Supervised Learning & Linear Regression EECE454 Intro. to Machine Learning Systems

- Next week. Video lectures
 - Will check attendance based on whether you watched
- Attendance. Checked electronically
- Assignment#1. Will be out during this weekend. (if I survive the conference deadlines)

Notice

- System. Linear Algebra
- **Optimization.** Matrix Calculus

• **Signals.** Probability and Statistics

- **Today.** Start discussing classic ML algorithms
 - Basic framework of Supervised Learning •
 - Simplest case: Linear Regression

A basic framework & supervised learning

- Goal (general). Given some input X_i predict some output Y_i
 - Assumption. There is some (unknown-to-us) joint distribution P_{XY}
 - Example: ●

Inputs	
	Ima

Setup

age-to-Text Model

Output

Detailed description

a herd of giraffes and zebras grazing in a field

Source: HuggingFace

- Goal (general). Given some input X, predict some output Y
 - Assumption. There is some (unknown-to-us) joint distribution P_{XY}
- (c.f. Leo Breiman, "Statistical Modeling: The Two Cultures," 2001) • Roughly, two approaches:
 - <u>Algorithmic Modeling</u>. Find a function $f(\cdot)$ such that, under P_{XY} , ● it is likely to hold that $f(X) \approx Y$
 - Easier, in most cases
 - Data Modeling. Approximate the distribution $P_{Y|X}$ (often by approximating P_{XY} or $P_{X|Y}$) so that we can build various estimates based on it
 - Can do more in-depth analysis, such as uncertainty quantification

Setup

- **Goal (general).** Given some input X, predict some output Y
 - <u>Assumption</u>. There is some (unknown-to-us) joint distribution P_{XY}
- Roughly, two approaches:
 - Algorithmic Modeling. Find a function $f(\ \cdot\)$ such that, under $P_{XY'}$ it is likely to hold that $f(X) \approx Y$
 - Easier, in most cases
 - so that we can build various estimates based on it
 - Can do more in-depth analysis, such as uncertainty quantification

Setup

(c.f. Leo Breiman, "Statistical Modeling: The Two Cultures," 2001)

We follow mostly this (cover data modeling later)

- Data Modeling. Approximate the distribution $P_{Y|X}$ (often by approximating P_{XY} or $P_{X|Y}$)

Setup (Algorithmic Modeling)

- Goal (Rough). Find a function $f(\cdot)$ such that, under P_{XY} , it is likely to hold that $f(X) \approx Y$
 - More precisely, we want to solve

for some nice loss function $\ell(\cdot, \cdot)$ and a good set of predictors \mathcal{F} (called hypothesis space)

 $\min_{f \in \mathscr{F}} \mathbb{E}_{P_{XY}}[\ell(f(X), Y)]$

Setup (Algorithmic Modeling)

- Goal (Rough). Find a function $f(\cdot)$ such that, under P_{XY} , it is likely to hold that $f(X) \approx Y$
 - More precisely, we want to solve

for some nice loss function $\ell(\cdot, \cdot)$ and a good set of predictors \mathcal{F}

- **Problem.** We do not know the true data-generating joint distribution P_{XY}
 - If we knew, we can simply choose the Bayes-optimal predictor.
 - <u>Solution</u>. We use training data to replace P_{XY}

$\min_{f \in \mathcal{F}} \mathbb{E}_{P_{XY}}[\ell(f(X), Y)]$

- - That is, we have

 $D = \{(x_1, y_1), \dots, (x_n, y_n)\}$

• Also called feature-label pairs.

• Dataset. In supervised learning, we assume that our training dataset consists of *input-output* pairs

- - That is, we have

- Also called feature-label pairs.
- Example. ImageNet dataset. ullet

n02097047 (196)

n01682714 (40)

Dataset. In supervised learning, we assume that our training dataset consists of input-output pairs

 $D = \{(x_1, y_1), \dots, (x_n, y_n)\}$

n03134739 (522)

imagenet1000_clsidx_to_labels.txt

1	{0: 'tench, Tinca tinca',
2	1: 'goldfish, Carassius auratus',
3	2: 'great white shark, white shark, man-e
4	3: 'tiger shark, Galeocerdo cuvieri',
5	4: 'hammerhead, hammerhead shark',
6	5: 'electric ray, crampfish, numbfish, to
7	6: 'stingray',
8	7: 'cock',
9	8: 'hen',
10	9: 'ostrich, Struthio camelus',
11	10: 'brambling, Fringilla montifringilla'
12	<pre>11: 'goldfinch, Carduelis carduelis',</pre>
13	12: 'house finch, linnet, Carpodacus mexi
14	13: 'junco, snowbird',
15	14: 'indigo bunting, indigo finch, indigo
16	15: 'robin, American robin, Turdus migrat
17	16: 'bulbul',
18	17: 'jay',
19	18: 'magpie',
20	19: 'chickadee',

 \equiv

- Collection.
 - Hire human annotators
 - e.g., Amazon MTurk
 - Crawl human-generated data
 - e.g., Image Captions
 - Utilize "very good" models
 - Synthetic data generation
- In a sense, human has provided supervision for the machine (thus called supervised learning)

Choose the correct category

Select an option

Cat	1
Dog	2
Bird	3
None of the Above	4

Submit

• Given this dataset, we perform the **empirical risk minimization**

$$\min_{f \in \mathscr{F}} \mathbb{E}_{P_n}[\ell(f(X), Y)] = f$$

• Intuition. The law of large numbers:

$$\frac{1}{n} \sum_{i=1}^{n} g(X_i)$$
$$\frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y)$$

• Requires assuming that (x_i, y_i) are drawn i.i.d. from P_{XY}

 $\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) \quad (+ \text{ regularizers})$

$\longrightarrow \mathbb{E}_{P_{Y}}[g(X)]$

$\longrightarrow \mathbb{E}_{P_{XY}}[\ell(f(X), Y)]$

Supervised Learning $\frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y) \longrightarrow \mathbb{E}_{P_{XY}}[\ell(f(X), Y)]$

- Before we proceed, take some time to think about...
 - How fast would this convergence be?
 - Hint: Concentration inequalities
 - Would it be optimal to treat all data equally, e.g., weigh by 1/n?
 - Hint: Think about very rare cases

• **Problem.** We hope that $\mathbb{E}[\ell(Y, \hat{f}(X))]$ is small... but how do we know if we succeeded?

Testing

- **Problem.** We hope that $\mathbb{E}[\ell(Y, \hat{f}(X))]$ is small... but how do we know if we succeeded?
- <u>Answer</u>. We usually keep some data as a test dataset $D^{\text{test}} = \{(\tilde{x}_1, \tilde{y}_1), \dots, (\tilde{x}_k, \tilde{y}_k)\}$
 - We validate that the test loss is small •

- - If the dataset is small, consider cross-validation (not covered today)

 $\frac{1}{k} \sum_{i=1}^{\kappa} \ell(\hat{f}(\tilde{x}_i), \tilde{y}_i)$

• Typically, we split the whole data into **train/val/test** with the 8:1:1 ratio (or 7:1:2, in the past)

Considerations in selecting ML algorithms

Which algorithm should we use? $\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) \quad (+ \text{ regularizers})$

Basically about designing the components of this optimization formula •

Which algorithm should we use? $\mathcal{L}(f(x_i), y_i)$ (+ regularizers) $\min_{f \in \mathcal{F} \mid n}^{1}$

• Model Size (= Richness of hypothesis space \mathscr{F}) If too small, even the best $\hat{f}(\cdot)$ cannot fit the reality well.

Linearly separable

Not linearly separable

Which algorithm should we use? $\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) \quad (+ \text{ regularizers})$

• Model Size (= Richness of hypothesis space \mathscr{F}) If too large, can overfit the training data + large inference cost

Which algorithm should we use?

- **Optimization** (= difficulty of solving ERM)
 - Often highly customized for each model class
 - For highly complicated, nonlinear models ...
 - Explicit solution not available
 - Takes a long time to compute the optimum (high training cost)

 $\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) \quad (+ \text{ regularizers})$

Which algorithm should we use? $\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) \quad (+ \text{ regularizers})$

- Loss function / Regularizer
 - Affects how difficult the optimization is
 - e.g., non-continuous loss
 - Affects overfitting
 - e.g., soft penalty to overfitting
 - Affects desirable properties
 - e.g., robustness, sparsity

Throughout the course

- We study popular ML models one-by-one
- Try to clearly understand...
 - Which hypothesis space it uses
 - Which optimizer it uses ullet
 - Which loss / regularizer it uses
- This and next class. Linear models, Naïve Bayes, Nearest Neighbors

- Note. Many of these choices heavily depend on task.
 - e.g., regression vs. classification, image vs. text vs. tabular, ...

- **Goal.** Model the relationship between several continuous variables
 - Input $x \in \mathbb{R}^d$ and output $y \in \mathbb{R}^m$
 - Example. House price prediction f(area) = price

Living area (feet ²)	Price (1000\$s)
2104	400
1600	330
2400	369
1416	232
3000	540
:	:

• Model. We use a linear model $f(\cdot)$

 \mathbb{R}^{m}

• Model. We use a linear model $f(\cdot)$

• If
$$x \in \mathbb{R}$$
 and $y \in \mathbb{R}$,
 $f(\mathbf{x}) = w \cdot x + b$,
 $w \in \mathbb{R}, c \in \mathbb{R}$
• If $\mathbf{x} \in \mathbb{R}^d$ and $y \in \mathbb{R}$,
 $f(\mathbf{x}) = \mathbf{w}^T \mathbf{x} + b$,
 $w \in \mathbb{R}^d, b \in \mathbb{R}$
• If $\mathbf{x} \in \mathbb{R}^d$ and $\mathbf{y} \in \mathbb{R}^m$,
 $f(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}$,
 $W \in \mathbb{R}^{m \times d}, \mathbf{b} \in \mathbb{R}$

Our hypothesis space (parameter space, model space)

- Loss. We will use the squared ℓ_2 loss, i.e., $\ell(\hat{\mathbf{y}}, \mathbf{y}) = \|y \hat{y}\|_2^2$
 - Known as ordinary least squares
- For a dataset $D = \{(x_i, y_i)\}_{i=1}^n$, we are solving

Linear Regression

$$\left(y_i - (w \cdot x_i + b)\right)^2$$

- Loss. We will use the squared ℓ_2 loss, i.e., $\ell(\hat{\mathbf{y}}, \mathbf{y}) = \|\mathbf{y} \hat{\mathbf{y}}\|_2^2$
 - Known as ordinary least squares
- For a dataset $D = \{(x_i, y_i)\}_{i=1}^n$, we are solving

- **Question.** Why least squared?
 - Easy to solve
 - Quadratic function
 - Nice interpretation
 - Maximum likelihood estimate under <u>Gaussian noise</u> (talk about this later)

 $\min_{w,b} \frac{1}{2n} \sum_{i=1}^{n} \left(y_i - (w \cdot x_i + b) \right)^2$

- Fun fact. If X and Y are jointly Gaussian random variables, we know that the MMSE estimator is always linear
 - Thus linear models are a sufficiently rich hypothesis space for such data
 - No underfitting expected
 - <u>Proof</u>. Homework!

Linear Regression: Optimization (or Training)

- This is a quadratic function.
 - The minimum is where derivatives are zero (critical point)

1D, bias-free case

$$\int_{1} \left(y_i - (w \cdot x_i) \right)^2$$

=:J(w)

 $\frac{\partial J}{\partial w}(w) = 0$

$$\frac{\partial J}{\partial w} = \frac{1}{n} \sum_{i=1}^{n} (w \cdot x_i - y_i) x_i = 0$$

- We can find an explicit formula for the critical point
 - Not always possible
 - What if we used $\ell(\hat{y}, y) = (y \hat{y})^6$?
 - No gradient computation needed, luckily
 - Needs several multiplications & summations for optimization (i.e., training)

s-free case $0 \quad \Rightarrow \quad w\left(\sum x_i^2\right) = \sum y_i x_i$ $\Rightarrow \qquad w = \frac{\sum y_i x_i}{\sum x_i^2}$

Multivariate case

• Consider a slightly more general case of $\mathbf{x} \in \mathbb{R}^d$, $y \in \mathbb{R}^d$

• This looks messy, so we simplify a bit:

 $\min_{\mathbf{w}\in\mathbb{R}^d,b\in\mathbb{R}^1}\frac{1}{2n}\sum_{i=1}^n\left(y_i-\mathbf{w}^{\mathsf{T}}\mathbf{x}_i+b\right)^2$

Multivariate case

• Consider a slightly more general case of $\mathbf{x} \in \mathbb{R}^d$, $y \in \mathbb{R}$

- This looks messy, so we simplify a bit:
 - **Trick 1.** Parameter stacking

• Define
$$\tilde{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}, \theta = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}$$

 $\min_{\mathbf{w}\in\mathbb{R}^d,b\in\mathbb{R}^1}\frac{1}{2n}\sum_{i=1}^n\left(y_i-\mathbf{w}^{\mathsf{T}}\mathbf{x}_i+b\right)^2$

 $\Rightarrow \qquad J(\theta) = \frac{1}{2\pi} \sum_{n=1}^{n} (y - \theta^{\mathsf{T}} \tilde{\mathbf{x}})^2$ $2n \sum_{i=1}^{n}$

Multivariate case

• Consider a slightly more general case of $\mathbf{x} \in \mathbb{R}^d$, $\mathbf{y} \in \mathbb{R}$

- This looks messy, so we simplify a bit:
 - Trick 2. Data stacking

• Define
$$\mathbf{X} = \begin{bmatrix} \tilde{\mathbf{x}}_1^{\mathsf{T}} \\ \cdots \\ \tilde{\mathbf{x}}_n^{\mathsf{T}} \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_1 \\ \cdots \\ y_n \end{bmatrix}$$

 $\min_{\mathbf{w}\in\mathbb{R}^d,b\in\mathbb{R}^1}\frac{1}{2n}\sum_{i=1}^n\left(y_i-\mathbf{w}^{\mathsf{T}}\mathbf{x}_i+b\right)^2$

 $\Rightarrow \qquad J(\theta) = \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\theta\|^2$

 $J(\theta) = -$

Now we examine the critical point, where the gradient is zero.

$$\frac{1}{2n} \|\mathbf{y} - \mathbf{X}\boldsymbol{\theta}\|^2$$

 $\nabla J(\theta) = \frac{1}{2n} \nabla \left((\mathbf{y} - \mathbf{X}\theta)^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\theta) \right)$ $= \frac{1}{2n} \nabla \left(\mathbf{y}^{\mathsf{T}} \mathbf{y} + \boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta} - 2 \mathbf{y}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta} \right)$ $= \frac{1}{2n} \left(2\theta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} - 2\mathbf{y}^{\mathsf{T}} \mathbf{X} \right) = \mathbf{0}$

 Now we examine the critical point, where the gradient is zero. $\nabla J(\theta) = \frac{1}{2n} \nabla \left((\mathbf{y} - \mathbf{X}\theta)^{\mathsf{T}} (\mathbf{y} - \mathbf{X}\theta) \right)$ $= \frac{1}{2n} \nabla \left(\mathbf{y}^{\mathsf{T}} \mathbf{y} + \boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta} - 2\mathbf{y}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta} \right)$ $= \frac{1}{2m} \left(2\theta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} - 2\mathbf{y}^{\mathsf{T}} \mathbf{X} \right) = 0$

• Thus, the critical point condition is:

 $J(\theta) = \frac{1}{2n} \|\mathbf{y} - \mathbf{X}\theta\|^2$

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$

• If the matrix $\mathbf{X}^{\mathsf{T}}\mathbf{X}$ happens to be invertible, then we have a unique solution

 $\hat{\boldsymbol{\theta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

- If the matrix $\mathbf{X}^\mathsf{T} \mathbf{X}$ happens to be invertible, then we have a unique solution $\hat{\theta} = (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{y}$
- If not invertible, there exists infinitely many critical points (which are all minima, luckily).
 - <u>One solution</u>. The above takes the form of $\mathbf{A} \theta = \mathbf{b}$
 - Thus simply use QR decomposition

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$

- If the matrix $\mathbf{X}^{\mathsf{I}}\mathbf{X}$ happens to be invertible, then we have a unique solution $\hat{\boldsymbol{\theta}} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$
- If not invertible, there exists infinitely many critical points (which are all minima, luckily).
 - <u>One solution</u>. The above takes the form of $\mathbf{A}\boldsymbol{\theta} = \mathbf{b}$
 - Thus simply use QR decomposition
 - This gives you Moore-Penrose pseudo-inverse $(\mathbf{X}^{\mathsf{T}}\mathbf{X})^{\dagger}$ which gives you a minimum norm solution among all possible heta

 $\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\theta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$

- Fun exercise. Count the number of FLOPs to compute the optimum parameter (i.e., compute the training cost)
 - <u>Hint</u>. This depends on the order of computation!

 $\hat{\theta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathsf{T}}\mathbf{y}$

Alternative way to optimize: Gradient descent

• Rough idea. Repeat taking steps in the downward direction.

- **Rough idea.** Repeat taking steps in the downward direction.
 - Pick a random initial parameter $heta^{(0)}$, and use the gradient to update $heta^{(1)}, heta^{(2)}, \dots$ Initial weight J(w)

- **Rough idea.** Repeat taking steps in the downward direction.
 - Pick a random initial parameter $\theta^{(0)}$, and use the gradient to update $\theta^{(1)}, \theta^{(2)}, \dots$
 - Intuition. Gradient = direction of fastest increase \Rightarrow Negative gradient = direction of fastest decrease
 - Take a step toward that direction, with some step size η
 - $\theta^{(t+1)} = \theta^{(t+1)}$

$$^{(t)} - \eta \cdot \nabla_{\theta} J(\theta^{(t)})$$

- **Rough idea.** Repeat taking steps in the downward direction.
 - Pick a random initial parameter $\theta^{(0)}$, and use the gradient to update $\theta^{(1)}, \theta^{(2)}, \dots$
 - Intuition. Gradient = direction of fastest increase \Rightarrow Negative gradient = direction of fastest decrease
 - Take a step toward that direction, with some step size η
 - Plugging in the gradient formula, we get

$$\theta \leftarrow \theta - \frac{\eta}{n}$$

 $\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta} J(\theta^{(t)})$

 $-\left(\mathbf{X}^{\mathsf{T}}\mathbf{X}\mathbf{\theta}-\mathbf{X}^{\mathsf{T}}\mathbf{y}\right)$

Remarks

- **Theoretical.** For certain cases, GD is guaranteed to converge
 - Usually requires diminishing step size

 $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \frac{\eta}{n} \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta} - \mathbf{X}^{\mathsf{T}} \mathbf{y} \right)$

Remarks $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} - \frac{\eta}{n} \left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta} - \mathbf{X}^{\mathsf{T}} \mathbf{y} \right)$

• **Theoretical.** For certain cases, GD is guaranteed to converge

• Usually requires diminishing step size

- **Computational.** How computationally heavy is GD?
 - One can pre-compute and re-use $\mathbf{A} := -\mathbf{X}^{\mathsf{T}}\mathbf{X}$ and $\mathbf{b} := -\mathbf{X}^{\mathsf{T}}\mathbf{y}$ over all iterations

- The pre-computing cost is almost same as solving explicitly (thus little merit)
 - Will become handy in cases where no explicit solution is available

$\theta \leftarrow (\mathbf{I} - \mathbf{A})\theta - \mathbf{b}$

Remarks

- **SGD.** You don't need full data for GD
 - Use a randomly drawn subset of k samples in each iteration ($k \ll n$)
 - Called mini-batch GD (or stochastic GD when k=1)
 - This saves much RAM!

- Batch gradient descent _
- Mini-batch gradient Descent _
- Stochastic gradient descent

Wrapping up

- A basic background for machine learning
 - Empirical risk minimization
 - Supervised learning
- Linear regression
 - Explicit solution
 - Gradient descent

Next up

- Naïve Bayes
- Logistic Regression
- Nearest Neighbors

Cheers