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EECE454 Intro. to Machine Learning Systems

Support Vector Machines



Today
• Last class. Simple classifiers 

• Nearest neighbors 

• Naïve Bayes 

• Perceptrons 

• Today. More linear models 

• Logistic Regression 

• Support Vector Machines



Recap: Perceptrons
• Classifier. Linear model + indicator function 

                          

• Problem. Gradient is discrete 

• Solution. Use a surrogate loss function 

 

• Gave birth to some specialized algorithm 

• Limitation. Cannot express complicated 
                      function (e.g., XOR)

fθ(x) = 1[θ⊤x̃ > 0]

ℓ(y, fθ(x)) = ( fθ(x) − y) ⋅ θ⊤x



Logistic Regression



Logistic regression
• Solve the classification, just like linear regression 

• Idea. Do not predict the label directly, but predict the log likelihood ratio (note the direction) 

 

• Question. Why don’t we simply predict ?

log ( p(y = 1 |x)
p(y = 0 |x) ) ≈ θ⊤x̃

p(y = 1 |x)



Logistic regression
• Solve the classification, just like linear regression 

• Idea. Do not predict the label directly, but predict the log likelihood ratio (note the direction) 

 

• Question. Why don’t we simply predict ? 

• Answer. To utilize the full range; , but 

log ( p(y = 1 |x)
p(y = 0 |x) ) ≈ θ⊤x̃

p(y = 1 |x)

p(y = 1 |x) ∈ [0,1] θ⊤x̃ ∈ (−∞, + ∞)



Logistic regression
 

• In other words, we are modeling the posterior distribution as 

log ( p(y = 1 |x)
p(y = 0 |x) ) ≈ θ⊤x̃

p(y = 1 |x) =
1

1 + exp(−θ⊤x̃)



Logistic regression
 

• In other words, we are modeling the posterior distribution as 

 

• The function  is called the logistic function

log ( p(y = 1 |x)
p(y = 0 |x) ) ≈ θ⊤x̃

p(y = 1 |x) =
1

1 + exp(−θ⊤x̃)

σ(t) = 1/1 + exp(−t)



Training
• Training. Given the data , we maximize the log likelihood 

 

• Equivalently, minimize the NLL loss 

D = {(xi, yi)}n
i=1

max
θ

1
n

n

∑
i=1

log p(yi | xi)

min
θ

1
n

n

∑
i=1

log ( 1
p(yi | xi) )



Training
• Equivalently again, solve an ERM with: 

• Hypothesis space  

• Loss is the cross-entropy   

{fθ(x) = σ(θ⊤x̃)}

ℓ(y, t) = CE(1y, [t,1 − t]) = log(t)−y + log(1 − t)y−1



Training
• Equivalently again, solve an ERM with: 

• Hypothesis space  

• Loss is the cross-entropy    

• More tediously, minimize 

 

• Convex, but no general closed-form solution  —> use gradient descent 

{fθ(x) = σ(θ⊤x̃)}

ℓ(y, t) = CE(1y, [t,1 − t]) = log(t)−y + log(1 − t)y−1

1
n

n

∑
i=1

(−yi)log(σ(θ⊤x̃i)) + (yi − 1)log(1 − σ(θ⊤x̃i))

θ(new) = θ + η ⋅
1
n

n

∑
i=1

(yi − σ(θ⊤x̃i))x̃i



Remarks
• Computation. Relatively easy 

• Training. Requires solving GD, but is convex 

• Testing. Dot product, and apply some threshold



Remarks
• Computation. Relatively easy 

• Training. Requires solving GD, but is convex 

• Testing. Dot product, and apply some threshold 

• Limitations. Again, limited expressive power 

• But will give you a working classifier anyways



Support Vector Machine



Some disclaimers



Some disclaimers



Some disclaimers



• Suppose that we have a linearly separable data 

• i.e., exists a linear classifier that perfectly classifies the training data.

Core philosophy



• Suppose that we have a linearly separable data 

• i.e., exists a linear classifier that perfectly classifies the training data. 

• Then there could be many correct classifiers… 

• Question. How should we choose one?

Core philosophy



• Suppose that we have a linearly separable data 

• i.e., exists a linear classifier that perfectly classifies the training data. 

• Then there could be many correct classifiers… 

• Question. How should we choose one? 

• Idea. We should choose the 
          maximum-margin classifier! 

• Reason. Robust to noise in test data 
(there could be any noise in test data)

Core philosophy



• Question. How do we formalize the 
                    concept of margin?

Large Margin Classifiers

w⊤x = b



• Question. How do we formalize the 
                    concept of margin? 

• Idea. Maximum shift that the classifier 
          can withstand 
          

Large Margin Classifiers

w⊤x = b + c1w⊤x = b − c0

w⊤x = b



• Question. How do we formalize the 
                    concept of margin? 

• Idea. Maximum shift that the classifier 
          can withstand 

• We should take the midpoint:

Large Margin Classifiers

w⊤x = b+cw⊤x = b−c

w⊤x = b



• Question. How do we formalize the 
                    concept of margin? 

• Idea. Maximum shift that the classifier 
          can withstand 

• We should take the midpoint 

• We should normalize the size of  

• Otherwise the size of  can be 
arbitrarily large

w

c

Large Margin Classifiers

w⊤x = b + cw⊤x = b − c

w⊤x = b



• Question. How do we formalize the 
                    concept of margin? 

• Idea. Maximum shift that the classifier 
          can withstand 

• We should take the midpoint 

• We should normalize the size of  

• Otherwise the size of  can be 
arbitrarily large 

• Other way around, we can just fix , and look at the size of 1/

w

c

c = 1 ∥w∥2

Large Margin Classifiers

w⊤x = b+1w⊤x = b−1

w⊤x = b



• Cleaner(?) intuition. Project it along the direction

Large Margin Classifiers

w⊤x + b = 1w⊤x + b = − 1

w

( x+ − x−

2 )
⊤

( w
∥w∥2 ) =

1
∥w∥

 “Margin”⇐



• SVM. Designed as a maximum-margin classifier 

• We solve the constrained optimization problem 

 

(We use , instead of the usual )

maximizew,b
1

∥w∥2
subject to yi(w⊤xi + b) ≥ 1

yi ∈ {−1, + 1} {0,1}

Max Margin Classifiers



• SVM. Designed as a maximum-margin classifier 

• We solve the constrained optimization problem 

 

(We use , instead of the usual ) 

• Question. How do we solve the constrained optimization? 

• Remark. As convention, we will slightly rephrase as a minimization problem 

maximizew,b
1

∥w∥2
subject to yi(w⊤xi + b) ≥ 1

yi ∈ {−1, + 1} {0,1}

ℓ* = min
w,b

∥w∥2
2

2
subject to yi(w⊤xi + b) ≥ 1

Max Margin Classifiers



 

• Solution. Consider the Lagrangian dual of the problem           (the original problem is called “primal”) 

ℓ* = min
w,b

∥w∥2
2

2
subject to yi(w⊤xi + b) ≥ 1

ℒ(w, b, α) =
∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

Solving the Optimization: Dual

How much you violated



 

• Solution. Consider the Lagrangian dual of the problem           (the original problem is called “primal”) 

 

• Then, interestingly, we know that the following duality holds: 

 

• Question. Why?

ℓ* = min
w,b

∥w∥2
2

2
subject to yi(w⊤xi + b) ≥ 1

ℒ(w, b, α) =
∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

ℓ* = min
w,b

max
α⪰0

ℒ(w, b, α)

Solving the Optimization: Dual



• Primal.      

• Dual.          

• Interpretation. The adversary will gauge the quantity 

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

1 − yi(w⊤xi + b)

Solving the Optimization: Dual



• Primal.      

• Dual.          

• Interpretation. The adversary will gauge the quantity  

• If :                                                                              infeasible for primal,  for dual

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

1 − yi(w⊤xi + b)

> 0 ⋯ αi → ∞ ∞

Solving the Optimization: Dual



• Primal.      

• Dual.          

• Interpretation. The adversary will gauge the quantity  

• If :                                                                              infeasible for primal,  for dual 

• If :                                                                                 primal = dual

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

1 − yi(w⊤xi + b)

> 0 ⋯ αi → ∞ ∞

< 0 ⋯ αi = 0

Solving the Optimization: Dual



• Primal.      

• Dual.          

• Interpretation. The adversary will gauge the quantity  

• If :                                                                              infeasible for primal,  for dual 

• If :                                                                                 primal = dual 

• If                 any constant                                                      primal = dual (margin points!)

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

1 − yi(w⊤xi + b)

> 0 ⋯ αi → ∞ ∞

< 0 ⋯ αi = 0

= 0 ⋯

Solving the Optimization: Dual



• Primal.      

• Dual.          

• Interpretation. The adversary will gauge the quantity  

• If :                                                                              infeasible for primal,  for dual 

• If :                                                                                 primal = dual 

• If                 any constant                                                      primal = dual (margin points!) 

• Thus, what remains is solving this minimax problem, finding the saddle point

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

1 − yi(w⊤xi + b)

> 0 ⋯ αi → ∞ ∞

< 0 ⋯ αi = 0

= 0 ⋯

Solving the Optimization: Dual



Saddle point
• Of course, we look for the critical point; writing down the gradient, we get 

              ∇wℒ = w −
n

∑
i=1

αiyixi ∇bℒ = −
n

∑
i=1

αiyi



Saddle point
• Of course, we look for the critical point; writing down the gradient, we get 

               

• Setting them equal to zero, we get 

                    

∇wℒ = w −
n

∑
i=1

αiyixi ∇bℒ = −
n

∑
i=1

αiyi

w* =
n

∑
i=1

αiyixi 0 =
n

∑
i=1

αiyi



Saddle point
• Of course, we look for the critical point; writing down the gradient, we get 

               

• Setting them equal to zero, we get 

                     

• Plugging  back to Lagrangian, we get 

∇wℒ = w −
n

∑
i=1

αiyixi ∇bℒ = −
n

∑
i=1

αiyi

w* =
n

∑
i=1

αiyixi 0 =
n

∑
i=1

αiyi

w*

ℒ = −
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi



Saddle point as a quadratic program
• Summing up, our optimization problem becomes 

        ,     max
α

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi subject to ∑
i

αiyi = 0 αi ≥ 0



Saddle point as a quadratic program
• Summing up, our optimization problem becomes 

        ,      

• Slightly rephrased as a quadratic program over a convex polytope 

        ,      

• The solution @ critical point or the extreme points 

• Use quadratic program solvers to get the optimal 

max
α

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi subject to ∑
i

αiyi = 0 αi ≥ 0

max
α (−

1
2

α⊤Zα + 1⊤α) subject to α⊤y = 0 α ⪰ 0

α*



Solving for Bias
• Having computed the , our optimal weights become: 

 

• Question. How about ?

α*

w* =
n

∑
i=1

α*i yixi

b*

Nonzero only for margin 
data (support vectors)



Solving for Bias
• Having computed the , our optimal weights become: 

 

• Question. How about ? 

• Answer. Plug in any support vector to 

                     

α*

w* =
n

∑
i=1

α*i yixi

b*

w*⊤x − b* = ± 1

Nonzero only for margin 
data (support vectors)



Wrapping up
• Looked at a clever way to use linear classifier to solve classification 

• Idea. Maximize the margin 

• Putting in some extra condition to generalize better to test data 
(similar to what we did in k-NN, when deciding the hyperparameter)



Wrapping up
• Looked at a clever way to use linear classifier to solve classification 

• Idea. Maximize the margin 

• Putting in some extra condition to generalize better to test data 
(similar to what we did in k-NN, when deciding the hyperparameter) 

• Limitation. 

• Messed up when outlier exists (yet)                                    —> Soft SVM 

• More generally, cannot handle nonlinear data                —> Kernel SVM



Cheers


