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K-Means Clustering



Recap: Supervised Learning
• Given. A labeled dataset  

• Goal. Learn  such that  

• Example. ERA5 dataset 

• : time & location 

• : temperature 

• Goal: Predict temperature 
at a new time & location

D = {(xi, yi)}n
i=1

f( ⋅ ) f(x) ≈ y

x

y



Unsupervised Learning



Unsupervised Learning
• Given. An unlabeled dataset  

• No labeleing cost (typically very large! 

• Example. Common Crawl — petabytes of web-crawled sentences 

• Most language models are trained on these!

D = {xi}n
i=1



Unsupervised Learning
• Goal. Get insights from data, by discovering underlying structure, cause, or statistical relation 

• Learned structure can be used for supervised learning tasks 
(e.g., learning a feature map )Φ( ⋅ )



What can unsupervised learning do?
• 1957. People were clustering many data points



What can unsupervised learning do?
• 2012. Discovered patterns (useful for classification) from YouTube videos without any supervision

Q. V. Le “Building High-Level Features Using Large Scale Unsupervised Learning,” ICASSP 2013



What can unsupervised learning do?
• 2014. People used face images to generate realistic(?) new faces

Goodfellow et al., “Generative Adversarial Nets” NeurIPS 2014



What can unsupervised learning do?
• 2024. People are training awesome chatbots



K-Means Clustering



Clustering
• Assigning a set of unlabeled data points into pre-specified # of groups 

• K-Means, Gaussian Mixture Models, Hierarchical Clustering, Spectral Clustering, … 

• Implicitly assumes some notion of similarity 

• Typically maximizes the similarity of each datum to their assigned clusters



K-Means
• Each cluster is represented by a single point in space, called centroid 

• The loss is measured by the  

• i.e., maximize the centroid-data similarity

dist(data, centroid)



K-Means
• Suppose that we have a dataset  

• We make two decisions: 

• We make  clusters — decide corresponding centroids 

D = {xi}n
i=1, xi ∈ ℝd

K μ1, …, μK ∈ ℝd



K-Means
• Suppose that we have a dataset  

• We make two decisions: 

• We make  clusters — decide corresponding centroids  

• We assign data — decide the assignment ,      

•  means  belongs to -th cluster    (0 otherwise)
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rik ∈ {0,1}
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∑
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rik = 1
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K-Means
• Suppose that we have a dataset  

• We make two decisions: 

• We make  clusters — decide corresponding centroids  

• We assign data — decide the assignment ,      

•  means  belongs to -th cluster    (0 otherwise) 

• Goal. Choose nice ,  which minimize the mean-squared distance (or any distance), i.e., 

D = {xi}n
i=1, xi ∈ ℝd

K μ1, …, μK ∈ ℝd

rik ∈ {0,1}
K

∑
k=1

rik = 1

rik = 1 xi k

{μk} {rik}

min
{μk}

min
{rik}

n

∑
i=1

rik∥xi − μk∥2
2



Algorithm
 

• This is a mixed optimization of discrete & continuous variables 

• Tricky to solve in general.

min
{μk}

min
{rik}

n

∑
i=1

rik∥xi − μk∥2
2



 

• This is a mixed optimization of discrete & continuous variables 

• Tricky to solve in general. 

• Strategy. Look at the optimality conditions of each subproblem 

• Principle 1. Centroid —> assignment:      Assign to the closest centroid 

• Given the centroid, optimal assignment is obvious: 

min
{μk}

min
{rik}

n

∑
i=1

rik∥xi − μk∥2
2

rik = {1 ⋯ k = argmink∥xi − μk∥2
2

0 ⋯ otherwise

Algorithm



 

• This is a mixed optimization of discrete & continuous variables 

• Tricky to solve in general. 

• Strategy. Look at the optimality conditions of each subproblem 

• Principle 1. Centroid —> assignment:      Assign to the closest centroid 

• Principle 2. Assignment —> centroid:     Take an average      

• Given the assignments, optimal centroid is obvious: 
If  are assigned to the th cluster, let 

min
{μk}

min
{rik}

n

∑
i=1

rik∥xi − μk∥2
2

x(1), …, x(nk) k

μk = argminμ∈ℝd

nk

∑
i=1

∥μ − x(i)∥2
2 =

1
nk

nk

∑
i=1

x(i)

Algorithm



 

• This is a mixed optimization of discrete & continuous variables 

• Tricky to solve in general. 

• Strategy. Look at the optimality conditions of each subproblem 

• Principle 1. Centroid —> assignment:      Assign to the closest centroid 

• Principle 2. Assignment —> centroid:     Take an average      

• In other words, the optimal solution should satisfy both: 

• Data are assigned to the nearest centroid 

• Centroids are average of assigned data 

• Question. How do we find a solution that satisfies these?

min
{μk}

min
{rik}

n

∑
i=1

rik∥xi − μk∥2
2

Algorithm



Lloyd’s algorithm
• Algorithm. Apply P1 —> Apply P2 —> Apply P1 —> … —> Until convergence 

• Assignment step. Given , find  

• Update step. Given , find 

{μk} {rik}

{rik} {μk}



Lloyd’s algorithm
• Algorithm. Apply P1 —> Apply P2 —> Apply P1 —> … —> Until convergence 

• Assignment step. Given , find  

• Update step. Given , find  

• This is called the Lloyd’s algorithm (originally proposed for pulse-code modulation) 

• which is a special case of the expectation-maximization (EM) algorithm

{μk} {rik}

{rik} {μk}



Lloyd’s algorithm



A simple application
• An easy application is to compress an image. 

• Reduce the number of colors —> representable with low bit



Properties
• Convergence. Provably converges to some (local) optimum. 

• Success largely depends on the initialization — use K-means++ for better results



Properties
• Convergence. Provably converges to some (local) optimum. 

• Success largely depends on the initialization — use K-means++ for better results 

• Computation. The training requires… 

• Assignment.  

• Update.  

• The testing requires  per sample

𝒪(d ⋅ k ⋅ n)

𝒪(n)

𝒪(d ⋅ k)



Properties
• Convergence. Provably converges to some (local) optimum. 

• Success largely depends on the initialization — use K-means++ for better results 

• Computation. The training requires… 

• Assignment.  

• Update.  
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• Limitation#1. Quite sensitive to outliers 
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Properties
• Convergence. Provably converges to some (local) optimum. 

• Success largely depends on the initialization — use K-means++ for better results 

• Computation. The training requires… 

• Assignment.  

• Update.  

• The testing requires  per sample 

• Limitation#1. Quite sensitive to outliers 

• Leads to suboptimal cluster assignments 

• Limitation#2. May not work for certain datasets 

• e.g., overlapping clusters

𝒪(d ⋅ k ⋅ n)

𝒪(n)

𝒪(d ⋅ k)



Soft K-Means



Soft K-Means
• One version of K-means that can handle overlapping clusters 

• Idea. Make the assignment soft 

• Hard. A point belongs to a specific cluster 

,     

• Soft. A point may belong 90% to one, and 10% to another 

,    

rik ∈ {0,1}
K

∑
k=1

rik = 1

rik ∈ [0,1]
K

∑
k=1

rik = 1



Algorithm
• Assignment. The larger responsibility for closer centroid 

• with some hardness hyperparameter  

 

• will discuss why such form, in GMM

β

rik =
exp(−β∥xi − μk∥2

2)
∑j exp(−β∥xi − μj∥2

2)



Algorithm
• Assignment. The larger responsibility for closer centroid 

• with some hardness hyperparameter  

 

• will discuss why such form, in GMM 

• Note. If we let , this becomes the hard assignment 

 

• Thus we call such  a softmax

β

rik =
exp(−β∥xi − μk∥2

2)
∑j exp(−β∥xi − μj∥2

2)

β → ∞

rik = {1 ⋯ k = argmink∥xi − μk∥2
2

0 ⋯ otherwise

rik



Algorithm
• Update. Take a weighted average of the data 

• the weight comes from the responsibility 

 

• can be derived similarly as in hard K-means

μk =
∑i rikxi

∑j rjk



Others (informally)



Hierarchical Clustering
• Idea. Clusters inside clusters 

• Discovers hierarchical structures 

• Relax strict assumptions (e.g., distributions) 

• leverage faster heuristic algorithms 

• Waive strict decision of K



Spectral Clustering
• Idea. Data lies on a graph. 

• Similarity is measured by the distance on graph 

• Solve via graph algorithms, e.g., min-cut



Next up
• Mixture models



Cheers


