Simple Classifiers

-ECE454 Intro. to Machine Learning systems

Fall 2024



Notice

- Last week. As you noticed, video lectures are not uploaded vyet
« SOrry!
- Will cover decision trees, bagging, and boosting
. quite distinct in style from other ML algorithms
- Assignment#1. Also delayed!
- Uploaded today

« Due: 10/3



Today

- Basic ML algorithms for classification
- Nearest Neighbors
- Nalve Bayes
- Perceptrons

- Logistic Regression



Classification

. Task. Given some input X, predict anoutput Y € {1,..., K}

. Yiscalled “class”

. c.f., the case of linear regression, where ¥ € R

Image
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Source: Huggingkace



Binary Classification

. For simplicity, we mostly consider the binary classification

- Y e {0,1)}

® ClassA

Class B



Binary Classification

- Any classifier can be viewed as selecting a subset of the input space
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Linear regression, for classification?

- Question. Can we use linear regression to solve classification tasks?



Linear regression, for classification?

« Answer. Yes
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« However... this is a bad choice

Linear regression, for classification?

(Yes) 1

Malignant ?
. \Very sensitive to “outliers”
(No) O
- Consider an extremely large but
benign tumor

. Thus we want better tools



Nearest Nelghoors



Historical bits

- Can be traced back to a book in 1021
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Historical bits

- Viewed human visual recognition as a nearest neighbor
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K-nearest neighbors

. Suppose that we have a labeled dataset D = {(X,, yl-)}?:1

 Training.

» Testing.



K-nearest neighbors

+ Training. There is no training!

. Instead, we simply store the training data in an indexable form.



K-nearest neighbors

. Testing. Whenever a new sample X% comes in:

. Find kK samples X(1) -+ Xp) € D with the highest similarity, e.g., have small distance
[x(ne) — Xl

- Predict with the majority vote

» Note. One can also predict real-valued y by (weighted) averaging



K-nearest neighbors

.+ The resulting predictor is nonlinear and nonparametric
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using flexible number of or infinite-dimensional parameters

finite-dimensional parameters

- Example. k-NN, Trees & Forests

Example. K-NN with k = 3 0




Selecting k

- Here, the neighbor set size k has a big impact on the model prediction

- Small k = more flexibility / Larger k =smoother decision boundary




Selecting k

. The kis often tuned manually

. such tunable components are often called hyperparameters



Selecting k

- A basic tuning procedure

. Run k-NN on the training data D with different k, to getfkl,sz,

- Evaluate their performance on validation data, and choose the best k

. Measure the test performance vvithf,;



Considerations

- Computation. K-NN is difficult to scale up to large datasets

- Pros. No training cost

. Cons. For testing, we need to conduct n comparisons

? How can we make this dependency sublinear?



Considerations

- Limitations. The success depends critically on what similarity metric we use

his similarity should represent some knowledge (from human expert, or maybe data)




Later...

- You will find that neural nets provide a way to handle this difficulty
- Use some training compute to make the comparison simpler (per-class prototypes)

. Use the similarity metric trained from the dataset



Nalve Bayes



Problem setup

. Suppose that we have a labeled dataset {(X(’O),y(i))}?:1

» Drawn independently from some Pyy

. xW e RY yY e {0,1)



Problem setup

- Assumption. Entries of each X are conditionally independent given y
d
px|y) = | | ptx1y)
i=1

- Note. Wrong for images (thus naive), but can be true for tabular data

. Fromnowon, weletd = 1, WLOG



Bayesian approach

- Based on some human expert knowledge, we manually design two things.

. Likelihood models. p(x | y)

+ Priors. p(y)



Bayesian approach

- Fach of these have some parameters to tune using the dato

.+ Example. Gaussian likelihood has two parameters u, 6 € R, for each y

1 (x = )7
plx|y) = eXp| ———=
o, 2T 2‘7y




Bayesian approach

- Fach of these have some parameters to tune using the dato

. Example. Bernoulli prior has one parameter p(y = 1)



Bayesian predictor

. Predictor. After fitting the p(y) and p(x | y) with data, we construct the MAP estimator

. Choose the y with the maximum posterior probability p(y | X)

J(x) = argmax p(y | x)
y



Bayesian predictor

J(x) = argmax p(y | x)
y

= argmax p(y)p(x|y)
Y

d
= arg max (p(y)Hp(X,- | )’))

Y i=1

. 7 Is MAP the only choice?



Bayesian training

. Hypothesis space. Constructed by selecting parameters for Pe,(X | y) and p@p(y)

. Example. Gaussian likelihood —> 6, = (uy, 41, 69, 61) € R4
Bernoulli prior —> 6’p e [0,1]



Bayesian training

- Training. To fit the parameters, we maximize the joint probability of the training data

max H Po K(Xi | yi)l?ep(yl')
6% i

MaX Py(Xy, - Xy Vi -0 3y



Bayesian training

n
meax Po(Xis e s Xs Vi oaes V) = Iélan H P@K(Xi | yi)l?ep()’i)
TP =1

. This is equivalent to performing ERM

n
= min Z (‘ log py,(X;|y;) — log Pep(yi))
0O i 4
So-called negative log-likelihood (NLL) loss



Bayesian training

n

— min Z (— log pgf(xl- | v;) — log Pep(yz'))

0% 21

. Solving this is equivalent to conducting two optimizations separately:

min Z (_ lo x.|v. ) <«— such 6, is the maximum
6, =P, (xi17) likelihood estimate (MLE)



Bayesian training
- For popular choices of likelihoods & priors, these ERM solutions are quite simple:

- Example. Gaussian Likelihood

Use class-wise sample mean and classwise sample variance for pg, 1, Gg, 012

- Example. Bernoulli Prior

Is 1n dataset

Simply use the frequency p =
n



Considerations

. Computation. Quite simple for popular choices of p(x|y) and p(y)

raining. Simple, by explicit formula

Test. Simply compute p(y | x)

- These can be very messy for atypical choices, or any dependency structures!



Considerations

. Limitation. Requires a good prior and likelihood to be designead

. We expect very complicated p(Xx | y)

- Wish to replace human knowledge with some data-driven mechanisms...



Perceptrons



STRUCTURE OF NEURON

Dendrite

Nucleus

— Myelin Sheath

Perceptrons

. The first “neural network” designed by Rosenblatt (1958)

— Schwann cell

—Nerve
ending
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Perceptrons

- Mathematically, quite simple

. Again, we are given some dataset D = {(X(i), y(i))}?=1

. xeR%ndy e {0,1)



Perceptrons

- Predictors. Use the sign of linear models

(o [ fo=1[6x+6,> 0]} = {fi() | /0 =1[0"x > 0] |



Perceptrons

- Training. Difficult to find an explicit solution.

- Want to do something like gradient descent... but taking derivative w.rt. 1[ - ]is nasty.



Training Perceptrons

« Loss. To optimize, we use the loss

£ fo(X) = (fo(x) = y) - 0'x

. Thatis, we haveloss |@'x|  when wrong (penalizing confidence)
0 when correct



Training Perceptrons

« Note. Using such surrogate loss is guite common in ML
(i.e., loss functions different from the performance criterion)




Training Perceptrons

? If0 = 0 theloss is zero but our classifier is bad!
Can we still train a good model?




Training Perceptrons

« Optimization. The original perceptron paper assumes that the data comes one-by-one.

« Called online learning



Training Perceptrons

« The gradient s

Vol (¥, fo(X)) = (Jo(X) — y)X

« |f wrong for a sample withy = 1 O+ = gl 4 n-X

o If wrong for a sample withy = 0 O+ = g0 _p . x

 |f correct, no change



Remarks

« Computation. Quite easy

« Training. Provably converges whenever the data is separable, luckily

« Test. Simply do the dot product



e Limitations. Cannot achieve low traini
nearly separable dat

not |i

Remarks

Nng loss on
a




L.ogistic Regression



Logistic regression
« Solve the classification, just like linear regression

» Idea. Do not predict the label directly, but predict the log likelihood ratio (note the direction)

log (p(y= I\X)) ~oTx
p(y = 0]x)

« Question. Why don't we simply predict p(y = 1|x)?



Logistic regression

. Answer. To utilize the full range; p(y = 1]x) € [0,1], but8'x € (— o0, + )




Logistic regression

log (p(y= I\X)) ~oTx
p(y = 0]x)

« |In other words, we are modeling the posterior distribution as

=1 X) =
PO =) = )



Logistic regression

« The function o(t) = 1/1 4+ exp(—1) is called the logistic function




Training

« Training. Given the data D = {(X;,¥;) }'_,, we maximize the log likelihood

1 n
max—Zlog p(y; | X;)

n
¢ =1

« Equivalently, minimize the NLL loss

| « |
min— ) log
0 n l:Z1 (P(Yi | Xi))




Training
« Equivalently again, solve an ERM with:

« Hypothesis space {f4(X) = o(0'%))

. Lossis the cross-entropy  £(y, 1) = CE(1,, [£,1 —7]) = log(®)™ + log(1 — Y1



Training

« More tediously, minimize

| « N N
— 2, (=olog(a(®7%)) + (3 = Dlog(1 = o(07%))
i=1
« Convex, but no general closed-form solution —> use gradient descent

1 n
0" = 0+n-— ) (= o(0"%)X
& =1



Remarks

« Computation. Relatively easy

« Training. Requires solving GD, but is convex

 Testing. Dot product, and apply some threshold



Remarks

« Limitations. Again, limited expressive power



Wrapping up
« Looked at very simple classification algorithms

« Easy to train and use

« Cannot capture big, complicated data (except k-NN)

» Next class. A bit more sophisticated version of linear classification models



Cheers



