

EECE454 Intro. to Machine Learning Systems Supervised Learning & Linear Regression

Notice

- Next week. Video lectures
	- Will check attendance based on whether you watched
- Attendance. Checked electronically
- Assignment#1. Will be out during this weekend. (if I survive the conference deadlines)

- System. Linear Algebra
- Optimization. Matrix Calculus

• Signals. Probability and Statistics

- Today. Start discussing classic ML algorithms
	- Basic framework of Supervised Learning
	- Simplest case: Linear Regression

A basic framework & supervised learning

Setup

age-to-Text **Model**

Output

Detailed description

a herd of giraffes and zebras grazing in a field

- Goal (general). Given some input X , predict some output Y
	- $\,$ Assumption. There is some (unknown-to-us) joint distribution P_{XY}
	- Example:

Source: HuggingFace

- Goal (general). Given some input X , predict some output Y
	- <u>Assumption</u>. There is some (unknown-to-us) joint distribution P_{XY}
- Roughly, two approaches: (c.f. Leo Breiman, "Statistical Modeling: The Two Cultures," 2001)
	- Algorithmic Modeling. Find a function $f(\ \cdot\)$ such that, under $P_{XY^{\prime}}$ it is likely to hold that $f(X) \approx Y$
		- Easier, in most cases
	- <u>Data Modeling</u>. Approximate the distribution $P_{Y|X}$ (often by approximating P_{XY} or $P_{X|Y}$) so that we can build various estimates based on it
		- Can do more in-depth analysis, such as uncertainty quantification

Setup

- Goal (general). Given some input X , predict some output Y
	- <u>Assumption</u>. There is some (unknown-to-us) joint distribution P_{XY}
- - Algorithmic Modeling. Find a function $f(\ \cdot\)$ such that, under $P_{XY^{\prime}}$ it is likely to hold that $f(X) \approx Y$
		- Easier, in most cases
	- so that we can build various estimates based on it
		- Can do more in-depth analysis, such as uncertainty quantification

Setup

• Roughly, two approaches: (c.f. Leo Breiman, "Statistical Modeling: The Two Cultures," 2001)

We follow mostly this (cover data modeling later)

• <u>Data Modeling</u>. Approximate the distribution $P_{Y|X}$ (often by approximating P_{XY} or $P_{X|Y}$)

Setup (Algorithmic Modeling)

- Goal (Rough). Find a function $f(\;\cdot\;)$ such that, under P_{XY} , it is likely to hold that $f(X)\approx Y$
	- More precisely, we want to solve

min *f*∈ℱ

for some nice loss function $\ell(\,\cdot\,,\cdot\,)$ and a good set of predictors $\mathscr F$ (called hypothesis space)

 P_{XY} $[\mathscr{C}(f(X), Y)]$

Setup (Algorithmic Modeling)

- Goal (Rough). Find a function $f(\,\cdot\,)$ such that, under P_{XY} , it is likely to hold that $f(X)\approx Y$
	- More precisely, we want to solve

- \bullet Problem. We do not know the true data-generating joint distribution P_{XY}
	- If we knew, we can simply choose the Bayes-optimal predictor.
	- Solution. We use training data to replace *PXY*

P_{XY} $[\ell(f(X), Y)]$

min *f*∈ℱ

for some nice loss function $\ell(\,\cdot\,,\cdot\,)$ and a good set of predictors $\mathscr F$

Supervised Learning

• Dataset. In supervised learning, we assume that our training dataset consists of *input-output* pairs

- - That is, we have

 $D = \{(x_1, y_1), \ldots, (x_n, y_n)\}\$

• Also called feature-label pairs.

• Dataset. In supervised learning, we assume that our training dataset consists of *input-output* pairs

n03134739 (522)

\circ imagenet1000_clsidx_to_labels.txt

- Also called feature-label pairs.
- Example. ImageNet dataset.

n02097047 (196)

n01682714 (40)

- - That is, we have

Supervised Learning

 $D = \{(x_1, y_1), ..., (x_n, y_n)\}\$

Supervised Learning

 \equiv

- Collection.
	- Hire human annotators
		- e.g., Amazon MTurk
	- Crawl human-generated data
		- e.g., Image Captions
	- Utilize "very good" models
	- Synthetic data generation
- In a sense, human has provided supervision for the machine (thus called supervised learning)

Choose the correct category

Select an option

Submit

$$
\min_{f \in \mathcal{F}} \mathbb{E}_{P_n}[\mathcal{C}(f(X), Y)] = r
$$

• Intuition. The law of large numbers:

$$
\frac{1}{n} \sum_{i=1}^{n} g(X_i)
$$

$$
\frac{1}{n} \sum_{i=1}^{n} \ell(f(X_i), Y)
$$

• Requires assuming that (x_i, y_i) are drawn i.i.d. from P_{XY}

 $[\ell(f(X), Y)] = \min - \sum \ell(f(x_i), y_i)$ (+ regularizers) *f*∈ℱ 1 *n n* ∑ *i*=1 $\mathscr{C}(f(x_i), y_i)$

\longrightarrow $\mathbb{E}_{P_X}[g(X)]$

$(F) \longrightarrow E_{P_{XY}}[\mathscr{C}(f(X), Y)]$

Supervised Learning

• Given this dataset, we perform the *empirical risk minimization*

1 *n n* ∑ *i*=1 $\mathscr{C}(f(X_i), Y) \longrightarrow \mathbb{E}_{P_{XY}}[\mathscr{C}(f(X), Y)]$ Supervised Learning

- Before we proceed, take some time to think about…
	- How fast would this convergence be?
		- Hint: Concentration inequalities
	- Would it be optimal to treat all data equally, e.g., weigh by 1/n?
		- Hint: Think about very rare cases

• **Problem.** We hope that $\mathbb{E}[\ell(Y, f(X))]$ is small... but how do we know if we succeeded? ̂

Testing

- **Problem.** We hope that $\mathbb{E}[\mathscr{C}(Y, f(X))]$ is small... but how do we know if we succeeded? ̂
- Answer. We usually keep some data as a test dataset $D^{\text{test}} = \{(\tilde{x}_1, \tilde{y}_1), ..., (\tilde{x}_k, \tilde{y}_k)\}$
	- We validate that the test loss is small

1 *k*

- - If the dataset is small, consider cross-validation (not covered today)

k ∑ *i*=1 $\mathscr{C}(f(\tilde{x}_i), \tilde{y}_i)$ ̂

• Typically, we split the whole data into **train/val/test** with the 8:1:1 ratio (or 7:1:2, in the past)

Considerations in selecting ML algorithms

Which algorithm should we use? $\min - \sum \ell(f(x_i), y_i)$ (+ regularizers) *f*∈ℱ 1 *n n* ∑ *i*=1 $\mathscr{C}(f(x_i), y_i)$

• Basically about designing the components of this optimization formula

Which algorithm should we use? (+ regularizers) min *f*∈ℱ 1 *n n* ∑ *i*=1 $\mathscr{C}(f(x_i), y_i)$

• Model Size (= Richness of hypothesis space \mathcal{F}) If too small, even the best $f(\ \cdot\)$ cannot fit the reality well. ̂

Linearly separable

Not linearly separable

Which algorithm should we use? $\min_{i} \leftarrow \sum_{i} \mathcal{C}(f(x_i), y_i)$ (+ regularizers) *f*∈ℱ 1 *n n* ∑ *i*=1 $\mathscr{C}(f(x_i), y_i)$

• Model Size (= Richness of hypothesis space \mathcal{F}) If too large, can overfit the training data + large inference cost

Which algorithm should we use? 1 *n*

- **Optimization** (= difficulty of solving ERM)
	- Often highly customized for each model class

- For highly complicated, nonlinear models …
	- Explicit solution not available
	- Takes a long time to compute the optimum (high training cost)

 \min \sum $\ell(f(x_i), y_i)$ (+ regularizers) $\mathscr{C}(f(x_i), y_i)$

f∈ℱ

n

∑

i=1

Which algorithm should we use? $\min -\sum \ell(f(x_i), y_i)$ (+ regularizers) *f*∈ℱ 1 *n n* ∑ *i*=1 $\ell(f(x_i), y_i)$

- Loss function / Regularizer
	- Affects how difficult the optimization is
		- e.g., non-continuous loss
	- Affects overfitting
		- e.g., soft penalty to overfitting
	- Affects desirable properties
		- e.g., robustness, sparsity

Throughout the course

- We study popular ML models one-by-one
- Try to clearly understand…
	- Which hypothesis space it uses
	- Which optimizer it uses
	- Which loss / regularizer it uses
- This and next class. Linear models, Naïve Bayes, Nearest Neighbors

- Note. Many of these choices heavily depend on task.
	- e.g., regression vs. classification, image vs. text vs. tabular, …

- Goal. Model the relationship between several continuous variables
	- Input $x \in \mathbb{R}^d$ and output $y \in \mathbb{R}^m$
	- Example. House price prediction $f(area) = price$

• Model. We use a linear model *f*(⋅)

\n- If
$$
x \in \mathbb{R}
$$
 and $y \in \mathbb{R}$, $f(\mathbf{x}) = w \cdot x + b$, $w \in \mathbb{R}, c \in \mathbb{R}$
\n- If $\mathbf{x} \in \mathbb{R}^d$ and $y \in \mathbb{R}$, $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$, $\mathbf{w} \in \mathbb{R}^d$, $b \in \mathbb{R}$
\n- If $\mathbf{x} \in \mathbb{R}^d$ and $\mathbf{y} \in \mathbb{R}^m$, $f(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}$, $\mathbf{W} \in \mathbb{R}^{m \times d}$, $\mathbf{b} \in \mathbb{R}^{m \times d}$
\n

 \mathbb{R}^m

• Model. We use a linear model *f*(⋅)

• If
$$
x \in \mathbb{R}
$$
 and $y \in \mathbb{R}$,
\n $f(\mathbf{x}) = w \cdot x + b$,
\n• If $\mathbf{x} \in \mathbb{R}^d$ and $y \in \mathbb{R}$,
\n $f(\mathbf{x}) = \mathbf{w}^\top \mathbf{x} + b$,
\n• If $\mathbf{x} \in \mathbb{R}^d$ and $\mathbf{y} \in \mathbb{R}^n$,
\n $f(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}$,
\n $f(\mathbf{x}) = \mathbf{W}\mathbf{x} + \mathbf{b}$,
\n $\mathbf{W} \in \mathbb{R}^{m \times d}$, $\mathbf{b} \in \mathbb{R}^{m \times d}$,
\n $\mathbf{b} \in \mathbb{R}^{m \times d}$,
\

Our hypothesis space (parameter space, model space)

Linear Regression

- Loss. We will use the squared ℓ_2 loss, i.e., $\ell(\hat{\mathbf{y}}, \mathbf{y}) = ||y \hat{y}||_2^2$ ̂
	- Known as ordinary least squares
- For a dataset $D = \{(x_i, y_i)\}_{i=1}^n$, we are solving *i*=1

2

$$
(y_i - (w \cdot x_i + b))^2
$$

- Loss. We will use the squared ℓ_2 loss, i.e., $\ell(\hat{\mathbf{y}}, \mathbf{y}) = ||\mathbf{y} \hat{\mathbf{y}}||_2^2$
	- Known as ordinary least squares
- For a dataset $D = \{(x_i, y_i)\}_{i=1}^n$, we are solving *i*=1

 $(y_i - (w \cdot x_i + b))$ 2

2

- Question. Why least squared?
	- Easy to solve
		- Quadratic function
	- Nice interpretation
		- Maximum likelihood estimate under Gaussian noise (talk about this later)

- Fun fact. If X and Y are jointly Gaussian random variables, we know that the MMSE estimator is always linear
	- Thus linear models are a sufficiently rich hypothesis space for such data
		- No underfitting expected
	- Proof. Homework!

Linear Regression: Optimization (or Training)

1D, bias-free case

- This is a quadratic function.
	- The minimum is where derivatives are zero (critical point)

w∈ℝ

2*n*

$$
\sum_{i=1}^n \left(y_i - (w \cdot x_i) \right)^2
$$

 $=$: $J(w)$

∂*J* ∂*w*

$$
\frac{1}{\nu}(w) = 0
$$

- We can find an explicit formula for the critical point
	- Not always possible
		- What if we used $\ell(\hat{y}, y) = (y \hat{y})^6$?
	- No gradient computation needed, luckily
	- Needs several multiplications & summations for optimization (i.e., training)

s-free case $\left| x_i = 0 \right.$ \Rightarrow $w\left(\sum x_i^2 \right) = \sum y_i x_i$ \Rightarrow $w =$ $\sum y_i x_i$ $\sum x_i^2$ *i*

$$
\frac{\partial J}{\partial w} = \frac{1}{n} \sum_{i=1}^{n} (w \cdot x_i - y_i) x_i = 0
$$

n ∑ *i*=1 $(y_i - \mathbf{w}^\top \mathbf{x}_i + b)^2$

• This looks messy, so we simplify a bit:

Multivariate case

min

1

2*n*

 \mathbf{w} ∈ℝ^{d}, b ∈ℝ 1

• Consider a slightly more general case of $\mathbf{x} \in \mathbb{R}^d, \, y \in \mathbb{R}$

• Consider a slightly more general case of $\mathbf{x} \in \mathbb{R}^d, \mathbf{y} \in \mathbb{R}$

- This looks messy, so we simplify a bit:
	- Trick 1. Parameter stacking

n ∑ *i*=1 $(y_i - \mathbf{w}^\top \mathbf{x}_i + b)^2$

1 2*n n* ∑ *i*=1 $(y - \theta^T \tilde{\mathbf{x}})^2$

min

1

2*n*

 \mathbf{w} ∈ℝ^{d}, b ∈ℝ 1

. Define
$$
\tilde{\mathbf{x}} = \begin{bmatrix} \mathbf{x} \\ 1 \end{bmatrix}, \theta = \begin{bmatrix} \mathbf{w} \\ b \end{bmatrix}
$$

 \Rightarrow *J*(θ) =

• Consider a slightly more general case of $\mathbf{x} \in \mathbb{R}^d, \mathbf{y} \in \mathbb{R}$

- This looks messy, so we simplify a bit:
	- Trick 2. Data stacking

n ∑ *i*=1 $(y_i - \mathbf{w}^\top \mathbf{x}_i + b)^2$

1 2*n* $||\mathbf{y} - \mathbf{X}\theta||^2$

min

1

2*n*

 \mathbf{w} ∈ℝ^{d}, b ∈ℝ 1

$$
\text{Define } \mathbf{X} = \begin{bmatrix} \tilde{\mathbf{x}}_1^{\top} \\ \cdots \\ \tilde{\mathbf{x}}_n^{\top} \end{bmatrix}, \mathbf{y} = \begin{bmatrix} y_1 \\ \cdots \\ y_n \end{bmatrix}
$$

 \Rightarrow *J*(θ) =

 $J(\theta) = -$

• Now we examine the critical point, where the gradient is zero.

$$
\frac{1}{2n} \|\mathbf{y} - \mathbf{X}\theta\|^2
$$

 ∇ (**y** – **X** θ) $\int \mathbf{y} - \mathbf{X}\theta$) $\nabla \left(\mathbf{y}^\mathsf{T} \mathbf{y} + \theta^\mathsf{T} \mathbf{X}^\mathsf{T} \mathbf{X} \theta - 2 \mathbf{y}^\mathsf{T} \mathbf{X} \theta \right)$ $\frac{1}{2n}$ $\left(2\theta^\mathsf{T}\mathbf{X}^\mathsf{T}\mathbf{X} - 2\mathbf{y}^\mathsf{T}\mathbf{X}\right) = 0$

• Now we examine the critical point, where the gradient is zero. $\nabla J(\theta) =$ 1 2*n* ∇((**y** − **X***θ*) $\frac{1}{\sqrt{2}}$ (**y** - **X***θ*)) = 1 2*n* = 1 $\frac{1}{2n}$ $\left(2\theta^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X} - 2\mathbf{y}^{\mathsf{T}}\mathbf{X}\right) = 0$

 $J(\theta) =$

1 2*n* $||\mathbf{y} - \mathbf{X}\theta||^2$

 $\nabla \left(\mathbf{y}^{\mathsf{T}} \mathbf{y} + \theta^{\mathsf{T}} \mathbf{X}^{\mathsf{T}} \mathbf{X} \theta - 2 \mathbf{y}^{\mathsf{T}} \mathbf{X} \theta \right)$

 $\mathbf{X}^\top \mathbf{X} \theta = \mathbf{X}^\top \mathbf{y}$

• Thus, the critical point condition is:

 $\mathbf{X}^\top \mathbf{X} \theta = \mathbf{X}^\top \mathbf{y}$

• If the matrix $\mathbf{X}^\mathsf{T}\mathbf{X}$ happens to be invertible, then we have a unique solution

 $\hat{\theta} = (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{y}$

- If the matrix $\mathbf{X}^\mathsf{T}\mathbf{X}$ happens to be invertible, then we have a unique solution $\hat{\theta} = (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{y}$
- If not invertible, there exists infinitely many critical points (which are all minima, luckily).
	- <u>One solution</u>. The above takes the form of $\mathbf{A}\theta = \mathbf{b}$
		- Thus simply use QR decomposition

 $\mathbf{X}^\top \mathbf{X} \theta = \mathbf{X}^\top \mathbf{y}$

- If the matrix $\mathbf{X}^\mathsf{T}\mathbf{X}$ happens to be invertible, then we have a unique solution $\hat{\theta} = (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{y}$
- If not invertible, there exists infinitely many critical points (which are all minima, luckily).
	- <u>One solution</u>. The above takes the form of $A\theta = b$
		- Thus simply use QR decomposition
		- This gives you Moore-Penrose pseudo-inverse (**X**⊤**X**) † which gives you a minimum norm solution among all possible θ

 $\mathbf{X}^\top \mathbf{X} \theta = \mathbf{X}^\top \mathbf{y}$

-
- Fun exercise. Count the number of FLOPs to compute the optimum parameter (i.e., compute the training cost)
	- Hint. This depends on the order of computation!

 $\hat{\theta} = (\mathbf{X}^\mathsf{T} \mathbf{X})^{-1} \mathbf{X}^\mathsf{T} \mathbf{y}$

Alternative way to optimize: Gradient descent

• Rough idea. Repeat taking steps in the downward direction.

• Rough idea. Repeat taking steps in the downward direction.

- Rough idea. Repeat taking steps in the downward direction.
	- Pick a random initial parameter $\theta^{(0)}$, and use the gradient to update $\theta^{(1)}, \theta^{(2)}, ...$
	- Intuition. Gradient = direction of fastest increase → Negative gradient = direction of fastest decrease
		- Take a step toward that direction, with some step size *η*
			-

 $\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta} J(\theta^{(t)})$

- Rough idea. Repeat taking steps in the downward direction.
	- Pick a random initial parameter $\theta^{(0)}$, and use the gradient to update $\theta^{(1)}, \theta^{(2)}, ...$
	- Intuition. Gradient = direction of fastest increase ⇒ Negative gradient = direction of fastest decrease
		- Take a step toward that direction, with some step size *η*
			-
		- Plugging in the gradient formula, we get

$$
\theta \leftarrow \theta - \frac{\eta}{n}
$$

 $\theta^{(t+1)} = \theta^{(t)} - \eta \cdot \nabla_{\theta} J(\theta^{(t)})$

 $\sqrt{2}$ $\frac{1}{2}$ $\left(\begin{array}{c} \mathbf{X}^{\mathsf{T}} \mathbf{X} \boldsymbol{\theta} - \mathbf{X}^{\mathsf{T}} \mathbf{y} \end{array} \right)$

Remarks

- Theoretical. For certain cases, GD is guaranteed to converge
	- Usually requires diminishing step size

 $\frac{d}{n}$ $\left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \theta - \mathbf{X}^{\mathsf{T}} \mathbf{y} \right)$

^θ [←] *^θ* [−] *^η*

• Usually requires diminishing step size

- **Computational.** How computationally heavy is GD?
	- . One can pre-compute and re-use $\mathbf{A} := -\mathbf{X}^\top \mathbf{X}$ and $\mathbf{b} := -\mathbf{X}^\top \mathbf{y}$ over all iterations *η n*

- The pre-computing cost is almost same as solving explicitly (thus little merit)
	- Will become handy in cases where no explicit solution is available

 $\mathbf{X}^\top \mathbf{X}$ and $\mathbf{b} :=$ *η n* **X**⊤**y**

$\theta \leftarrow (\mathbf{I} - \mathbf{A})\theta - \mathbf{b}$

Remarks $\frac{d}{n}$ $\left(\mathbf{X}^{\mathsf{T}} \mathbf{X} \theta - \mathbf{X}^{\mathsf{T}} \mathbf{y} \right)$

^θ [←] *^θ* [−] *^η*

• Theoretical. For certain cases, GD is guaranteed to converge

Remarks

- SGD. You don't need full data for GD
	- Use a randomly drawn subset of k samples in each iteration ($k \ll n$)
		- Called mini-batch GD (or stochastic GD when k=1)
		- This saves much RAM!

- Batch gradient descent $\overline{}$
- Mini-batch gradient Descent
- -Stochastic gradient descent

Wrapping up

- A basic background for machine learning
	- Empirical risk minimization
	- Supervised learning
- Linear regression
	- Explicit solution
	- Gradient descent

Next up

- Naïve Bayes
- Logistic Regression
- Nearest Neighbors

Cheers