
Fall 2024

EECE454 Intro. to Machine Learning Systems

Support Vector Machines

Today
• Last class. Simple classifiers

• Nearest neighbors

• Naïve Bayes

• Perceptrons

• Today. More linear models

• Logistic Regression

• Support Vector Machines

Recap: Perceptrons
• Classifier. Linear model + indicator function

• Problem. Gradient is discrete

• Solution. Use a surrogate loss function

• Gave birth to some specialized algorithm

• Limitation. Cannot express complicated
 function (e.g., XOR)

fθ(x) = 1[θ⊤x̃ > 0]

ℓ(y, fθ(x)) = (fθ(x) − y) ⋅ θ⊤x

Logistic Regression

Logistic regression
• Solve the classification, just like linear regression

• Idea. Do not predict the label directly, but predict the log likelihood ratio (note the direction)

• Question. Why don’t we simply predict ?

log (p(y = 1 |x)
p(y = 0 |x)) ≈ θ⊤x̃

p(y = 1 |x)

Logistic regression
• Solve the classification, just like linear regression

• Idea. Do not predict the label directly, but predict the log likelihood ratio (note the direction)

• Question. Why don’t we simply predict ?

• Answer. To utilize the full range; , but

log (p(y = 1 |x)
p(y = 0 |x)) ≈ θ⊤x̃

p(y = 1 |x)

p(y = 1 |x) ∈ [0,1] θ⊤x̃ ∈ (−∞, + ∞)

Logistic regression

• In other words, we are modeling the posterior distribution as

log (p(y = 1 |x)
p(y = 0 |x)) ≈ θ⊤x̃

p(y = 1 |x) =
1

1 + exp(−θ⊤x̃)

Logistic regression

• In other words, we are modeling the posterior distribution as

• The function is called the logistic function

log (p(y = 1 |x)
p(y = 0 |x)) ≈ θ⊤x̃

p(y = 1 |x) =
1

1 + exp(−θ⊤x̃)

σ(t) = 1/1 + exp(−t)

Training
• Training. Given the data , we maximize the log likelihood

• Equivalently, minimize the NLL loss

D = {(xi, yi)}n
i=1

max
θ

1
n

n

∑
i=1

log p(yi | xi)

min
θ

1
n

n

∑
i=1

log (1
p(yi | xi))

Training
• Equivalently again, solve an ERM with:

• Hypothesis space

• Loss is the cross-entropy

{fθ(x) = σ(θ⊤x̃)}

ℓ(y, t) = CE(1y, [t,1 − t]) = log(t)−y + log(1 − t)y−1

Training
• Equivalently again, solve an ERM with:

• Hypothesis space

• Loss is the cross-entropy

• More tediously, minimize

• Convex, but no general closed-form solution —> use gradient descent

{fθ(x) = σ(θ⊤x̃)}

ℓ(y, t) = CE(1y, [t,1 − t]) = log(t)−y + log(1 − t)y−1

1
n

n

∑
i=1

(−yi)log(σ(θ⊤x̃i)) + (yi − 1)log(1 − σ(θ⊤x̃i))

θ(new) = θ + η ⋅
1
n

n

∑
i=1

(yi − σ(θ⊤x̃i))x̃i

Remarks
• Computation. Relatively easy

• Training. Requires solving GD, but is convex

• Testing. Dot product, and apply some threshold

Remarks
• Computation. Relatively easy

• Training. Requires solving GD, but is convex

• Testing. Dot product, and apply some threshold

• Limitations. Again, limited expressive power

• But will give you a working classifier anyways

Support Vector Machine

Some disclaimers

Some disclaimers

Some disclaimers

• Suppose that we have a linearly separable data

• i.e., exists a linear classifier that perfectly classifies the training data.

Core philosophy

• Suppose that we have a linearly separable data

• i.e., exists a linear classifier that perfectly classifies the training data.

• Then there could be many correct classifiers…

• Question. How should we choose one?

Core philosophy

• Suppose that we have a linearly separable data

• i.e., exists a linear classifier that perfectly classifies the training data.

• Then there could be many correct classifiers…

• Question. How should we choose one?

• Idea. We should choose the
 maximum-margin classifier!

• Reason. Robust to noise in test data
(there could be any noise in test data)

Core philosophy

• Question. How do we formalize the
 concept of margin?

Large Margin Classifiers

w⊤x = b

• Question. How do we formalize the
 concept of margin?

• Idea. Maximum shift that the classifier
 can withstand

Large Margin Classifiers

w⊤x = b + c1w⊤x = b − c0

w⊤x = b

• Question. How do we formalize the
 concept of margin?

• Idea. Maximum shift that the classifier
 can withstand

• We should take the midpoint:

Large Margin Classifiers

w⊤x = b+cw⊤x = b−c

w⊤x = b

• Question. How do we formalize the
 concept of margin?

• Idea. Maximum shift that the classifier
 can withstand

• We should take the midpoint

• We should normalize the size of

• Otherwise the size of can be
arbitrarily large

w

c

Large Margin Classifiers

w⊤x = b + cw⊤x = b − c

w⊤x = b

• Question. How do we formalize the
 concept of margin?

• Idea. Maximum shift that the classifier
 can withstand

• We should take the midpoint

• We should normalize the size of

• Otherwise the size of can be
arbitrarily large

• Other way around, we can just fix , and look at the size of 1/

w

c

c = 1 ∥w∥2

Large Margin Classifiers

w⊤x = b+1w⊤x = b−1

w⊤x = b

• Cleaner(?) intuition. Project it along the direction

Large Margin Classifiers

w⊤x + b = 1w⊤x + b = − 1

w

(x+ − x−

2)
⊤

(w
∥w∥2) =

1
∥w∥

 “Margin”⇐

• SVM. Designed as a maximum-margin classifier

• We solve the constrained optimization problem

(We use , instead of the usual)

maximizew,b
1

∥w∥2
subject to yi(w⊤xi + b) ≥ 1

yi ∈ {−1, + 1} {0,1}

Max Margin Classifiers

• SVM. Designed as a maximum-margin classifier

• We solve the constrained optimization problem

(We use , instead of the usual)

• Question. How do we solve the constrained optimization?

• Remark. As convention, we will slightly rephrase as a minimization problem

maximizew,b
1

∥w∥2
subject to yi(w⊤xi + b) ≥ 1

yi ∈ {−1, + 1} {0,1}

ℓ* = min
w,b

∥w∥2
2

2
subject to yi(w⊤xi + b) ≥ 1

Max Margin Classifiers

• Solution. Consider the Lagrangian dual of the problem (the original problem is called “primal”)

ℓ* = min
w,b

∥w∥2
2

2
subject to yi(w⊤xi + b) ≥ 1

ℒ(w, b, α) =
∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

Solving the Optimization: Dual

How much you violated

• Solution. Consider the Lagrangian dual of the problem (the original problem is called “primal”)

• Then, interestingly, we know that the following duality holds:

• Question. Why?

ℓ* = min
w,b

∥w∥2
2

2
subject to yi(w⊤xi + b) ≥ 1

ℒ(w, b, α) =
∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

ℓ* = min
w,b

max
α⪰0

ℒ(w, b, α)

Solving the Optimization: Dual

• Primal.

• Dual.

• Interpretation. The adversary will gauge the quantity

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

1 − yi(w⊤xi + b)

Solving the Optimization: Dual

• Primal.

• Dual.

• Interpretation. The adversary will gauge the quantity

• If : infeasible for primal, for dual

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

1 − yi(w⊤xi + b)

> 0 ⋯ αi → ∞ ∞

Solving the Optimization: Dual

• Primal.

• Dual.

• Interpretation. The adversary will gauge the quantity

• If : infeasible for primal, for dual

• If : primal = dual

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

1 − yi(w⊤xi + b)

> 0 ⋯ αi → ∞ ∞

< 0 ⋯ αi = 0

Solving the Optimization: Dual

• Primal.

• Dual.

• Interpretation. The adversary will gauge the quantity

• If : infeasible for primal, for dual

• If : primal = dual

• If any constant primal = dual (margin points!)

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

1 − yi(w⊤xi + b)

> 0 ⋯ αi → ∞ ∞

< 0 ⋯ αi = 0

= 0 ⋯

Solving the Optimization: Dual

• Primal.

• Dual.

• Interpretation. The adversary will gauge the quantity

• If : infeasible for primal, for dual

• If : primal = dual

• If any constant primal = dual (margin points!)

• Thus, what remains is solving this minimax problem, finding the saddle point

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

1 − yi(w⊤xi + b)

> 0 ⋯ αi → ∞ ∞

< 0 ⋯ αi = 0

= 0 ⋯

Solving the Optimization: Dual

Saddle point
• Of course, we look for the critical point; writing down the gradient, we get

 ∇wℒ = w −
n

∑
i=1

αiyixi ∇bℒ = −
n

∑
i=1

αiyi

Saddle point
• Of course, we look for the critical point; writing down the gradient, we get

• Setting them equal to zero, we get

∇wℒ = w −
n

∑
i=1

αiyixi ∇bℒ = −
n

∑
i=1

αiyi

w* =
n

∑
i=1

αiyixi 0 =
n

∑
i=1

αiyi

Saddle point
• Of course, we look for the critical point; writing down the gradient, we get

• Setting them equal to zero, we get

• Plugging back to Lagrangian, we get

∇wℒ = w −
n

∑
i=1

αiyixi ∇bℒ = −
n

∑
i=1

αiyi

w* =
n

∑
i=1

αiyixi 0 =
n

∑
i=1

αiyi

w*

ℒ = −
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi

Saddle point as a quadratic program
• Summing up, our optimization problem becomes

 , max
α

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi subject to ∑
i

αiyi = 0 αi ≥ 0

Saddle point as a quadratic program
• Summing up, our optimization problem becomes

 ,

• Slightly rephrased as a quadratic program over a convex polytope

 ,

• The solution @ critical point or the extreme points

• Use quadratic program solvers to get the optimal

max
α

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi subject to ∑
i

αiyi = 0 αi ≥ 0

max
α (−

1
2

α⊤Zα + 1⊤α) subject to α⊤y = 0 α ⪰ 0

α*

Solving for Bias
• Having computed the , our optimal weights become:

• Question. How about ?

α*

w* =
n

∑
i=1

α*i yixi

b*

Nonzero only for margin
data (support vectors)

Solving for Bias
• Having computed the , our optimal weights become:

• Question. How about ?

• Answer. Plug in any support vector to

α*

w* =
n

∑
i=1

α*i yixi

b*

w*⊤x − b* = ± 1

Nonzero only for margin
data (support vectors)

Wrapping up
• Looked at a clever way to use linear classifier to solve classification

• Idea. Maximize the margin

• Putting in some extra condition to generalize better to test data
(similar to what we did in k-NN, when deciding the hyperparameter)

Wrapping up
• Looked at a clever way to use linear classifier to solve classification

• Idea. Maximize the margin

• Putting in some extra condition to generalize better to test data
(similar to what we did in k-NN, when deciding the hyperparameter)

• Limitation.

• Messed up when outlier exists (yet) —> Soft SVM

• More generally, cannot handle nonlinear data —> Kernel SVM

Cheers

