
Fall 2024

EECE454 Intro. to Machine Learning Systems

Simple Classifiers



Notice
• Last week. As you noticed, video lectures are not uploaded yet 

• Sorry! 

• Will cover decision trees, bagging, and boosting 

• quite distinct in style from other ML algorithms 

• Assignment#1. Also delayed! 

• Uploaded today 

• Due: 10/3



Today
• Basic ML algorithms for classification 

• Nearest Neighbors 

• Naïve Bayes 

• Perceptrons 

• Logistic Regression



Classification
• Task. Given some input , predict an output  

•  is called “class” 

• c.f., the case of linear regression, where 

X Y ∈ {1,…, K}

Y

Y ∈ ℝ

Source: HuggingFace



Binary Classification
• For simplicity, we mostly consider the binary classification 

• Y ∈ {0,1}



• For simplicity, we mostly consider the binary classification 

•  

• Any classifier can be viewed as selecting a subset of the input space 

 

• Decision regions  is separated 
using some decision boundary

Y ∈ {0,1}

f(x) = {𝟢 ⋯ x ∈ ℛ0

𝟣 ⋯ x ∈ ℛ1

ℛ0, ℛ1

Binary Classification



• Question. Can we use linear regression to solve classification tasks?

Linear regression, for classification?



• Question. Can we use linear regression to solve classification tasks? 

• Answer. Yes

Linear regression, for classification?



• Question. Can we use linear regression to solve classification tasks? 

• Answer. Yes 

• However… this is a bad choice 

• Very sensitive to “outliers” 

• Consider an extremely large but 
benign tumor 

• Thus we want better tools

Linear regression, for classification?



Nearest Neighbors



• Can be traced back to a book in 1021 

• called كتاب المناظر  (“the book of optics”) by Ibn al-Haytham

Historical bits



• Can be traced back to a book in 1021 

• called كتاب المناظر  (“the book of optics”) by Ibn al-Haytham 

• Viewed human visual recognition as a nearest neighbor 

“Recognition is the perception of similarity between two forms— i.e., of the form 
  (1)  sight perceives at the moment of recognition, 
  (2)  and the form of that visible object, or its like, that it has perceived one or more times before.”

Historical bits

measures similarity



• Suppose that we have a labeled dataset  

• Training. 

• Testing. 

D = {(xi, yi)}n
i=1

K-nearest neighbors



• Suppose that we have a labeled dataset  

• Training. There is no training! 

• Instead, we simply store the training data in an indexable form. 

• Testing. 

D = {(xi, yi)}n
i=1

K-nearest neighbors



• Suppose that we have a labeled dataset  

• Training. There is no training! 

• Instead, we simply store the training data in an indexable form. 

• Testing. Whenever a new sample  comes in: 

• Find  samples  with the highest similarity, e.g., have small distance 

 

• Predict with the majority vote 

• Note. One can also predict real-valued  by (weighted) averaging

D = {(xi, yi)}n
i=1

x(new)

k x(1), …, x(k) ∈ D

∥x(new) − x(i)∥

y

K-nearest neighbors



• The resulting predictor is nonlinear and nonparametric (i.e., not have finite-dimensional params) 

• nonparametric: using flexible number of or infinite-dimensional parameters 
<=> parametric: finite-dimensional parameters 

• Example. k-NN, Trees & Forests 

• Example. K-NN with k = 3

K-nearest neighbors



• Here, the neighbor set size  has a big impact on the model prediction 

• Small k = more flexibility   /   Larger  = smoother decision boundary

k

k

Selecting k



• Here, the neighbor set size  has a big impact on the model prediction 

• Small k = more flexibility   /   Larger  = smoother decision boundary 

• The  is often tuned manually 

• such tunable components are often called hyperparameters

k
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• Here, the neighbor set size  has a big impact on the model prediction 

• Small k = more flexibility   /   Larger  = smoother decision boundary 

• The  is often tuned manually 

• such tunable components are often called hyperparameters 

• A basic tuning procedure 

• Run k-NN on the training data  with different ,  to get  

• Evaluate their performance on validation data, and choose the best  

• Measure the test performance with 

k

k

k

D k fk1
, fk2

, …

̂k

f ̂k

Selecting k



• Computation. K-NN is difficult to scale up to large datasets 

• Pros. No training cost 

• Cons. For testing, we need to conduct  comparisons 

• ❓  How can we make this dependency sublinear?

n

Considerations



• Computation. K-NN is difficult to scale up to large datasets 

• Pros. No training cost 

• Cons. For testing, we need to conduct  comparisons 

• ❓  How can we make this dependency sublinear? 

• Limitations. The success depends critically on what similarity metric we use 

• This similarity should represent some knowledge (from human expert, or maybe data)

n

Considerations



• You will find that neural nets provide a way to handle this difficulty 

• Use some training compute to make the comparison simpler (per-class prototypes) 

• Use the similarity metric trained from the dataset

Later…



Naïve Bayes



• Suppose that we have a labeled dataset  

• Drawn independently from some  

•

{(x(i), y(i))}n
i=1

PXY

x(i) ∈ ℝd, y(i) ∈ {0,1}

Problem setup



• Suppose that we have a labeled dataset  

• Drawn independently from some  

•  

• Assumption. Entries of each  are conditionally independent given  

 

• Note. Wrong for images (thus naïve), but can be true for tabular data 

• From now on, we let , WLOG

{(x(i), y(i))}n
i=1

PXY

x(i) ∈ ℝd, y(i) ∈ {0,1}

x y

p(x |y) =
d

∏
i=1

p(xi |y)

d = 1

Problem setup



• Based on some human expert knowledge, we manually design two things. 

• Likelihood models.  

• Priors. 

p(x |y)

p(y)

Bayesian approach



• Based on some human expert knowledge, we manually design two things 

• Likelihood models.  

• Priors.  

• Each of these have some parameters to tune using the data 

• Example. Gaussian likelihood has two parameters , for each  

p(x |y)

p(y)

μ, σ ∈ ℝ y

p(x |y) =
1

σy 2π
exp (−

(x − μy)2

2σ2
y )

Bayesian approach



• Based on some human expert knowledge, we manually design two things 

• Likelihood models.  

• Priors.  

• Each of these have some parameters to tune using the data 

• Example. Gaussian likelihood has two parameters , for each  

 

• Example. Bernoulli prior has one parameter 

p(x |y)

p(y)

μ, σ ∈ ℝ y

p(x |y) =
1

σy 2π
exp (−

(x − μy)2

2σ2
y )

p(y = 1)

Bayesian approach



• Predictor. After fitting the  and  with data, we construct the MAP estimator 
                                                                                                                                   (Maximum a Posteriori) 

• Choose the  with the maximum posterior probability  

                                          

p(y) p(x |y)

y p(y |x)

f(x) = arg max
y

p(y |x)

Bayesian predictor



• Predictor. After fitting the  and  with data, we construct the MAP estimator 
                                                                                                                                   (Maximum a Posteriori) 

• Choose the  with the maximum posterior probability  

                                           

                                                  

                                                  

• ❓  Is MAP the only choice?

p(y) p(x |y)

y p(y |x)

f(x) = arg max
y

p(y |x)

= arg max
y

p(y)p(x |y)

= arg max
y (p(y)

d

∏
i=1

p(xi |y))

Bayesian predictor



• Hypothesis space. Constructed by selecting parameters for  and  

• Example. Gaussian likelihood —>  

                  Bernoulli prior           —> 

pθl
(x |y) pθp

(y)

θl = (μ0, μ1, σ0, σ1) ∈ ℝ4

θp ∈ [0,1]

Bayesian training



• Hypothesis space. Constructed by selecting parameters for  and  

• Example. Gaussian likelihood —>  

                  Bernoulli prior           —>  

• Training. To fit the parameters, we maximize the joint probability of the training data 

pθl
(x |y) pθp

(y)

θl = (μ0, μ1, σ0, σ1) ∈ ℝ4

θp ∈ [0,1]

max
θ

pθ(x1, …, xn, y1, …, yn) = max
θℓ,θp

n

∏
i=1

pθℓ
(xi |yi)pθp

(yi)

Bayesian training



 

• This is equivalent to performing ERM 

max
θ

pθ(x1, …, xn, y1, …, yn) = max
θℓ,θp

n

∏
i=1

pθℓ
(xi |yi)pθp

(yi)

= min
θℓ,θp

n

∑
i=1

(− log pθℓ
(xi |yi) − log pθp

(yi))

Bayesian training

So-called negative log-likelihood (NLL) loss



 

• This is equivalent to performing ERM 

 

• Solving this is equivalent to conducting two optimizations separately: 

 

max
θ

pθ(x1, …, xn, y1, …, yn) = max
θℓ,θp

n

∏
i=1

pθℓ
(xi |yi)pθp

(yi)

= min
θℓ,θp

n

∑
i=1

(− log pθℓ
(xi |yi) − log pθp

(yi))

min
θℓ

n

∑
i=1

(− log pθℓ
(xi |yi))

min
θp

n

∑
i=1

(− log pθp
(yi))

Bayesian training

such  is the maximum 
likelihood estimate (MLE)

θℓ



• For popular choices of likelihoods & priors, these ERM solutions are quite simple: 

• Example. Gaussian Likelihood 

• Use class-wise sample mean and classwise sample variance for  

• Example. Bernoulli Prior 

• Simply use the frequency           

μ0, μ1, σ2
0 , σ2

1

p =
#1s in dataset

n

Bayesian training



• Computation. Quite simple for popular choices of  and  

• Training. Simple, by explicit formula 

• Test. Simply compute  

• These can be very messy for atypical choices, or any dependency structures!

p(x |y) p(y)

p(y |x)

Considerations



• Computation. Quite simple for popular choices of  and  

• Training. Simple, by explicit formula 

• Test. Simply compute  

• These can be very messy for atypical choices, or any dependency structures! 

• Limitation. Requires a good prior and likelihood to be designed 

• We expect very complicated  

• Wish to replace human knowledge with some data-driven mechanisms…

p(x |y) p(y)

p(y |x)

p(x |y)

Considerations



Perceptrons



• The first “neural network” designed by Rosenblatt (1958)

Perceptrons





• Mathematically, quite simple 

• Again, we are given some dataset  

•  and 

D = {(x(i), y(i))}n
i=1

x ∈ ℝd y ∈ {0,1}

Perceptrons



• Mathematically, quite simple 

• Again, we are given some dataset  

•  and  

• Predictors. Use the sign of linear models 

    

(indicator function; 1 if the bracket is true, 0 if false)

D = {(x(i), y(i))}n
i=1

x ∈ ℝd y ∈ {0,1}

{fθ( ⋅ ) fθ(x) = 1[θ1
⊤x + θ0 > 0]} = {fθ( ⋅ ) fθ(x) = 1[θ⊤x̃ > 0]}

Perceptrons



• Mathematically, quite simple 

• Again, we are given some dataset  

•  and  

• Predictors. Use the sign of linear models 

    

• Training. Difficult to find an explicit solution. 

• Want to do something like gradient descent… but taking derivative w.r.t.  is nasty.

D = {(x(i), y(i))}n
i=1

x ∈ ℝd y ∈ {0,1}

{fθ( ⋅ ) fθ(x) = 1[θ1
⊤x + θ0 > 0]} = {fθ( ⋅ ) fθ(x) = 1[θ⊤x̃ > 0]}

1[ ⋅ ]

Perceptrons



Training Perceptrons
• Loss. To optimize, we use the loss 

 

• That is, we have loss           when wrong         (penalizing confidence) 
                                                           when correct

ℓ(y, fθ(x)) = ( fθ(x) − y) ⋅ θ⊤x

|θ⊤x |
0



Training Perceptrons
• Loss. To optimize, we use the loss 

 

• That is, we have loss           when wrong         (penalizing confidence) 
                                                           when correct 

• Note. Using such surrogate loss is quite common in ML 
           (i.e., loss functions different from the performance criterion)

ℓ(y, fθ(x)) = ( fθ(x) − y) ⋅ θ⊤x

|θ⊤x |
0



Training Perceptrons
• Loss. To optimize, we use the loss 

 

• That is, we have loss           when wrong         (penalizing confidence) 
                                                           when correct 

• Note. Using such surrogate loss is quite common in ML 
           (i.e., loss functions different from the performance criterion) 

❓  If , the loss is zero but our classifier is bad! 
      Can we still train a good model?

ℓ(y, fθ(x)) = ( fθ(x) − y) ⋅ θ⊤x

|θ⊤x |
0

θ = 0



Training Perceptrons
• Optimization. The original perceptron paper assumes that the data comes one-by-one. 

• Called online learning



Training Perceptrons
• Optimization. The original perceptron paper assumes that the data comes one-by-one. 

• Called online learning 

• The gradient is 

 

• If wrong for a sample with                 

• If wrong for a sample with                 

• If correct, no change

∇θℓ(y, fθ(x)) = ( fθ(x) − y)x

y = 1 θ(i+1) = θ(i) + η ⋅ x

y = 0 θ(i+1) = θ(i) − η ⋅ x



Remarks
• Computation. Quite easy 

• Training. Provably converges whenever the data is separable, luckily 

• Test. Simply do the dot product



Remarks
• Computation. Quite easy 

• Training. Provably converges whenever the data is separable, luckily 

• Test. Simply do the dot product 

• Limitations. Cannot achieve low training loss on 
                        not linearly separable data



Logistic Regression



Logistic regression
• Solve the classification, just like linear regression 

• Idea. Do not predict the label directly, but predict the log likelihood ratio (note the direction) 

 

• Question. Why don’t we simply predict ?

log ( p(y = 1 |x)
p(y = 0 |x) ) ≈ θ⊤x̃

p(y = 1 |x)



Logistic regression
• Solve the classification, just like linear regression 

• Idea. Do not predict the label directly, but predict the log likelihood ratio (note the direction) 

 

• Question. Why don’t we simply predict ? 

• Answer. To utilize the full range; , but 

log ( p(y = 1 |x)
p(y = 0 |x) ) ≈ θ⊤x̃

p(y = 1 |x)

p(y = 1 |x) ∈ [0,1] θ⊤x̃ ∈ (−∞, + ∞)



Logistic regression
 

• In other words, we are modeling the posterior distribution as 

log ( p(y = 1 |x)
p(y = 0 |x) ) ≈ θ⊤x̃

p(y = 1 |x) =
1

1 + exp(−θ⊤x̃)



Logistic regression
 

• In other words, we are modeling the posterior distribution as 

 

• The function  is called the logistic function

log ( p(y = 1 |x)
p(y = 0 |x) ) ≈ θ⊤x̃

p(y = 1 |x) =
1

1 + exp(−θ⊤x̃)

σ(t) = 1/1 + exp(−t)



Training
• Training. Given the data , we maximize the log likelihood 

 

• Equivalently, minimize the NLL loss 

D = {(xi, yi)}n
i=1

max
θ

1
n

n

∑
i=1

log p(yi | xi)

min
θ

1
n

n

∑
i=1

log ( 1
p(yi | xi) )



Training
• Equivalently again, solve an ERM with: 

• Hypothesis space  

• Loss is the cross-entropy   

{fθ(x) = σ(θ⊤x̃)}

ℓ(y, t) = CE(1y, [t,1 − t]) = log(t)−y + log(1 − t)y−1



Training
• Equivalently again, solve an ERM with: 

• Hypothesis space  

• Loss is the cross-entropy    

• More tediously, minimize 

 

• Convex, but no general closed-form solution  —> use gradient descent 

{fθ(x) = σ(θ⊤x̃)}

ℓ(y, t) = CE(1y, [t,1 − t]) = log(t)−y + log(1 − t)y−1

1
n

n

∑
i=1

(−yi)log(σ(θ⊤x̃i)) + (yi − 1)log(1 − σ(θ⊤x̃i))

θ(new) = θ + η ⋅
1
n

n

∑
i=1

(yi − σ(θ⊤x̃i))x̃i



Remarks
• Computation. Relatively easy 

• Training. Requires solving GD, but is convex 

• Testing. Dot product, and apply some threshold



Remarks
• Computation. Relatively easy 

• Training. Requires solving GD, but is convex 

• Testing. Dot product, and apply some threshold 

• Limitations. Again, limited expressive power



Wrapping up
• Looked at very simple classification algorithms 

• Easy to train and use 

• Cannot capture big, complicated data (except k-NN) 

• Next class. A bit more sophisticated version of linear classification models



Cheers


