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Soft & Kernel SVMs



Today
• Last class. Support Vector Machine 

• Linear model that maximizes the margin 

• Lagrangian dual —> Quadratic problem 

• Required. Data is linearly separable



Today
• Last class. Support Vector Machine 

• Linear model that maximizes the margin 

• Lagrangian dual —> Quadratic problem 

• Required. Data is linearly separable 

• Today. SVMs that can handle nonseparable data 

• Soft-margin SVM 

• Kernel SVM



Soft(-Margin) SVM



Data with outliers
• Suppose that there exists some outlier 

• Then, no linear separator exists 

• Worse. finding a minimum-error 
separating hyperplane is NP-hard 
(Minsky & Papert, 1969) 

• Q. How can we handle this situation?

w⊤x + b ≥ 1w⊤x + b ≤ − 1

w⊤x + b = 0



Data with outliers
• Suppose that there exists some outlier 

• Then, no linear separator exists 

• Worse. finding a minimum-error 
separating hyperplane is NP-hard 
(Minsky & Papert, 1969) 

• Q. How can we handle this situation? 

• A. Add some slack variable  

• Then, aim for minimizing 
the slack as well 

ξ

w⊤x + b ≥ 1−ξ
w⊤x + b ≤ − 1+ξ

w⊤x + b = 0



Formulation
• We are now solving the optimization problem 

 ℓ* = min
w,b,ξ

∥w∥2

2
+ C ⋅ ∑

i

ξi

subject to yi(w⊤xi + b) ≥ 1 − ξi, ξi ≥ 0



Formulation
• We are now solving the optimization problem 

 

 

• Then, we know that the problem is always feasible 

• Constraint can be met in any case 

• For example, let , , and .

ℓ* = min
w,b,ξ

∥w∥2

2
+ C ⋅ ∑

i

ξi

subject to yi(w⊤xi + b) ≥ 1 − ξi, ξi ≥ 0

w = 0 b = 0 ξi = 1



Dual Formulation
• As a dual, we get 

 

• The optimal  is at the saddle point with 

min
w,b,ξ
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ξi − ∑
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αi(yi(x⊤
i w + b) + ξi − 1) − ∑

i

ηiξi)
(w, b, ξ) (α, η)



Dual Formulation
• As a dual, we get 

 

• The optimal  is at the saddle point with  

• Derivatives for  needs to vanish! 

•   

•  

•

min
w,b,ξ

max
α,η ( ∥w∥2

2
+ C∑

i

ξi − ∑
i

αi(yi(x⊤
i w + b) + ξi − 1) − ∑

i

ηiξi)
(w, b, ξ) (α, η)

(w, b, ξ)

∇wℒ = w − ∑ αiyixi = 0

∇bℒ = ∑ αiyi = 0

∇ξi
ℒ = C − αi − ηi = 0



Dual Formulation
• Doing the similar thing, we get the Lagrangian 

 −
1
2 ∑

i,j

αiαjyiyjx⊤
i xj + ∑

i

αi−∑
i

αiξi + C∑
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ξi − ∑
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ηiξi
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1
2 ∑
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αiαjyiyjx⊤
i xj + ∑

i

αi



Dual Formulation
• Doing the similar thing, we get the Lagrangian 

 

 

• Summing up, we are solving the optimization 

                    

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj + ∑

i

αi−∑
i

αiξi + C∑
i

ξi − ∑
i

ηiξi

= −
1
2 ∑
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αiαjyiyjx⊤
i xj + ∑

i

αi

max
α

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi subject to ∑
i

αiyi = 0 0 ≤ αi ≤ C



Hyperparameter
• By increasing the hyperparameter , we look for a smaller-slack solution 

• No difference when linearly separable…

C



Hyperparameter
• By increasing the hyperparameter , we look for a smaller-slack solution 

• No difference when linearly separable…  but some difference when not

C



Solving the optimization
 

           

• If the problem is small-scale (e.g., thousands of variables), use off-the-shelf solvers 

• If the problem is large-scale, use the fact that only SVs matter, and solve in blocks 

• called “active set method”

max
α

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi

subject to ∑
i

αiyi = 0 0 ≤ αi ≤ C



Kernel SVM



Nonlinear data
• Suppose that we have a data that looks like XOR 

• Not linearly separable 

• Thus no satisfactory linear classifier exists 

• Q. How to handle these data?



• Suppose that we have a data that looks like XOR 

• Not linearly separable 

• Thus no satisfactory linear classifier exists 

• Q. How to handle these data? 

• A. Map it to a high-dimensional space 

• There exists a clean linear classifier!

Nonlinear data

f(x) = sign [0 0 1]
x1
x2
x3



More formally…
• We map the data to a high-dimensional feature  

• Typically,  (but not necessarily)

Φ( ⋅ ) : ℝd → ℝk

d < k



More formally…
• We map the data to a high-dimensional feature  

• Typically,  (but not necessarily) 

• Our predictor takes the form 

 

• This is quite similar to original SVMs, where 

Φ( ⋅ ) : ℝd → ℝk

d < k

f(x) = sign (
n

∑
i=1

ai ⋅ ⟨Φ(xi), Φ(x)⟩ + b)

f(x) = sign (∑ ai ⋅ ⟨xi, x⟩ + b)



Choosing the feature
• Question. How should we choose ?Φ( ⋅ )



Choosing the feature
• Question. How should we choose ? 

• Naïve way. Simply throw in many features, and let SVM choose 

Φ( ⋅ )

Φ(x) = (x1, ⋯, xd, x1x2, ⋯, xd−1xd, ⋯, x100
k )



Choosing the feature
• Question. How should we choose ? 

• Naïve way. Simply throw in many features, and let SVM choose 

 

• This is bad! 

• overfitting 

• computation 

• computing features 

• computing inner products

Φ( ⋅ )

Φ(x) = (x1, ⋯, xd, x1x2, ⋯, xd−1xd, ⋯, x100
k )



Choosing the feature
• Interestingly, some features admit computational shortcuts



Choosing the feature
• Interestingly, some features admit computational shortcuts 

• Example. Recall the XOR, and think of two features. 

•  

•  

• Looks similar, but one is better than the other 

• Question. So which one is better?

Φa((x1, x2)) = (x1, x2, x1x2)

Φb((x1, x2)) = (x2
1 , x2

2 , 2x1x2)



Choosing the feature
• Interestingly, some features admit computational shortcuts 

• Example. Recall the XOR, and think of two features. 

•  

•  

• Looks similar, but one is better than the other 

• Question. So which one is better? 

• Answer. , for computational reasons

Φa((x1, x2)) = (x1, x2, x1x2)

Φb((x1, x2)) = (x2
1 , x2

2 , 2x1x2)

Φb



Choosing the feature
• Compare the computations: 

•  

• Compute 3D features ,  

• Compute 3D inner prod 

⟨Φa(x), Φa(y)⟩ = x1y1 + x2y2 + x1x2y1y2

ϕx = Φa(x) ϕy = Φa(y)

⟨ϕx, ϕy⟩



Choosing the feature
• Compare the computations: 

•  

• Compute 3D features ,  

• Compute 3D inner prod  

•  

• Compute 2D inner prod  

• Take a square 

• Less memory & computation

⟨Φa(x), Φa(y)⟩ = x1y1 + x2y2 + x1x2y1y2

ϕx = Φa(x) ϕy = Φa(y)

⟨ϕx, ϕy⟩

⟨Φb(x), Φb(y)⟩ = x2
1 y2

1 + x2
2 y2

2 + 2x1x2y1y2 = (⟨x, y⟩)2

⟨x, y⟩



Kernel SVM
• Idea. Follow these steps. 

• Choose an easy-to-compute similarity metric  

• Construct predictors of form 

 

• Fit 

K( ⋅ , ⋅ )

f(x) = sign (∑ ai ⋅ K(xi, x) + b)
ai, b



Kernel SVM
• Idea. Follow these steps. 

• Choose an easy-to-compute similarity metric  

• Construct predictors of form 

 

• Fit  

• Question. Is this equivalent to doing SVM with features? 
                    (i.e., does there always exist a  corresponding to ?)

K( ⋅ , ⋅ )

f(x) = sign (∑ ai ⋅ K(xi, x) + b)
ai, b

Φ K



Kernel SVM
• Idea. Follow these steps. 

• Choose an easy-to-compute similarity metric  

• Construct predictors of form 

 

• Fit  

• Question. Is this equivalent to doing SVM with features? 
                    (i.e., does there always exist a  corresponding to ?) 

• Answer. Yes if  is a Mercer kernel

K( ⋅ , ⋅ )

f(x) = sign (∑ ai ⋅ K(xi, x) + b)
ai, b

Φ K

K



Kernel SVM
• Definition. A real-valued function  is a Mercer kernel if 

•                                                         (i.e., symmetric) 

•                          (i.e., continuous) 

•
                      (i.e., positive-semidefinite)

K( ⋅ , ⋅ )

K(x, x′ ) = K(x′ , x)

lim
n→∞

K(x(n), x) → K( lim
n→∞

x(n), x)
∑
i,j

αiαjK(xi, xj) ≥ 0, ∀αi, αj, xi, xj



Kernel SVM
• Definition. A real-valued function  is a Mercer kernel if 

•                                                         (i.e., symmetric) 

•                          (i.e., continuous) 

•
                      (i.e., positive-semidefinite) 

• Mercer’s theorem. For a Mercer kernel , there exists a corresponding  such that 

 

• That is, we are effectively maximizing margin if we choose a nice kernel.

K( ⋅ , ⋅ )

K(x, x′ ) = K(x′ , x)

lim
n→∞

K(x(n), x) → K( lim
n→∞

x(n), x)
∑
i,j

αiαjK(xi, xj) ≥ 0, ∀αi, αj, xi, xj

K( ⋅ , ⋅ ) Φ( ⋅ )

K(x, x′ ) = ⟨Φ(x), Φ(x′ )⟩



Optimizing Kernel SVM
• In kernel SVM, we solve 

 

• Plug in  to recover the original SVM

max
α

−
1
2 ∑

i,j

αiαjyiyjK(xi, xj)+
n

∑
i=1

αi

K(x, y) = x⊤y



Optimizing Kernel SVM
• In kernel SVM, we solve 

 

• Plug in  to recover the original SVM 

• Other choices 

• Laplacian RBF  

• Gaussian RBF            —> 

• Polynomial  

• B-Spline (look it up)

max
α

−
1
2 ∑

i,j

αiαjyiyjK(xi, xj) +
n

∑
i=1

αi

K(x, y) = x⊤y

exp(−λ∥x − x′ ∥2)

exp(−λ∥x − x′ ∥2
2)

(⟨x, x′ ⟩ + c)d



Tuning Kernel SVM
• Again, we can tune hyperparameters to play with the margin



Tuning Kernel SVM: Outliers



Tuning Kernel SVM: Outliers



Tuning Kernel SVM: Outliers



Tuning Kernel SVM: Outliers



Tuning Kernel SVM: Outliers



Tuning Kernel SVM: Narrow Kernels



Tuning Kernel SVM: Wide Kernels



In deep learning era…
• In modern ML, we find a nice  using data + neural nets 

• Expensive, but we can afford them 

• Conduct logistic regression, instead of SVD 

• Ease of joint training 

• Also margin-maximizer (sometimes) 

• Use nice augmentations to find good similarity metric such that 

•  is smaller than 

Φ( ⋅ )

Φ(x) − Φ(xaug) Φ(x) − Φ(x′ )



Next up
• K-Means



Cheers


