
Fall 2024

EECE454 Intro. to Machine Learning Systems

Supervised Learning & 
Linear Regression



Notice
• Next week. Video lectures 

• Will check attendance based on whether you watched 

• Attendance. Checked electronically 

• Assignment#1. Will be out during this weekend. 
                             (if I survive the conference deadlines)



Last class
• System. Linear Algebra 

• Optimization. Matrix Calculus 

• Signals. Probability and Statistics 

• Today. Start discussing classic ML algorithms 

• Basic framework of Supervised Learning 

• Simplest case: Linear Regression

ML 
(optimization)

Data 
(signal)

Model 
(system)

(optional) some feedback loop



A basic framework & 
supervised learning



Setup
• Goal (general). Given some input , predict some output  

• Assumption. There is some (unknown-to-us) joint distribution  

• Example:

X Y

PXY

Source: HuggingFace



Setup
• Goal (general). Given some input , predict some output  

• Assumption. There is some (unknown-to-us) joint distribution  

• Roughly, two approaches:                  (c.f. Leo Breiman, “Statistical Modeling: The Two Cultures,” 2001) 

• Algorithmic Modeling. Find a function  such that, under , 

                                          it is likely to hold that   

• Easier, in most cases 

• Data Modeling. Approximate the distribution   (often by approximating   or ) 
                             so that we can build various estimates based on it 

• Can do more in-depth analysis, such as uncertainty quantification
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Setup
• Goal (general). Given some input , predict some output  

• Assumption. There is some (unknown-to-us) joint distribution  

• Roughly, two approaches:                  (c.f. Leo Breiman, “Statistical Modeling: The Two Cultures,” 2001) 

• Algorithmic Modeling. Find a function  such that, under , 

                                          it is likely to hold that   

• Easier, in most cases 

• Data Modeling. Approximate the distribution   (often by approximating   or ) 
                             so that we can build various estimates based on it 

• Can do more in-depth analysis, such as uncertainty quantification

X Y

PXY

f( ⋅ ) PXY
f(X) ≈ Y

PY|X PXY PX|Y

We follow mostly this 
(cover data modeling 
 later)



Setup (Algorithmic Modeling)
• Goal (Rough). Find a function  such that, under , it is likely to hold that   

• More precisely, we want to solve 

 

    for some nice loss function  and a good set of predictors      (called hypothesis space)

f( ⋅ ) PXY f(X) ≈ Y

min
f∈ℱ

𝔼PXY
[ℓ( f(X), Y)]

ℓ( ⋅ , ⋅ ) ℱ



Setup (Algorithmic Modeling)
• Goal (Rough). Find a function  such that, under , it is likely to hold that   

• More precisely, we want to solve 

 

    for some nice loss function  and a good set of predictors  

• Problem. We do not know the true data-generating joint distribution  

• If we knew, we can simply choose the Bayes-optimal predictor. 

• Solution. We use training data to replace 

f( ⋅ ) PXY f(X) ≈ Y

min
f∈ℱ

𝔼PXY
[ℓ( f(X), Y)]

ℓ( ⋅ , ⋅ ) ℱ

PXY

PXY



Supervised Learning
• Dataset. In supervised learning, we assume that our training dataset consists of input-output pairs 

• That is, we have 

 

• Also called feature-label pairs.

D = {(x1, y1), …, (xn, yn)}



• Dataset. In supervised learning, we assume that our training dataset consists of input-output pairs 

• That is, we have 

 

• Also called feature-label pairs. 

• Example. ImageNet dataset.

D = {(x1, y1), …, (xn, yn)}

Supervised Learning



• Collection. 

• Hire human annotators 

• e.g., Amazon MTurk 

• Crawl human-generated data 

• e.g., Image Captions 

• Utilize “very good” models 

• Synthetic data generation 

• In a sense, human has provided supervision for the machine (thus called supervised learning)

Supervised Learning



• Given this dataset, we perform the empirical risk minimization 

    (+ regularizers) 

• Intuition. The law of large numbers: 

 

 

• Requires assuming that  are drawn i.i.d. from 

min
f∈ℱ

𝔼Pn
[ℓ( f(X), Y)] = min

f∈ℱ

1
n

n

∑
i=1

ℓ( f(xi), yi)

1
n

n

∑
i=1

g(Xi) ⟶ 𝔼PX
[g(X)]

1
n

n

∑
i=1

ℓ( f(Xi), Y) ⟶ 𝔼PXY
[ℓ( f(X), Y)]

(xi, yi) PXY

Supervised Learning



 

• Before we proceed, take some time to think about… 

• How fast would this convergence be? 

• Hint: Concentration inequalities 

• Would it be optimal to treat all data equally, e.g., weigh by 1/n? 

• Hint: Think about very rare cases

1
n

n

∑
i=1

ℓ( f(Xi), Y) ⟶ 𝔼PXY
[ℓ( f(X), Y)]

Supervised Learning



Testing
• Problem. We hope that  is small… but how do we know if we succeeded?𝔼[ℓ(Y, ̂f(X))]



Testing
• Problem. We hope that  is small… but how do we know if we succeeded? 

• Answer. We usually keep some data as a test dataset  

• We validate that the test loss is small 

 

• Typically, we split the whole data into train/val/test with the 8:1:1 ratio (or 7:1:2, in the past) 

• If the dataset is small, consider cross-validation (not covered today)

𝔼[ℓ(Y, ̂f(X))]

Dtest = {(x̃1, ỹ1), …, (x̃k, ỹk)}

1
k

k

∑
i=1

ℓ( ̂f(x̃i), ỹi)



Considerations in 
selecting ML algorithms



Which algorithm should we use?
    (+ regularizers) 

• Basically about designing the components of this optimization formula

min
f∈ℱ

1
n

n

∑
i=1

ℓ( f(xi), yi)



Which algorithm should we use?
    (+ regularizers) 

• Model Size (= Richness of hypothesis space ) 
If too small, even the best  cannot fit the reality well.

min
f∈ℱ

1
n

n

∑
i=1

ℓ( f(xi), yi)

ℱ
̂f( ⋅ )



Which algorithm should we use?
    (+ regularizers) 

• Model Size (= Richness of hypothesis space ) 
If too large, can overfit the training data + large inference cost

min
f∈ℱ

1
n

n

∑
i=1

ℓ( f(xi), yi)

ℱ



Which algorithm should we use?
    (+ regularizers) 

• Optimization (= difficulty of solving ERM) 

• Often highly customized for each model class 

• For highly complicated, nonlinear models … 

• Explicit solution not available 

• Takes a long time to compute the optimum 
(high training cost)

min
f∈ℱ

1
n

n

∑
i=1

ℓ( f(xi), yi)



Which algorithm should we use?
    (+ regularizers) 

• Loss function / Regularizer 

• Affects how difficult the optimization is 

• e.g., non-continuous loss 

• Affects overfitting 

• e.g., soft penalty to overfitting 

• Affects desirable properties 

• e.g., robustness, sparsity

min
f∈ℱ

1
n

n

∑
i=1

ℓ( f(xi), yi)



Throughout the course
• We study popular ML models one-by-one 

• Try to clearly understand… 

• Which hypothesis space it uses 

• Which optimizer it uses 

• Which loss / regularizer it uses 

• This and next class. Linear models, Naïve Bayes, Nearest Neighbors 

• Note. Many of these choices heavily depend on task. 

• e.g., regression vs. classification, image vs. text vs. tabular, …



Linear Regression



Linear Regression
• Goal. Model the relationship between several continuous variables 

• Input  and output  

• Example. House price prediction 
                  

x ∈ ℝd y ∈ ℝm

f(area) = price



Linear Regression
• Model. We use a linear model  

• If  and , 

 

• If  and , 

 

• If  and , 

f( ⋅ )

x ∈ ℝ y ∈ ℝ

f(x) = w ⋅ x + b, w ∈ ℝ, c ∈ ℝ

x ∈ ℝd y ∈ ℝ

f(x) = w⊤x + b, w ∈ ℝd, b ∈ ℝ

x ∈ ℝd y ∈ ℝm

f(x) = Wx + b, W ∈ ℝm×d, b ∈ ℝm



Linear Regression
• Model. We use a linear model  

• If  and , 

 

• If  and , 

 

• If  and , 

f( ⋅ )

x ∈ ℝ y ∈ ℝ

f(x) = w ⋅ x + b, w ∈ ℝ, c ∈ ℝ

x ∈ ℝd y ∈ ℝ

f(x) = w⊤x + b, w ∈ ℝd, b ∈ ℝ

x ∈ ℝd y ∈ ℝm

f(x) = Wx + b, W ∈ ℝm×d, b ∈ ℝm

Our hypothesis space 
(parameter space, model space)



Linear Regression
• Loss. We will use the squared  loss, i.e.,  

• Known as ordinary least squares 

• For a dataset , we are solving 

ℓ2 ℓ(ŷ, y) = ∥y − ̂y∥2
2

D = {(xi, yi)}n
i=1

min
w,b

1
2n

n

∑
i=1

(yi − (w ⋅ xi + b))2



Linear Regression
• Loss. We will use the squared  loss, i.e.,  

• Known as ordinary least squares 

• For a dataset , we are solving 

 

• Question. Why least squared? 

• Easy to solve 

• Quadratic function 

• Nice interpretation 

• Maximum likelihood estimate under Gaussian noise    (talk about this later)

ℓ2 ℓ(ŷ, y) = ∥y − ̂y∥2
2

D = {(xi, yi)}n
i=1

min
w,b

1
2n

n

∑
i=1

(yi − (w ⋅ xi + b))2



Linear Regression
• Fun fact. If  and  are jointly Gaussian random variables, 

                  we know that the MMSE estimator is always linear 

• Thus linear models are a sufficiently rich hypothesis space for such data 

• No underfitting expected 

• Proof. Homework!

X Y



Linear Regression: 
Optimization (or Training)



1D, bias-free case
 

• This is a quadratic function. 

• The minimum is where derivatives are zero (critical point) 

min
w∈ℝ

1
2n

n

∑
i=1

(yi − (w ⋅ xi))2

=:J(w)

∂J
∂w

(w) = 0



1D, bias-free case
                     

                                                           

• We can find an explicit formula for the critical point 

• Not always possible 

• What if we used ? 

• No gradient computation needed, luckily 

• Needs several multiplications & summations for optimization (i.e., training)

∂J
∂w

=
1
n

n

∑
i=1

(w ⋅ xi − yi)xi = 0 ⇒ w (∑ x2
i ) = ∑ yixi

⇒ w =
∑ yixi

∑ x2
i

ℓ( ̂y, y) = (y − ̂y)6



Multivariate case
• Consider a slightly more general case of  

 

• This looks messy, so we simplify a bit:

x ∈ ℝd, y ∈ ℝ

min
w∈ℝd,b∈ℝ1

1
2n

n

∑
i=1

(yi − w⊤xi + b)2



Multivariate case
• Consider a slightly more general case of  

 

• This looks messy, so we simplify a bit: 

• Trick 1. Parameter stacking 

• Define  

          

x ∈ ℝd, y ∈ ℝ

min
w∈ℝd,b∈ℝ1

1
2n

n

∑
i=1

(yi − w⊤xi + b)2

x̃ = [x
1], θ = [w

b]
⇒ J(θ) =

1
2n

n

∑
i=1

(y − θ⊤x̃)2



Multivariate case
• Consider a slightly more general case of  

 

• This looks messy, so we simplify a bit: 

• Trick 2. Data stacking 

•
Define  

          

x ∈ ℝd, y ∈ ℝ

min
w∈ℝd,b∈ℝ1

1
2n

n

∑
i=1

(yi − w⊤xi + b)2

X =
x̃⊤

1
⋯
x̃⊤

n

, y = [
y1
⋯
yn]
⇒ J(θ) =

1
2n

∥y − Xθ∥2



Multivariate case
 

• Now we examine the critical point, where the gradient is zero. 

 

                        

               

J(θ) =
1
2n

∥y − Xθ∥2

∇J(θ) =
1
2n

∇((y − Xθ)⊤(y − Xθ))
=

1
2n

∇(y⊤y + θ⊤X⊤Xθ − 2y⊤Xθ)
=

1
2n (2θ⊤X⊤X − 2y⊤X) = 0



Multivariate case
 

• Now we examine the critical point, where the gradient is zero. 

 

                        

                

• Thus, the critical point condition is: 

J(θ) =
1
2n

∥y − Xθ∥2

∇J(θ) =
1
2n

∇((y − Xθ)⊤(y − Xθ))
=

1
2n

∇(y⊤y + θ⊤X⊤Xθ − 2y⊤Xθ)
=

1
2n (2θ⊤X⊤X − 2y⊤X) = 0

X⊤Xθ = X⊤y



Multivariate case
 

• If the matrix  happens to be invertible, then we have a unique solution 

X⊤Xθ = X⊤y

X⊤X
̂θ = (X⊤X)−1X⊤y



Multivariate case
 

• If the matrix  happens to be invertible, then we have a unique solution 

 

• If not invertible, there exists infinitely many critical points (which are all minima, luckily). 

• One solution. The above takes the form of  

• Thus simply use QR decomposition

X⊤Xθ = X⊤y

X⊤X
̂θ = (X⊤X)−1X⊤y

Aθ = b



Multivariate case
 

• If the matrix  happens to be invertible, then we have a unique solution 

 

• If not invertible, there exists infinitely many critical points (which are all minima, luckily). 

• One solution. The above takes the form of  

• Thus simply use QR decomposition 

• This gives you Moore-Penrose pseudo-inverse  
which gives you a minimum norm solution among all possible 

X⊤Xθ = X⊤y

X⊤X
̂θ = (X⊤X)−1X⊤y

Aθ = b

(X⊤X)†

θ



Multivariate case
 

• Fun exercise. Count the number of FLOPs to compute the optimum parameter 
                          (i.e., compute the training cost) 

• Hint. This depends on the order of computation!

̂θ = (X⊤X)−1X⊤y



Alternative way to optimize: 
Gradient descent



Gradient Descent
• Rough idea. Repeat taking steps in the downward direction.



Gradient Descent
• Rough idea. Repeat taking steps in the downward direction. 

• Pick a random initial parameter , and use the gradient to update θ(0) θ(1), θ(2), …



Gradient Descent
• Rough idea. Repeat taking steps in the downward direction. 

• Pick a random initial parameter , and use the gradient to update  

• Intuition. Gradient = direction of fastest increase 
                  Negative gradient = direction of fastest decrease 

• Take a step toward that direction, with some step size  

θ(0) θ(1), θ(2), …

⇒

η

θ(t+1) = θ(t) − η ⋅ ∇θJ(θ(t))



Gradient Descent
• Rough idea. Repeat taking steps in the downward direction. 

• Pick a random initial parameter , and use the gradient to update  

• Intuition. Gradient = direction of fastest increase 
                  Negative gradient = direction of fastest decrease 

• Take a step toward that direction, with some step size  

 

• Plugging in the gradient formula, we get 

θ(0) θ(1), θ(2), …

⇒

η

θ(t+1) = θ(t) − η ⋅ ∇θJ(θ(t))

θ ← θ −
η
n (X⊤Xθ − X⊤y)



Remarks
 

• Theoretical. For certain cases, GD is guaranteed to converge 

• Usually requires diminishing step size

θ ← θ −
η
n (X⊤Xθ − X⊤y)



Remarks
 

• Theoretical. For certain cases, GD is guaranteed to converge 

• Usually requires diminishing step size 

• Computational. How computationally heavy is GD? 

• One can pre-compute and re-use  and  over all iterations 

 

• The pre-computing cost is almost same as solving explicitly (thus little merit) 

• Will become handy in cases where no explicit solution is available

θ ← θ −
η
n (X⊤Xθ − X⊤y)

A :=
η
n

X⊤X b :=
η
n

X⊤y

θ ← (I − A)θ − b



Remarks
• SGD. You don’t need full data for GD 

• Use a randomly drawn subset of  samples in each iteration ( ) 

• Called mini-batch GD  (or stochastic GD when k=1) 

• This saves much RAM!

k k ≪ n



Wrapping up
• A basic background for machine learning 

• Empirical risk minimization 

• Supervised learning 

• Linear regression 

• Explicit solution 

• Gradient descent



Next up
• Naïve Bayes 

• Logistic Regression 

• Nearest Neighbors



Cheers


