
Fall 2024

EECE454 Intro. to Machine Learning Systems

Soft & Kernel SVMs

Today
• Last class. Support Vector Machine

• Linear model that maximizes the margin

• Lagrangian dual —> Quadratic problem

• Required. Data is linearly separable

Today
• Last class. Support Vector Machine

• Linear model that maximizes the margin

• Lagrangian dual —> Quadratic problem

• Required. Data is linearly separable

• Today. SVMs that can handle nonseparable data

• Soft-margin SVM

• Kernel SVM

Soft(-Margin) SVM

Data with outliers
• Suppose that there exists some outlier

• Then, no linear separator exists

• Worse. finding a minimum-error
separating hyperplane is NP-hard
(Minsky & Papert, 1969)

• Q. How can we handle this situation?

w⊤x + b ≥ 1w⊤x + b ≤ − 1

w⊤x + b = 0

Data with outliers
• Suppose that there exists some outlier

• Then, no linear separator exists

• Worse. finding a minimum-error
separating hyperplane is NP-hard
(Minsky & Papert, 1969)

• Q. How can we handle this situation?

• A. Add some slack variable

• Then, aim for minimizing
the slack as well

ξ

w⊤x + b ≥ 1−ξ
w⊤x + b ≤ − 1+ξ

w⊤x + b = 0

Formulation
• We are now solving the optimization problem

 ℓ* = min
w,b,ξ

∥w∥2

2
+ C ⋅ ∑

i

ξi

subject to yi(w⊤xi + b) ≥ 1 − ξi, ξi ≥ 0

Formulation
• We are now solving the optimization problem

• Then, we know that the problem is always feasible

• Constraint can be met in any case

• For example, let , , and .

ℓ* = min
w,b,ξ

∥w∥2

2
+ C ⋅ ∑

i

ξi

subject to yi(w⊤xi + b) ≥ 1 − ξi, ξi ≥ 0

w = 0 b = 0 ξi = 1

Dual Formulation
• As a dual, we get

• The optimal is at the saddle point with

min
w,b,ξ

max
α,η (∥w∥2

2
+ C∑

i

ξi − ∑
i

αi(yi(x⊤
i w + b) + ξi − 1) − ∑

i

ηiξi)
(w, b, ξ) (α, η)

Dual Formulation
• As a dual, we get

• The optimal is at the saddle point with

• Derivatives for needs to vanish!

•

•

•

min
w,b,ξ

max
α,η (∥w∥2

2
+ C∑

i

ξi − ∑
i

αi(yi(x⊤
i w + b) + ξi − 1) − ∑

i

ηiξi)
(w, b, ξ) (α, η)

(w, b, ξ)

∇wℒ = w − ∑ αiyixi = 0

∇bℒ = ∑ αiyi = 0

∇ξi
ℒ = C − αi − ηi = 0

Dual Formulation
• Doing the similar thing, we get the Lagrangian

 −
1
2 ∑

i,j

αiαjyiyjx⊤
i xj + ∑

i

αi−∑
i

αiξi + C∑
i

ξi − ∑
i

ηiξi

= −
1
2 ∑

i,j

αiαjyiyjx⊤
i xj + ∑

i

αi

Dual Formulation
• Doing the similar thing, we get the Lagrangian

• Summing up, we are solving the optimization

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj + ∑

i

αi−∑
i

αiξi + C∑
i

ξi − ∑
i

ηiξi

= −
1
2 ∑

i,j

αiαjyiyjx⊤
i xj + ∑

i

αi

max
α

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi subject to ∑
i

αiyi = 0 0 ≤ αi ≤ C

Hyperparameter
• By increasing the hyperparameter , we look for a smaller-slack solution

• No difference when linearly separable…

C

Hyperparameter
• By increasing the hyperparameter , we look for a smaller-slack solution

• No difference when linearly separable… but some difference when not

C

Solving the optimization

• If the problem is small-scale (e.g., thousands of variables), use off-the-shelf solvers

• If the problem is large-scale, use the fact that only SVs matter, and solve in blocks

• called “active set method”

max
α

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi

subject to ∑
i

αiyi = 0 0 ≤ αi ≤ C

Kernel SVM

Nonlinear data
• Suppose that we have a data that looks like XOR

• Not linearly separable

• Thus no satisfactory linear classifier exists

• Q. How to handle these data?

• Suppose that we have a data that looks like XOR

• Not linearly separable

• Thus no satisfactory linear classifier exists

• Q. How to handle these data?

• A. Map it to a high-dimensional space

• There exists a clean linear classifier!

Nonlinear data

f(x) = sign [0 0 1]
x1
x2
x3

More formally…
• We map the data to a high-dimensional feature

• Typically, (but not necessarily)

Φ(⋅) : ℝd → ℝk

d < k

More formally…
• We map the data to a high-dimensional feature

• Typically, (but not necessarily)

• Our predictor takes the form

• This is quite similar to original SVMs, where

Φ(⋅) : ℝd → ℝk

d < k

f(x) = sign (
n

∑
i=1

ai ⋅ ⟨Φ(xi), Φ(x)⟩ + b)

f(x) = sign (∑ ai ⋅ ⟨xi, x⟩ + b)

Choosing the feature
• Question. How should we choose ?Φ(⋅)

Choosing the feature
• Question. How should we choose ?

• Naïve way. Simply throw in many features, and let SVM choose

Φ(⋅)

Φ(x) = (x1, ⋯, xd, x1x2, ⋯, xd−1xd, ⋯, x100
k)

Choosing the feature
• Question. How should we choose ?

• Naïve way. Simply throw in many features, and let SVM choose

• This is bad!

• overfitting

• computation

• computing features

• computing inner products

Φ(⋅)

Φ(x) = (x1, ⋯, xd, x1x2, ⋯, xd−1xd, ⋯, x100
k)

Choosing the feature
• Interestingly, some features admit computational shortcuts

Choosing the feature
• Interestingly, some features admit computational shortcuts

• Example. Recall the XOR, and think of two features.

•

•

• Looks similar, but one is better than the other

• Question. So which one is better?

Φa((x1, x2)) = (x1, x2, x1x2)

Φb((x1, x2)) = (x2
1 , x2

2 , 2x1x2)

Choosing the feature
• Interestingly, some features admit computational shortcuts

• Example. Recall the XOR, and think of two features.

•

•

• Looks similar, but one is better than the other

• Question. So which one is better?

• Answer. , for computational reasons

Φa((x1, x2)) = (x1, x2, x1x2)

Φb((x1, x2)) = (x2
1 , x2

2 , 2x1x2)

Φb

Choosing the feature
• Compare the computations:

•

• Compute 3D features ,

• Compute 3D inner prod

⟨Φa(x), Φa(y)⟩ = x1y1 + x2y2 + x1x2y1y2

ϕx = Φa(x) ϕy = Φa(y)

⟨ϕx, ϕy⟩

Choosing the feature
• Compare the computations:

•

• Compute 3D features ,

• Compute 3D inner prod

•

• Compute 2D inner prod

• Take a square

• Less memory & computation

⟨Φa(x), Φa(y)⟩ = x1y1 + x2y2 + x1x2y1y2

ϕx = Φa(x) ϕy = Φa(y)

⟨ϕx, ϕy⟩

⟨Φb(x), Φb(y)⟩ = x2
1 y2

1 + x2
2 y2

2 + 2x1x2y1y2 = (⟨x, y⟩)2

⟨x, y⟩

Kernel SVM
• Idea. Follow these steps.

• Choose an easy-to-compute similarity metric

• Construct predictors of form

• Fit

K(⋅ , ⋅)

f(x) = sign (∑ ai ⋅ K(xi, x) + b)
ai, b

Kernel SVM
• Idea. Follow these steps.

• Choose an easy-to-compute similarity metric

• Construct predictors of form

• Fit

• Question. Is this equivalent to doing SVM with features?
 (i.e., does there always exist a corresponding to ?)

K(⋅ , ⋅)

f(x) = sign (∑ ai ⋅ K(xi, x) + b)
ai, b

Φ K

Kernel SVM
• Idea. Follow these steps.

• Choose an easy-to-compute similarity metric

• Construct predictors of form

• Fit

• Question. Is this equivalent to doing SVM with features?
 (i.e., does there always exist a corresponding to ?)

• Answer. Yes if is a Mercer kernel

K(⋅ , ⋅)

f(x) = sign (∑ ai ⋅ K(xi, x) + b)
ai, b

Φ K

K

Kernel SVM
• Definition. A real-valued function is a Mercer kernel if

• (i.e., symmetric)

• (i.e., continuous)

•
 (i.e., positive-semidefinite)

K(⋅ , ⋅)

K(x, x′) = K(x′ , x)

lim
n→∞

K(x(n), x) → K(lim
n→∞

x(n), x)
∑
i,j

αiαjK(xi, xj) ≥ 0, ∀αi, αj, xi, xj

Kernel SVM
• Definition. A real-valued function is a Mercer kernel if

• (i.e., symmetric)

• (i.e., continuous)

•
 (i.e., positive-semidefinite)

• Mercer’s theorem. For a Mercer kernel , there exists a corresponding such that

• That is, we are effectively maximizing margin if we choose a nice kernel.

K(⋅ , ⋅)

K(x, x′) = K(x′ , x)

lim
n→∞

K(x(n), x) → K(lim
n→∞

x(n), x)
∑
i,j

αiαjK(xi, xj) ≥ 0, ∀αi, αj, xi, xj

K(⋅ , ⋅) Φ(⋅)

K(x, x′) = ⟨Φ(x), Φ(x′)⟩

Optimizing Kernel SVM
• In kernel SVM, we solve

• Plug in to recover the original SVM

max
α

−
1
2 ∑

i,j

αiαjyiyjK(xi, xj)+
n

∑
i=1

αi

K(x, y) = x⊤y

Optimizing Kernel SVM
• In kernel SVM, we solve

• Plug in to recover the original SVM

• Other choices

• Laplacian RBF

• Gaussian RBF —>

• Polynomial

• B-Spline (look it up)

max
α

−
1
2 ∑

i,j

αiαjyiyjK(xi, xj) +
n

∑
i=1

αi

K(x, y) = x⊤y

exp(−λ∥x − x′ ∥2)

exp(−λ∥x − x′ ∥2
2)

(⟨x, x′ ⟩ + c)d

Tuning Kernel SVM
• Again, we can tune hyperparameters to play with the margin

Tuning Kernel SVM: Outliers

Tuning Kernel SVM: Outliers

Tuning Kernel SVM: Outliers

Tuning Kernel SVM: Outliers

Tuning Kernel SVM: Outliers

Tuning Kernel SVM: Narrow Kernels

Tuning Kernel SVM: Wide Kernels

In deep learning era…
• In modern ML, we find a nice using data + neural nets

• Expensive, but we can afford them

• Conduct logistic regression, instead of SVD

• Ease of joint training

• Also margin-maximizer (sometimes)

• Use nice augmentations to find good similarity metric such that

• is smaller than

Φ(⋅)

Φ(x) − Φ(xaug) Φ(x) − Φ(x′)

Next up
• K-Means

Cheers

