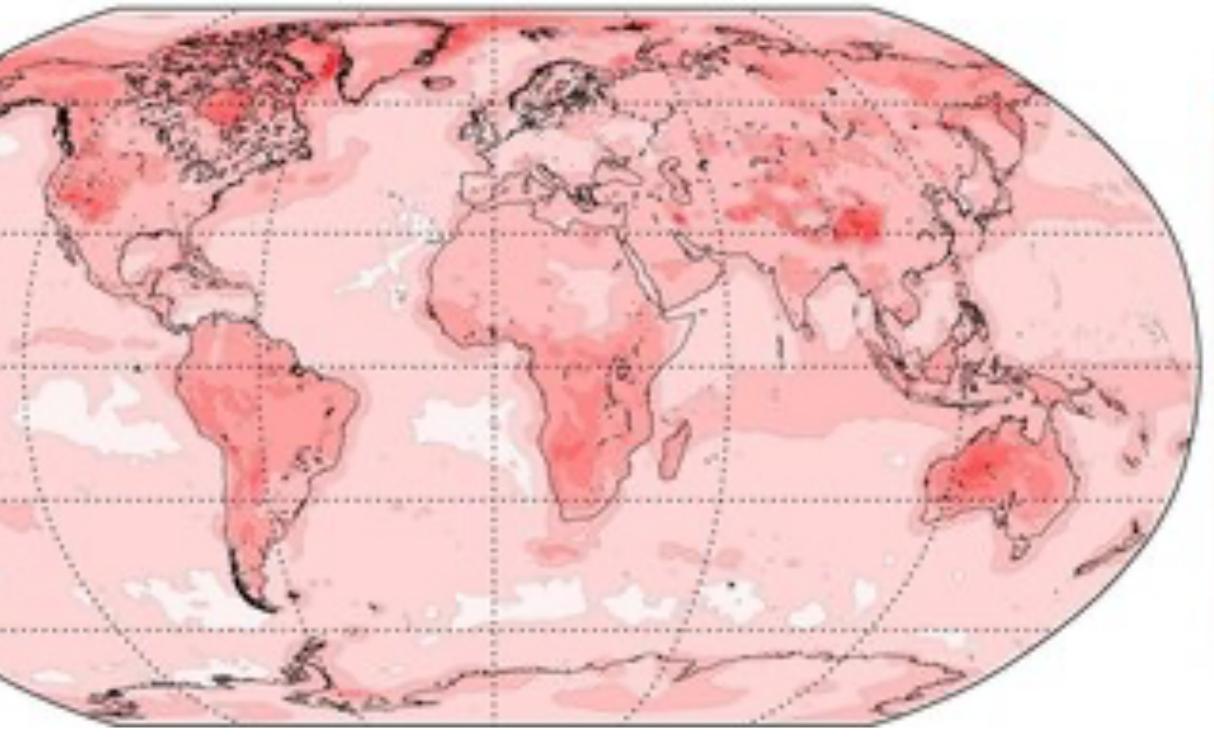
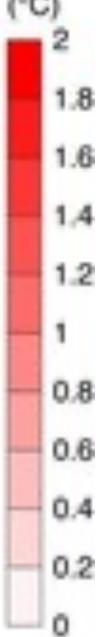
K-Means Clustering EECE454 Intro. to Machine Learning Systems

Recap: Supervised Learning

- Given. A labeled dataset $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- **Goal.** Learn $f(\cdot)$ such that $f(\mathbf{x}) \approx y$
 - <u>Example</u>. ERA5 dataset
 - X: time & location
 - y: temperature
 - Goal: Predict temperature at a new time & location

ERA5 January 2016, Mean Spread in Temperature





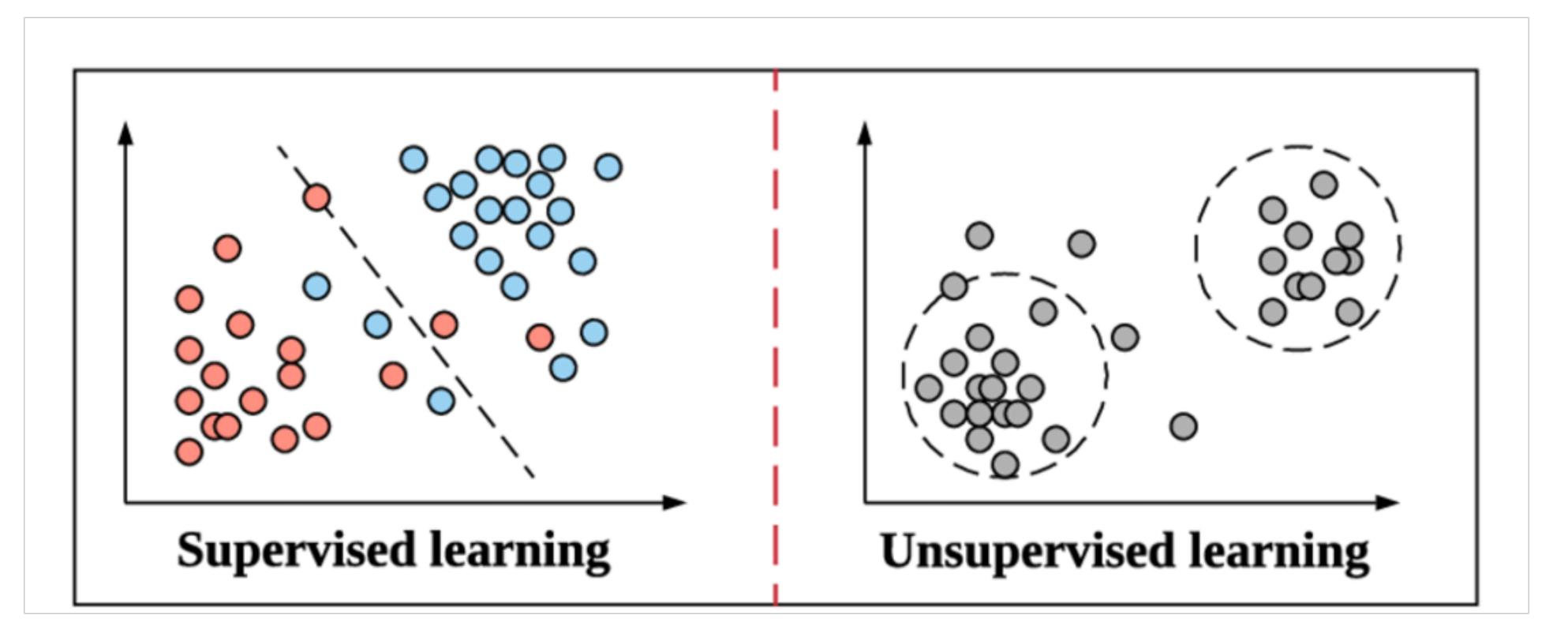
Unsupervised Learning

Unsupervised Learning

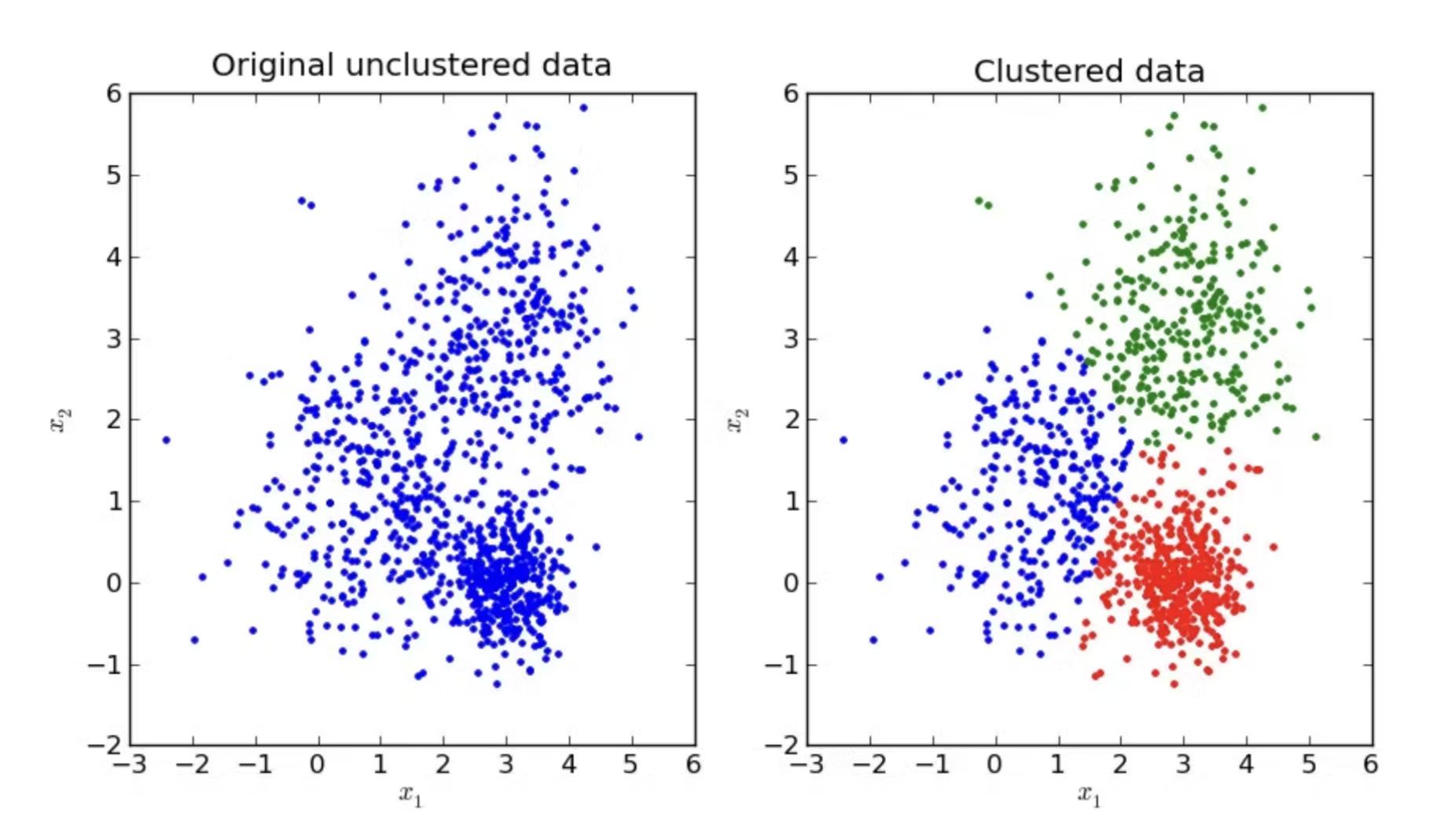
- Given. An unlabeled dataset $D = {\mathbf{x}_i}_{i=1}^n$
 - No labeleing cost (typically very large!
 - <u>Example</u>. Common Crawl petabytes of web-crawled sentences ullet
 - Most language models are trained on these!

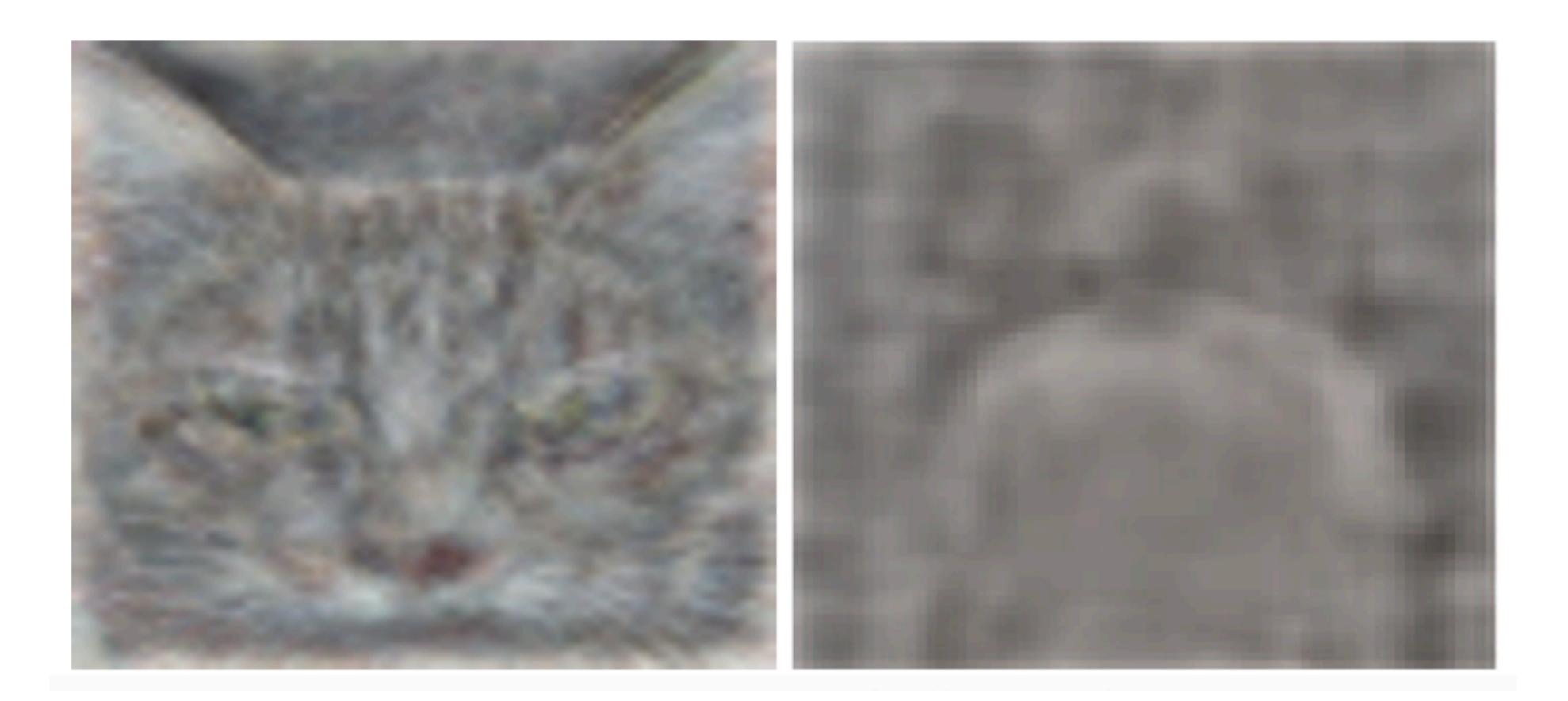
Unsupervised Learning

- Goal. Get insights from data, by discovering underlying structure, cause, or statistical relation
 - Learned structure can be used for supervised learning tasks • (e.g., learning a feature map $\Phi(\cdot)$)



• **1957.** People were clustering many data points





Q. V. Le "Building High-Level Features Using Large Scale Unsupervised Learning," ICASSP 2013

• 2012. Discovered patterns (useful for classification) from YouTube videos without any supervision

• 2014. People used face images to generate realistic(?) new faces



Goodfellow et al., "Generative Adversarial Nets" NeurIPS 2014

• **2024.** People are training awesome chatbots

OpenAl o1-preview

What is the pH of a 0.10 M solution of NH_4F ? The K_a of NH_4^+ is 5.6×10^{-10} and the K_a of HF is 6.8×10^{-4} .

Hide chain of thought **^**

First, let's understand what is being asked.

We need to find the pH of a 0.10 M solution of ammonium fluoride, NH4F.

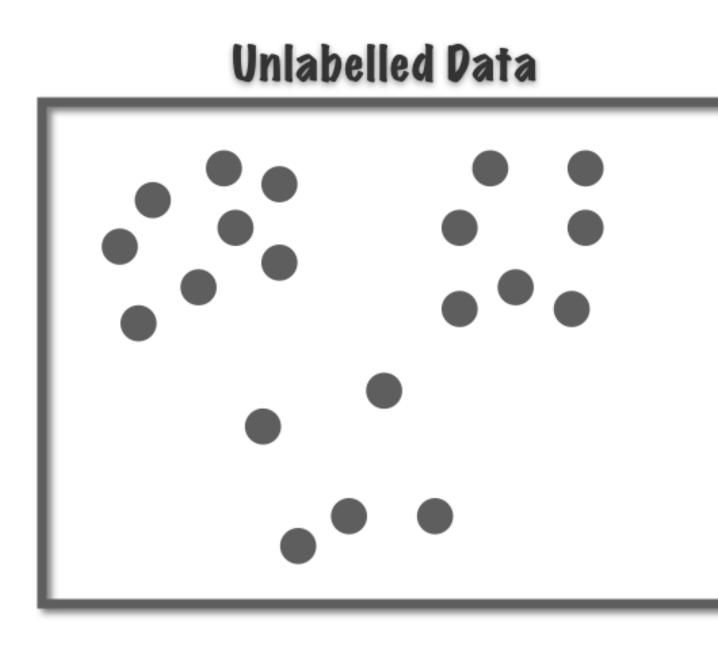
K-Means Clustering

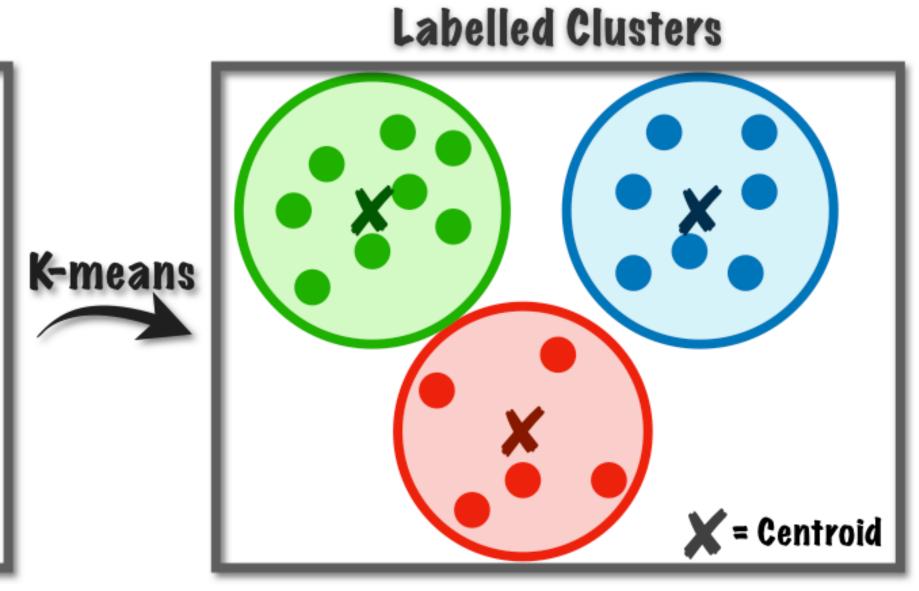
Clustering

- Assigning a set of unlabeled data points into pre-specified # of groups
 - K-Means, Gaussian Mixture Models, Hierarchical Clustering, Spectral Clustering, ...
 - Implicitly assumes some notion of **similarity** ullet
 - Typically maximizes the similarity of each datum to their assigned clusters

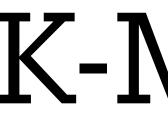


- Each cluster is represented by a single point in space, called centroid
- The loss is measured by the dist(data, centroid)
 - i.e., maximize the centroid-data similarity





- Suppose that we have a dataset $D = \{\mathbf{x}_i\}_{i=1}^n, \mathbf{x}_i \in \mathbb{R}^d$
- We make two decisions:
 - We make K clusters decide corresponding centroids $\mu_1, \ldots, \mu_K \in \mathbb{R}^d$



- Suppose that we have a dataset $D = \{\mathbf{x}_i\}_{i=1}^n$, $\mathbf{x}_i \in \mathbb{R}^d$
- We make two decisions:
 - We make K clusters decide corresponding centroids $\mu_1, \ldots, \mu_K \in \mathbb{R}^d$
 - We assign data decide the assignment
 - $r_{ik} = 1$ means \mathbf{x}_i belongs to k-th cluster (0 otherwise)

$$r_{ik} \in \{0,1\}, \quad \sum_{k=1}^{K} r_{ik} = 1$$



- Suppose that we have a dataset $D = \{\mathbf{x}_i\}_{i=1}^n, \mathbf{x}_i \in \mathbb{R}^d$
- We make two decisions:
 - We make K clusters decide corresponding centroids $\mu_1, \ldots, \mu_K \in \mathbb{R}^d$
 - We assign data decide the assignment
 - $r_{ik} = 1$ means \mathbf{x}_i belongs to k-th cluster (0 otherwise)
- Goal. Choose nice $\{\mu_k\}$, $\{r_{ik}\}$ which minimize the mean-squared distance (or any distance), i.e.,

min min $\{\mu_k\} \{r_{ik}\}$

$$r_{ik} \in \{0,1\}, \qquad \sum_{k=1}^{K} r_{ik} = 1$$

$$\sum_{i=1}^{n} r_{ik} \|\mathbf{x}_{i} - \mu_{k}\|_{2}^{2}$$

minmin $\{\mu_k\} \{r_{ik}\}$

- This is a mixed optimization of **discrete & continuous** variables
 - Tricky to solve in general.

$$\sum_{i=1}^{n} r_{ik} \|\mathbf{x}_{i} - \mu_{k}\|_{2}^{2}$$

min min $\{\mu_k\} \{r_{ik}\}$

- This is a mixed optimization of **discrete & continuous** variables • Tricky to solve in general.
- **Strategy.** Look at the optimality conditions of each subproblem
 - <u>Principle 1. Centroid —> assignment: Assign to the closest centroid</u> •
 - Given the centroid, optimal assignment is obvious:

$$r_{ik} = \begin{cases} 1 & \cdots \\ 0 & \cdots \end{cases}$$

$$\sum_{i=1}^{n} r_{ik} \|\mathbf{x}_{i} - \mu_{k}\|_{2}^{2}$$

$$k = \operatorname{argmin}_{k} \|\mathbf{x}_{i} - \boldsymbol{\mu}_{k}\|_{2}^{2}$$
otherwise

min min $\{\mu_k\} \{r_{ik}\}$

- This is a mixed optimization of **discrete & continuous** variables
 - Tricky to solve in general.
- **Strategy.** Look at the optimality conditions of each subproblem
 - <u>Principle 1</u>. Centroid —> assignment: Assign to the closest centroid
 - <u>Principle 2</u>. Assignment —> centroid: Take an average ullet
 - Given the assignments, optimal centroid is obvious: If $\mathbf{x}_{(1)}, \ldots, \mathbf{x}_{(n_k)}$ are assigned to the kth cluster, let

$$\sum_{i=1}^{n} r_{ik} \|\mathbf{x}_{i} - \mu_{k}\|_{2}^{2}$$

$$\sum_{k=1}^{k} \|\mu - \mathbf{x}_{(i)}\|_{2}^{2} = \frac{1}{n_{k}} \sum_{i=1}^{n_{k}} \mathbf{x}_{(i)}$$

- This is a mixed optimization of **discrete & continuous** variables
 - Tricky to solve in general.
- **Strategy.** Look at the optimality conditions of each subproblem
 - <u>Principle 1</u>. Centroid —> assignment: Assign to the closest centroid
 - <u>Principle 2</u>. Assignment —> centroid: Take an average
- In other words, the optimal solution should satisfy both:
 - Data are assigned to the nearest centroid
 - Centroids are average of assigned data
- **Question.** How do we find a solution that satisfies these?

$\min_{\{\mu_k\}} \min_{\{r_{ik}\}} \sum_{i=1}^n r_{ik} \|\mathbf{x}_i - \mu_k\|_2^2$

- Algorithm. Apply P1 —> Apply P2 —> Apply P1 —> ... —> Until convergence
 - Assignment step. Given $\{\mu_k\}$, find $\{r_{ik}\}$
 - Update step. Given $\{r_{ik}\}$, find $\{\mu_k\}$

Algorithm 1 k-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids. 3: repeat
- 4: expectation: Assign each point to its closest centroid.
- 5:
- 6: **until** The centroid positions do not change.

Lloyd's algorithm

maximization: Compute the new centroid (mean) of each cluster.

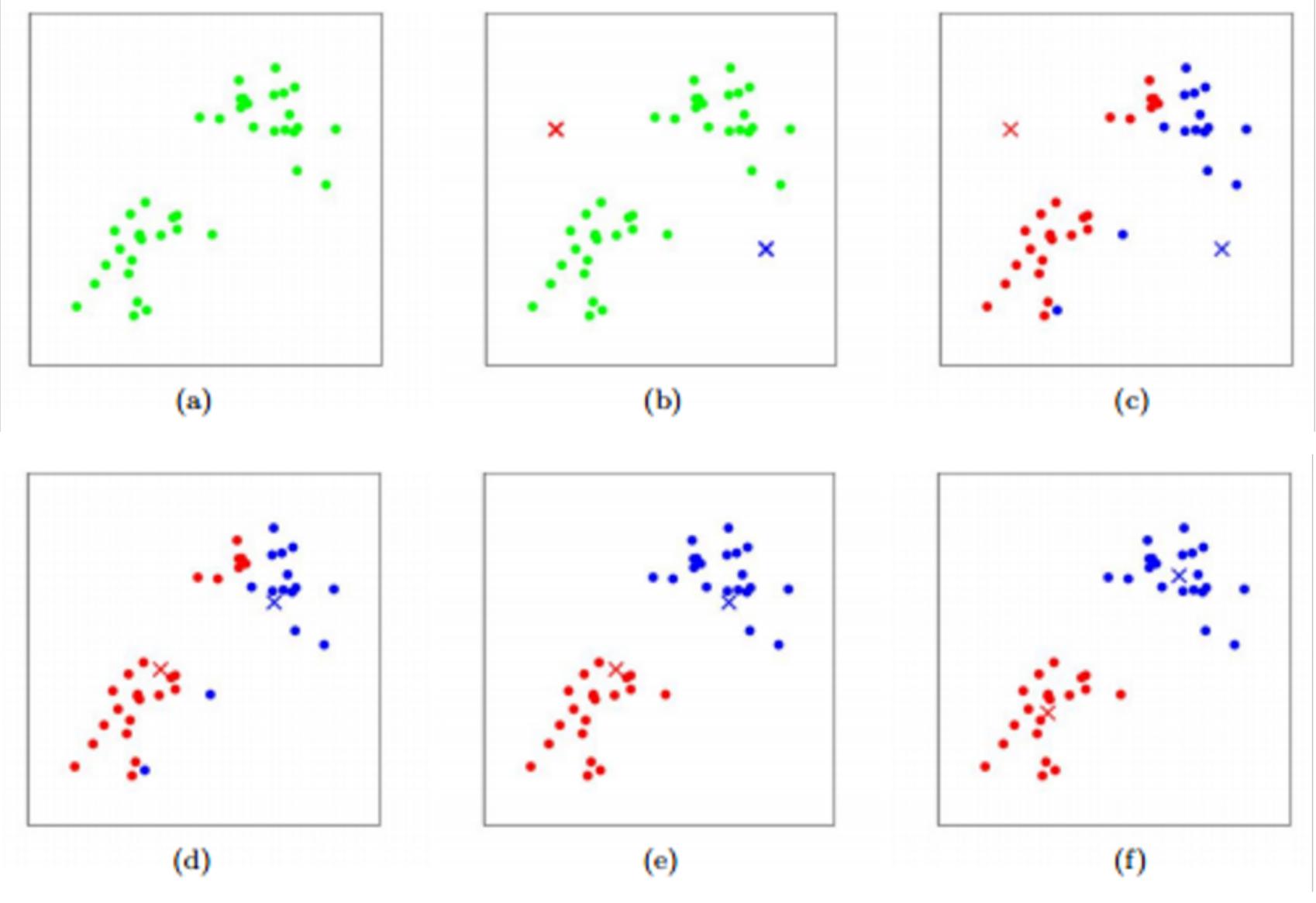
- Algorithm. Apply P1 —> Apply P2 —> Apply P1 —> ... —> Until convergence
 - Assignment step. Given $\{\mu_k\}$, find $\{r_{ik}\}$
 - Update step. Given $\{r_{ik}\}$, find $\{\mu_k\}$
- This is called the <u>Lloyd's algorithm</u> (originally proposed for pulse-code modulation)
 - which is a special case of the **expectation-maximization** (EM) algorithm

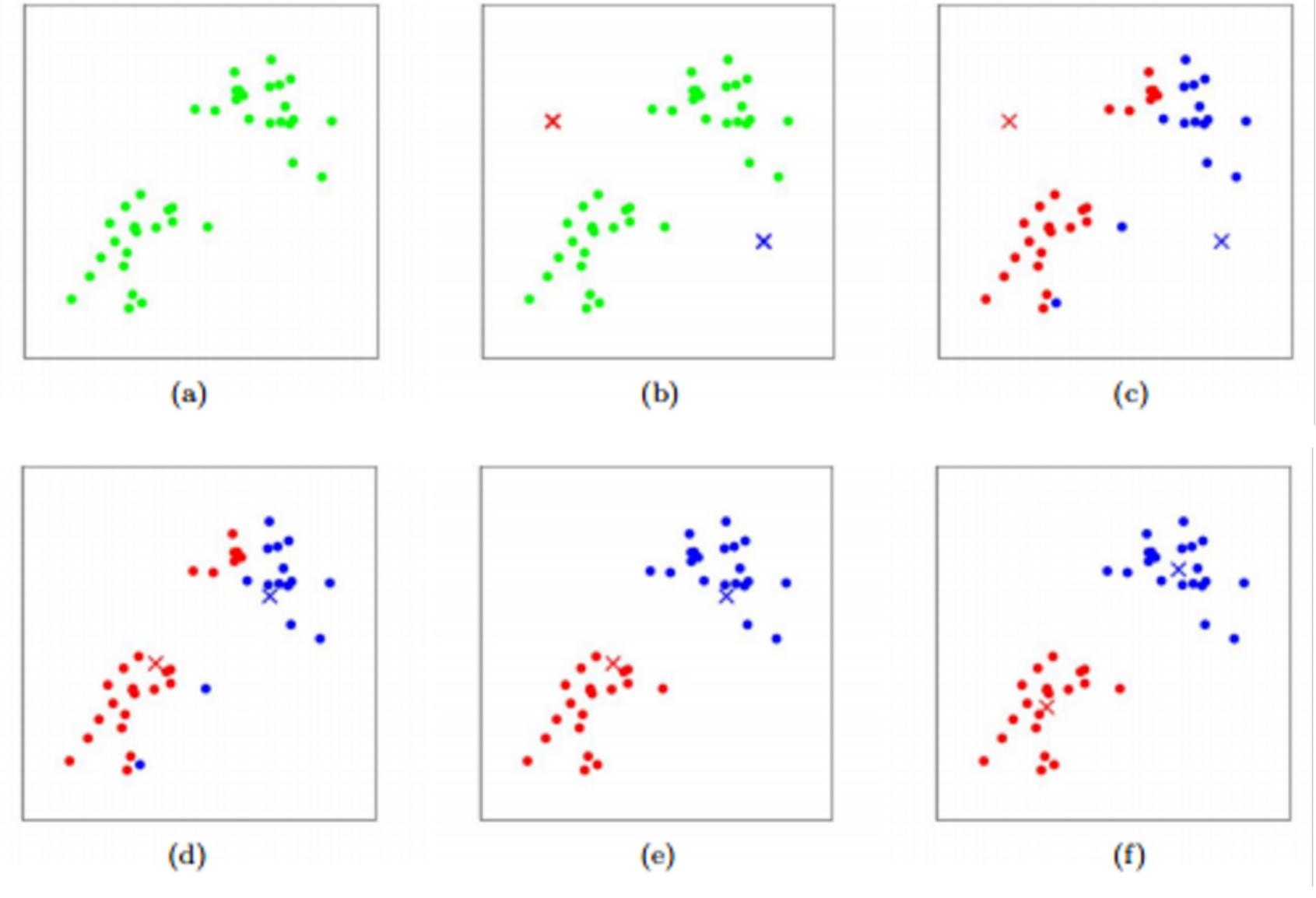
Algorithm 1 k-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids. 3: repeat
- **expectation:** Assign each point to its closest centroid. 4:
- 5:
- 6: **until** The centroid positions do not change.

Lloyd's algorithm

maximization: Compute the new centroid (mean) of each cluster.





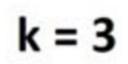
Lloyd's algorithm

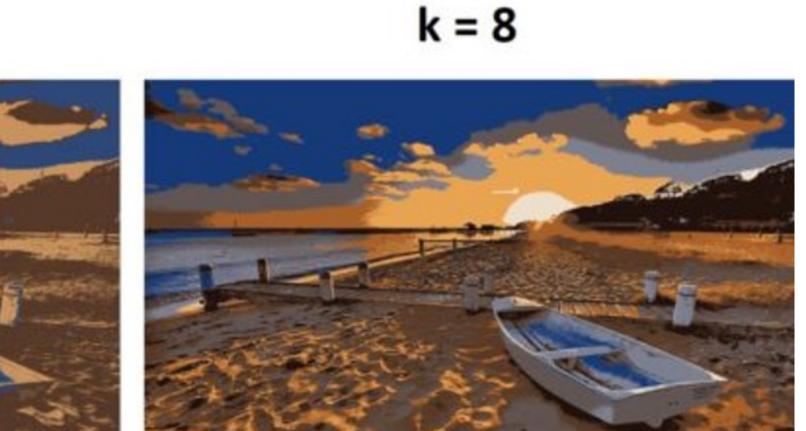
- An easy application is to compress an image.
 - Reduce the number of colors —> representable with low bit

Original image

k = 13

A simple application



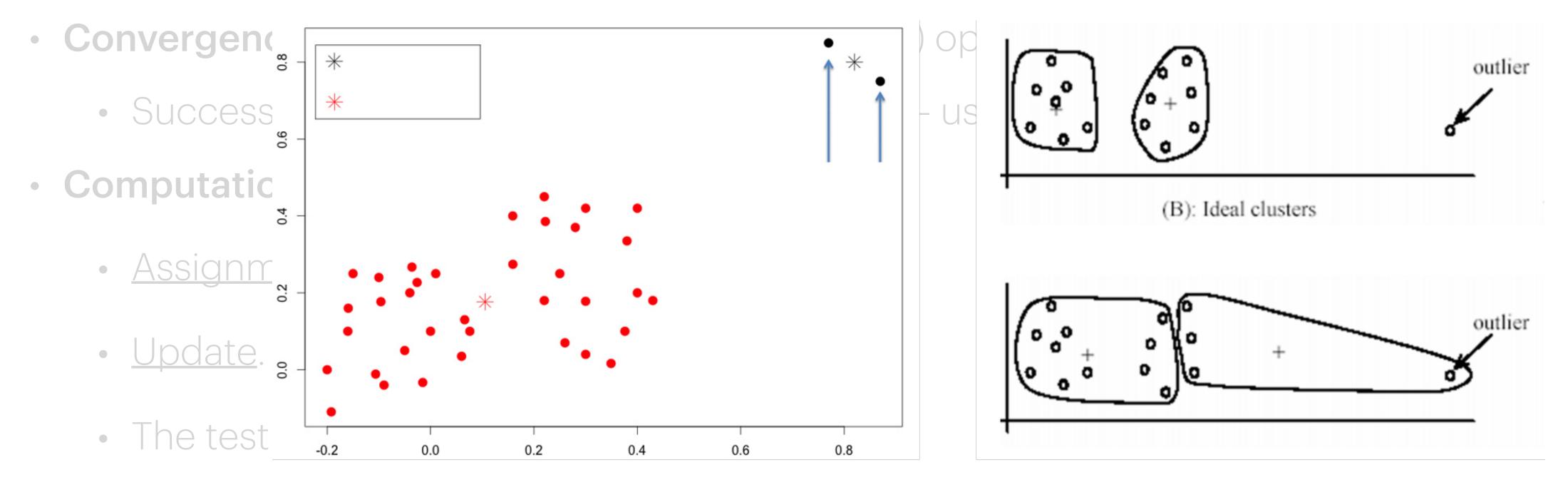


k = 20

k = 40

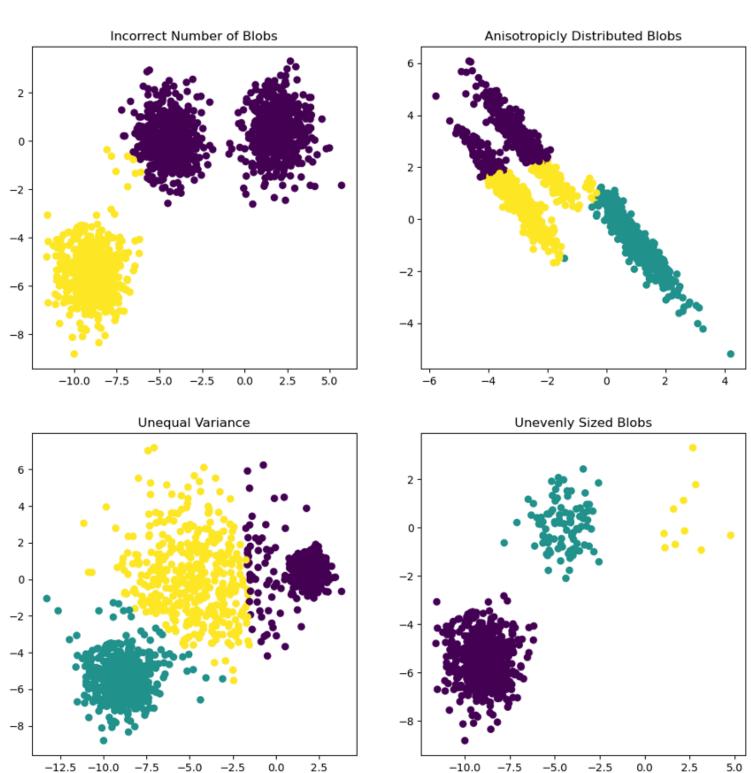
- **Convergence.** Provably converges to some (local) optimum.
 - Success largely depends on the initialization use K-means++ for better results

- **Convergence.** Provably converges to some (local) optimum. • Success largely depends on the initialization — use K-means++ for better results
- **Computation.** The training requires...
 - Assignment. $\mathcal{O}(d \cdot k \cdot n)$
 - Update. $\mathcal{O}(n)$
 - The testing requires $\mathcal{O}(d \cdot k)$ per sample

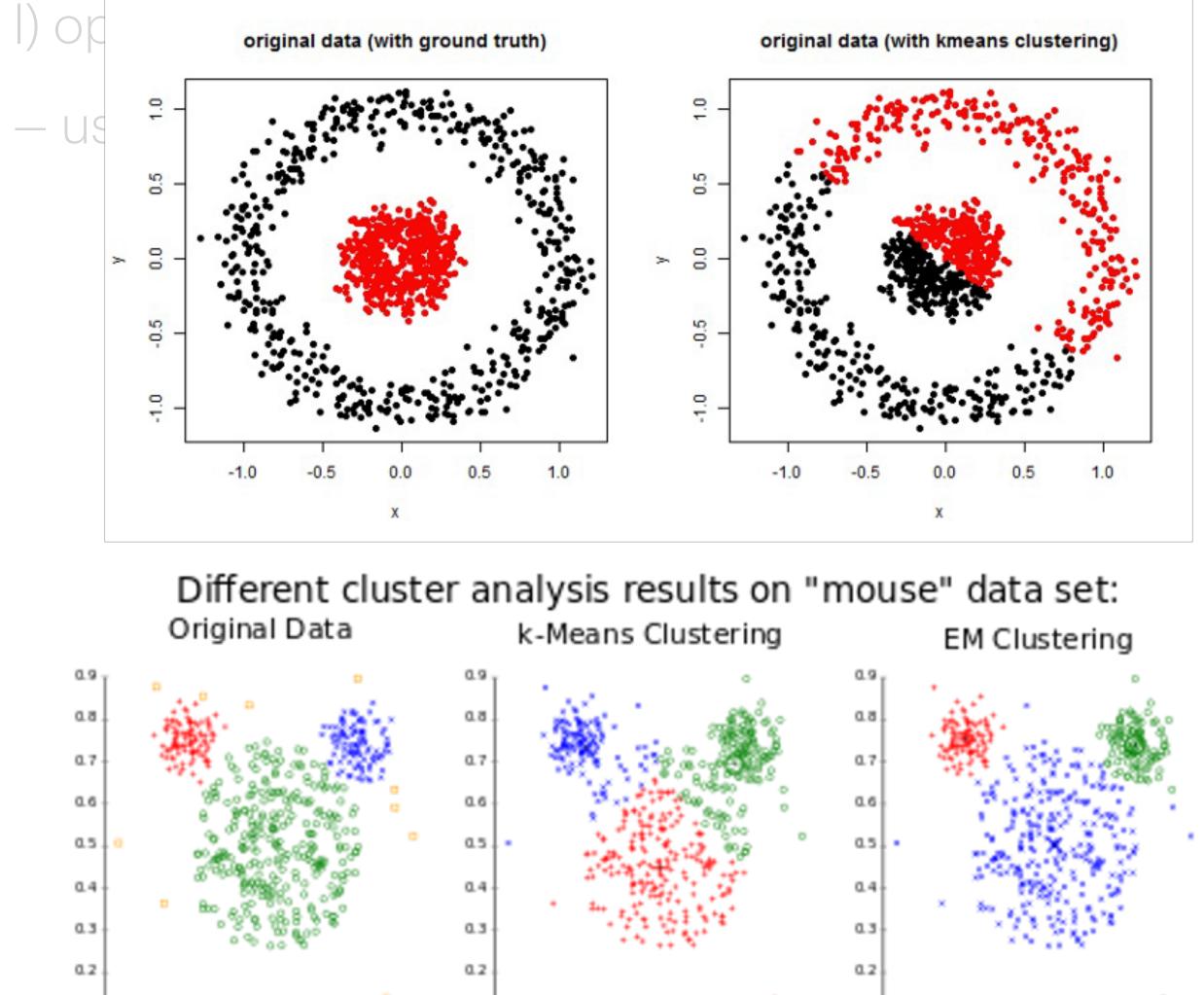


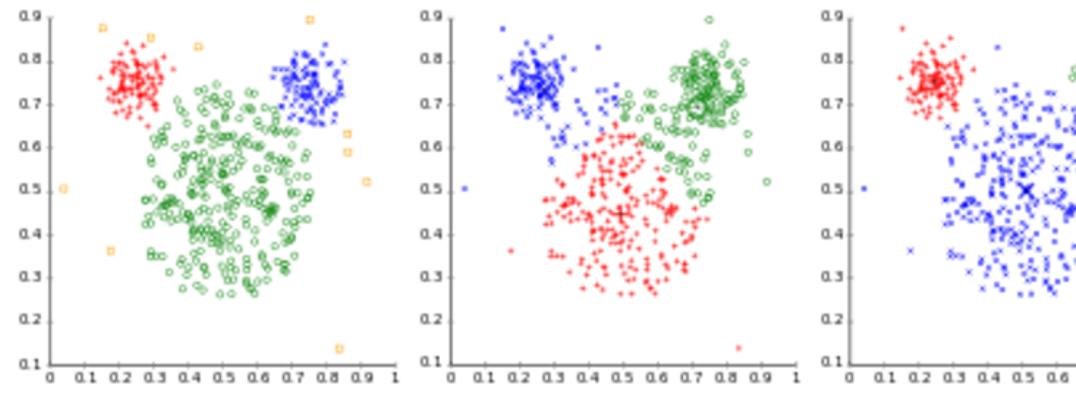
- Limitation#1. Quite sensitive to outliers
 - Leads to suboptimal cluster assignments

- Converger Succes Computati
 - Assign
 - <u>Update</u>
 - The tes
- Limitation
 - Leads t



- Limitation#2. May not work for certain datasets
 - e.g., overlapping clusters





Soft K-Means

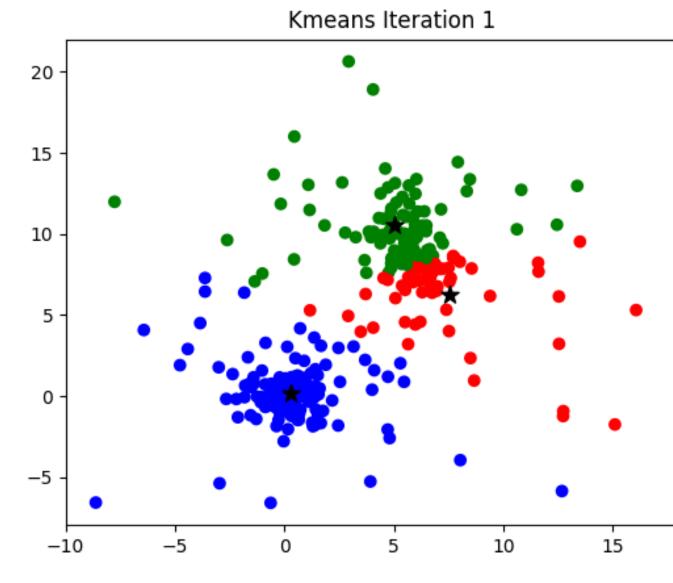
Soft K-Means

- One version of K-means that can handle overlapping clusters
- Idea. Make the assignment soft
 - <u>Hard</u>. A point belongs to a specific cluster

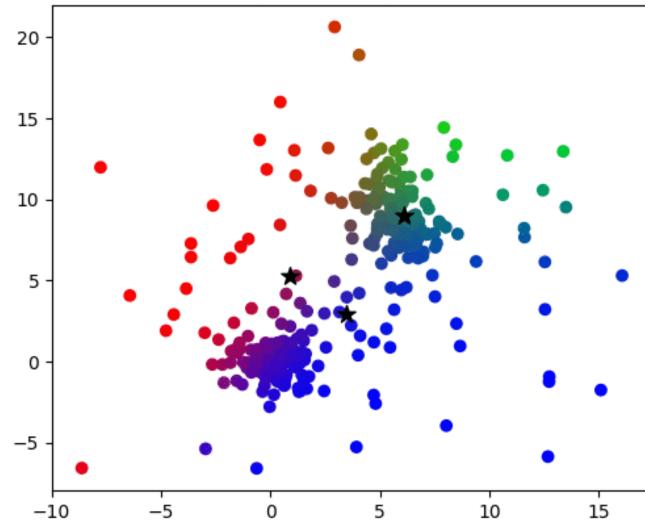
$$r_{ik} \in \{0,1\}, \quad \sum_{k=1}^{K} r_{ik} = 1$$

• <u>Soft</u>. A point may belong 90% to one, and 10% to another

$$r_{ik} \in [0,1], \quad \sum_{k=1}^{K} r_{ik} = 1$$



Weighted Kmeans Iteration 1



- Assignment. The larger responsibility for closer centroid
 - with some <u>hardness</u> hyperparameter β

• will discuss why such form, in GMM

$$r_{ik} = \frac{\exp(-\beta \|\mathbf{x}_i - \mu_k\|_2^2)}{\sum_i \exp(-\beta \|\mathbf{x}_i - \mu_j\|_2^2)}$$

- **Assignment.** The larger **responsibility** for closer centroid
 - with some <u>hardness</u> hyperparameter β

- will discuss why such form, in GMM
- <u>Note</u>. If we let $\beta \to \infty$, this becomes the hard assignment $r_{ik} = \begin{cases} 1 & \cdots & k = \operatorname{argmin}_{k} \|\mathbf{x}_{i} - \mu_{k}\|_{2}^{2} \\ 0 & \cdots & \text{otherwise} \end{cases}$
 - Thus we call such r_{ik} a softmax

$$r_{ik} = \frac{\exp(-\beta \|\mathbf{x}_i - \mu_k\|_2^2)}{\sum_j \exp(-\beta \|\mathbf{x}_i - \mu_j\|_2^2)}$$

- Update. Take a weighted average of the data
 - the weight comes from the responsibility

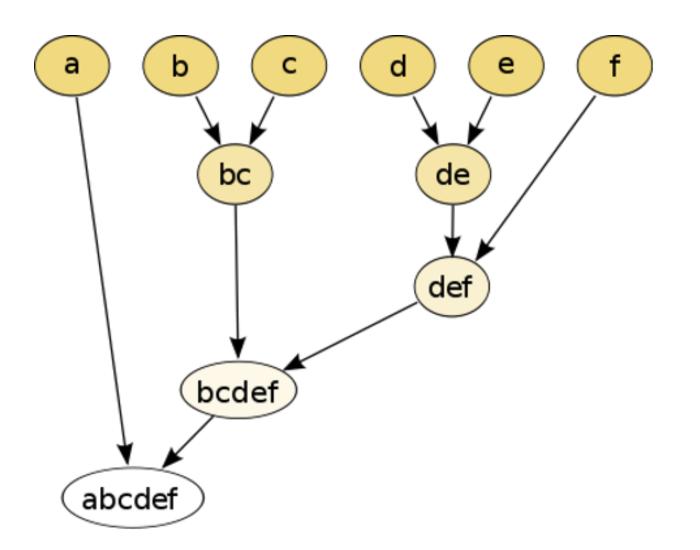
• can be derived similarly as in hard K-means

 $\mu_k = \frac{\sum_i r_{ik} \mathbf{X}_i}{\sum_i r_{jk}}$

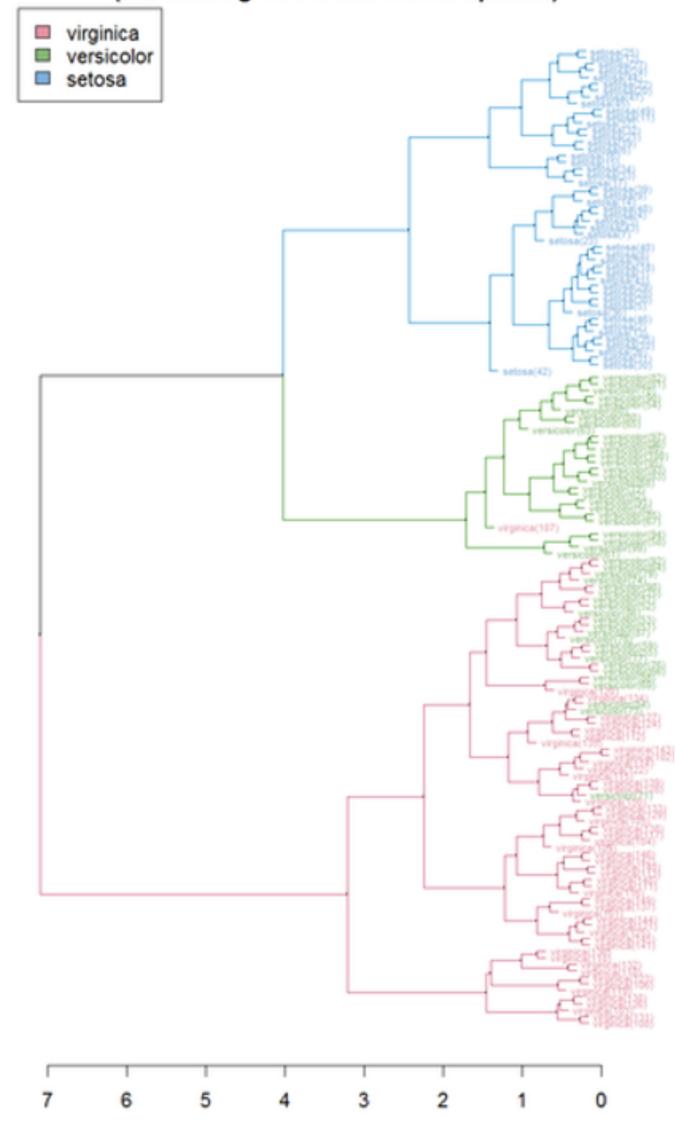
Others (informally)

Hierarchical Clustering

- Idea. Clusters inside clusters
 - Discovers hierarchical structures
 - Relax strict assumptions (e.g., distributions)
 - leverage faster heuristic algorithms •
 - Waive strict decision of K

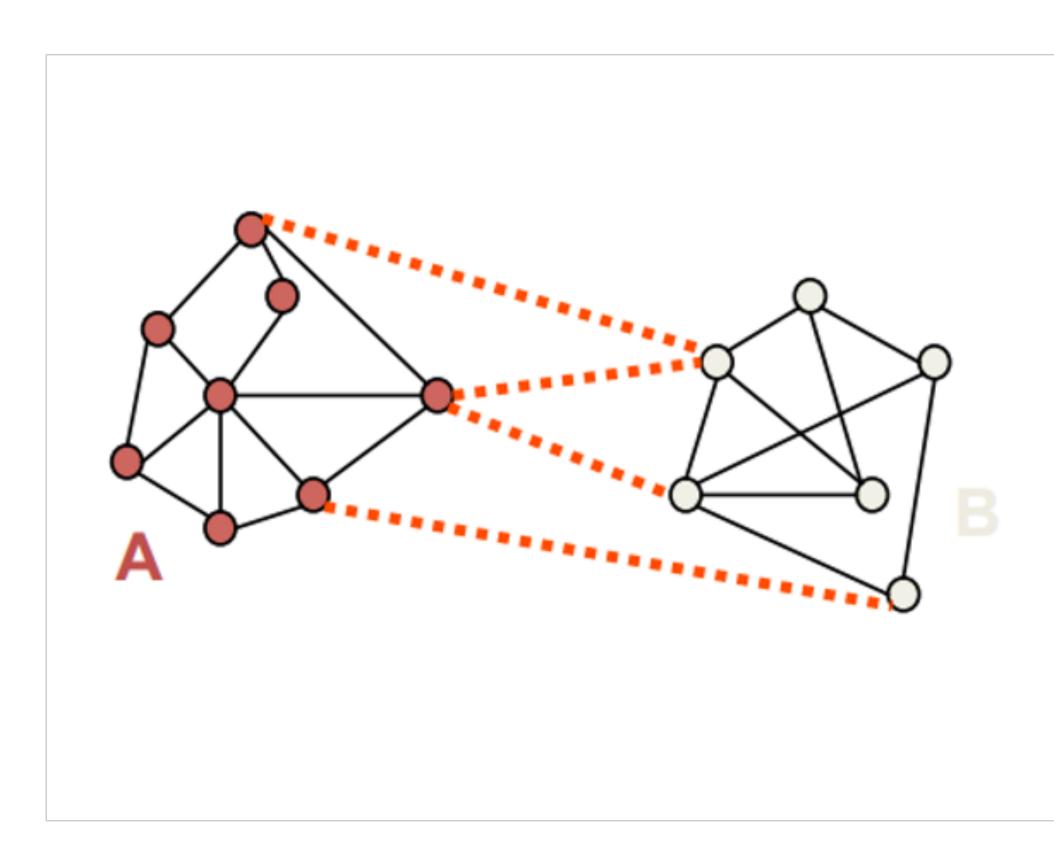


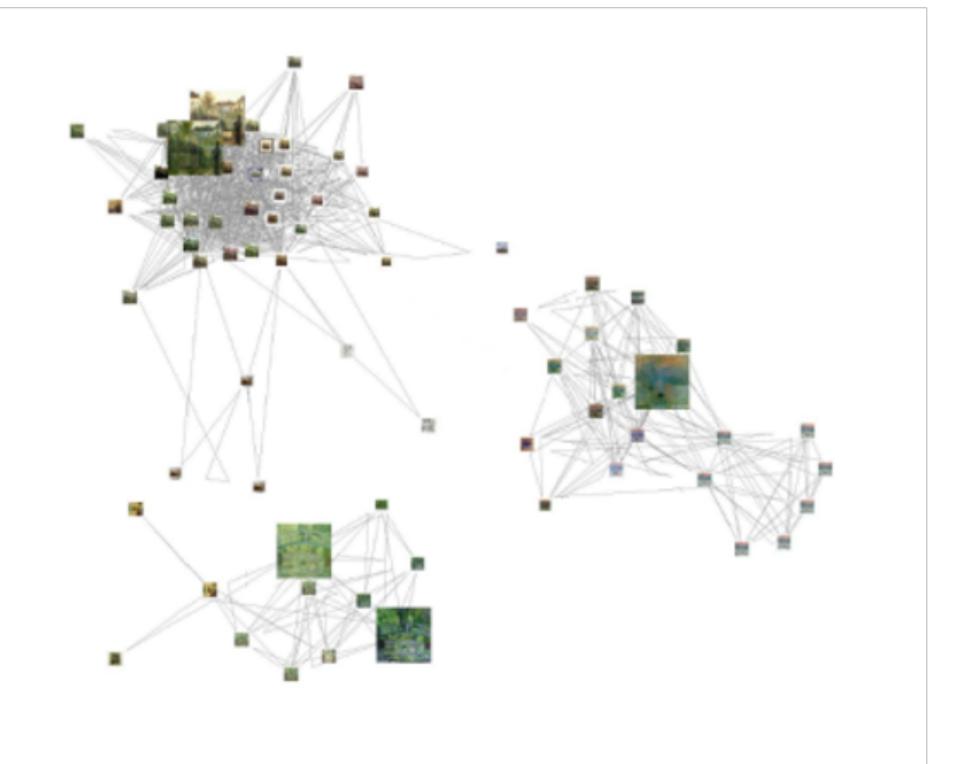
Clustered Iris data set (the labels give the true flower species)



Spectral Clustering

- Idea. Data lies on a graph.
 - Similarity is measured by the distance on graph
 - Solve via graph algorithms, e.g., min-cut





Next up

• Mixture models

Cheers