
Fall 2024

EECE454 Intro. to Machine Learning Systems

Supervised Learning &
Linear Regression

Notice
• Next week. Video lectures

• Will check attendance based on whether you watched

• Attendance. Checked electronically

• Assignment#1. Will be out during this weekend.
 (if I survive the conference deadlines)

Last class
• System. Linear Algebra

• Optimization. Matrix Calculus

• Signals. Probability and Statistics

• Today. Start discussing classic ML algorithms

• Basic framework of Supervised Learning

• Simplest case: Linear Regression

ML
(optimization)

Data
(signal)

Model
(system)

(optional) some feedback loop

A basic framework &
supervised learning

Setup
• Goal (general). Given some input , predict some output

• Assumption. There is some (unknown-to-us) joint distribution

• Example:

X Y

PXY

Source: HuggingFace

Setup
• Goal (general). Given some input , predict some output

• Assumption. There is some (unknown-to-us) joint distribution

• Roughly, two approaches: (c.f. Leo Breiman, “Statistical Modeling: The Two Cultures,” 2001)

• Algorithmic Modeling. Find a function such that, under ,

 it is likely to hold that

• Easier, in most cases

• Data Modeling. Approximate the distribution (often by approximating or)
 so that we can build various estimates based on it

• Can do more in-depth analysis, such as uncertainty quantification

X Y

PXY

f(⋅) PXY
f(X) ≈ Y

PY|X PXY PX|Y

Setup
• Goal (general). Given some input , predict some output

• Assumption. There is some (unknown-to-us) joint distribution

• Roughly, two approaches: (c.f. Leo Breiman, “Statistical Modeling: The Two Cultures,” 2001)

• Algorithmic Modeling. Find a function such that, under ,

 it is likely to hold that

• Easier, in most cases

• Data Modeling. Approximate the distribution (often by approximating or)
 so that we can build various estimates based on it

• Can do more in-depth analysis, such as uncertainty quantification

X Y

PXY

f(⋅) PXY
f(X) ≈ Y

PY|X PXY PX|Y

We follow mostly this
(cover data modeling
 later)

Setup (Algorithmic Modeling)
• Goal (Rough). Find a function such that, under , it is likely to hold that

• More precisely, we want to solve

 for some nice loss function and a good set of predictors (called hypothesis space)

f(⋅) PXY f(X) ≈ Y

min
f∈ℱ

𝔼PXY
[ℓ(f(X), Y)]

ℓ(⋅ , ⋅) ℱ

Setup (Algorithmic Modeling)
• Goal (Rough). Find a function such that, under , it is likely to hold that

• More precisely, we want to solve

 for some nice loss function and a good set of predictors

• Problem. We do not know the true data-generating joint distribution

• If we knew, we can simply choose the Bayes-optimal predictor.

• Solution. We use training data to replace

f(⋅) PXY f(X) ≈ Y

min
f∈ℱ

𝔼PXY
[ℓ(f(X), Y)]

ℓ(⋅ , ⋅) ℱ

PXY

PXY

Supervised Learning
• Dataset. In supervised learning, we assume that our training dataset consists of input-output pairs

• That is, we have

• Also called feature-label pairs.

D = {(x1, y1), …, (xn, yn)}

• Dataset. In supervised learning, we assume that our training dataset consists of input-output pairs

• That is, we have

• Also called feature-label pairs.

• Example. ImageNet dataset.

D = {(x1, y1), …, (xn, yn)}

Supervised Learning

• Collection.

• Hire human annotators

• e.g., Amazon MTurk

• Crawl human-generated data

• e.g., Image Captions

• Utilize “very good” models

• Synthetic data generation

• In a sense, human has provided supervision for the machine (thus called supervised learning)

Supervised Learning

• Given this dataset, we perform the empirical risk minimization

 (+ regularizers)

• Intuition. The law of large numbers:

• Requires assuming that are drawn i.i.d. from

min
f∈ℱ

𝔼Pn
[ℓ(f(X), Y)] = min

f∈ℱ

1
n

n

∑
i=1

ℓ(f(xi), yi)

1
n

n

∑
i=1

g(Xi) ⟶ 𝔼PX
[g(X)]

1
n

n

∑
i=1

ℓ(f(Xi), Y) ⟶ 𝔼PXY
[ℓ(f(X), Y)]

(xi, yi) PXY

Supervised Learning

• Before we proceed, take some time to think about…

• How fast would this convergence be?

• Hint: Concentration inequalities

• Would it be optimal to treat all data equally, e.g., weigh by 1/n?

• Hint: Think about very rare cases

1
n

n

∑
i=1

ℓ(f(Xi), Y) ⟶ 𝔼PXY
[ℓ(f(X), Y)]

Supervised Learning

Testing
• Problem. We hope that is small… but how do we know if we succeeded?𝔼[ℓ(Y, ̂f(X))]

Testing
• Problem. We hope that is small… but how do we know if we succeeded?

• Answer. We usually keep some data as a test dataset

• We validate that the test loss is small

• Typically, we split the whole data into train/val/test with the 8:1:1 ratio (or 7:1:2, in the past)

• If the dataset is small, consider cross-validation (not covered today)

𝔼[ℓ(Y, ̂f(X))]

Dtest = {(x̃1, ỹ1), …, (x̃k, ỹk)}

1
k

k

∑
i=1

ℓ(̂f(x̃i), ỹi)

Considerations in
selecting ML algorithms

Which algorithm should we use?
 (+ regularizers)

• Basically about designing the components of this optimization formula

min
f∈ℱ

1
n

n

∑
i=1

ℓ(f(xi), yi)

Which algorithm should we use?
 (+ regularizers)

• Model Size (= Richness of hypothesis space)
If too small, even the best cannot fit the reality well.

min
f∈ℱ

1
n

n

∑
i=1

ℓ(f(xi), yi)

ℱ
̂f(⋅)

Which algorithm should we use?
 (+ regularizers)

• Model Size (= Richness of hypothesis space)
If too large, can overfit the training data + large inference cost

min
f∈ℱ

1
n

n

∑
i=1

ℓ(f(xi), yi)

ℱ

Which algorithm should we use?
 (+ regularizers)

• Optimization (= difficulty of solving ERM)

• Often highly customized for each model class

• For highly complicated, nonlinear models …

• Explicit solution not available

• Takes a long time to compute the optimum
(high training cost)

min
f∈ℱ

1
n

n

∑
i=1

ℓ(f(xi), yi)

Which algorithm should we use?
 (+ regularizers)

• Loss function / Regularizer

• Affects how difficult the optimization is

• e.g., non-continuous loss

• Affects overfitting

• e.g., soft penalty to overfitting

• Affects desirable properties

• e.g., robustness, sparsity

min
f∈ℱ

1
n

n

∑
i=1

ℓ(f(xi), yi)

Throughout the course
• We study popular ML models one-by-one

• Try to clearly understand…

• Which hypothesis space it uses

• Which optimizer it uses

• Which loss / regularizer it uses

• This and next class. Linear models, Naïve Bayes, Nearest Neighbors

• Note. Many of these choices heavily depend on task.

• e.g., regression vs. classification, image vs. text vs. tabular, …

Linear Regression

Linear Regression
• Goal. Model the relationship between several continuous variables

• Input and output

• Example. House price prediction

x ∈ ℝd y ∈ ℝm

f(area) = price

Linear Regression
• Model. We use a linear model

• If and ,

• If and ,

• If and ,

f(⋅)

x ∈ ℝ y ∈ ℝ

f(x) = w ⋅ x + b, w ∈ ℝ, c ∈ ℝ

x ∈ ℝd y ∈ ℝ

f(x) = w⊤x + b, w ∈ ℝd, b ∈ ℝ

x ∈ ℝd y ∈ ℝm

f(x) = Wx + b, W ∈ ℝm×d, b ∈ ℝm

Linear Regression
• Model. We use a linear model

• If and ,

• If and ,

• If and ,

f(⋅)

x ∈ ℝ y ∈ ℝ

f(x) = w ⋅ x + b, w ∈ ℝ, c ∈ ℝ

x ∈ ℝd y ∈ ℝ

f(x) = w⊤x + b, w ∈ ℝd, b ∈ ℝ

x ∈ ℝd y ∈ ℝm

f(x) = Wx + b, W ∈ ℝm×d, b ∈ ℝm

Our hypothesis space
(parameter space, model space)

Linear Regression
• Loss. We will use the squared loss, i.e.,

• Known as ordinary least squares

• For a dataset , we are solving

ℓ2 ℓ(ŷ, y) = ∥y − ̂y∥2
2

D = {(xi, yi)}n
i=1

min
w,b

1
2n

n

∑
i=1

(yi − (w ⋅ xi + b))2

Linear Regression
• Loss. We will use the squared loss, i.e.,

• Known as ordinary least squares

• For a dataset , we are solving

• Question. Why least squared?

• Easy to solve

• Quadratic function

• Nice interpretation

• Maximum likelihood estimate under Gaussian noise (talk about this later)

ℓ2 ℓ(ŷ, y) = ∥y − ̂y∥2
2

D = {(xi, yi)}n
i=1

min
w,b

1
2n

n

∑
i=1

(yi − (w ⋅ xi + b))2

Linear Regression
• Fun fact. If and are jointly Gaussian random variables,

 we know that the MMSE estimator is always linear

• Thus linear models are a sufficiently rich hypothesis space for such data

• No underfitting expected

• Proof. Homework!

X Y

Linear Regression:
Optimization (or Training)

1D, bias-free case

• This is a quadratic function.

• The minimum is where derivatives are zero (critical point)

min
w∈ℝ

1
2n

n

∑
i=1

(yi − (w ⋅ xi))2

=:J(w)

∂J
∂w

(w) = 0

1D, bias-free case

• We can find an explicit formula for the critical point

• Not always possible

• What if we used ?

• No gradient computation needed, luckily

• Needs several multiplications & summations for optimization (i.e., training)

∂J
∂w

=
1
n

n

∑
i=1

(w ⋅ xi − yi)xi = 0 ⇒ w (∑ x2
i) = ∑ yixi

⇒ w =
∑ yixi

∑ x2
i

ℓ(̂y, y) = (y − ̂y)6

Multivariate case
• Consider a slightly more general case of

• This looks messy, so we simplify a bit:

x ∈ ℝd, y ∈ ℝ

min
w∈ℝd,b∈ℝ1

1
2n

n

∑
i=1

(yi − w⊤xi + b)2

Multivariate case
• Consider a slightly more general case of

• This looks messy, so we simplify a bit:

• Trick 1. Parameter stacking

• Define

x ∈ ℝd, y ∈ ℝ

min
w∈ℝd,b∈ℝ1

1
2n

n

∑
i=1

(yi − w⊤xi + b)2

x̃ = [x
1], θ = [w

b]
⇒ J(θ) =

1
2n

n

∑
i=1

(y − θ⊤x̃)2

Multivariate case
• Consider a slightly more general case of

• This looks messy, so we simplify a bit:

• Trick 2. Data stacking

•
Define

x ∈ ℝd, y ∈ ℝ

min
w∈ℝd,b∈ℝ1

1
2n

n

∑
i=1

(yi − w⊤xi + b)2

X =
x̃⊤

1
⋯
x̃⊤

n

, y = [
y1
⋯
yn]
⇒ J(θ) =

1
2n

∥y − Xθ∥2

Multivariate case

• Now we examine the critical point, where the gradient is zero.

J(θ) =
1
2n

∥y − Xθ∥2

∇J(θ) =
1
2n

∇((y − Xθ)⊤(y − Xθ))
=

1
2n

∇(y⊤y + θ⊤X⊤Xθ − 2y⊤Xθ)
=

1
2n (2θ⊤X⊤X − 2y⊤X) = 0

Multivariate case

• Now we examine the critical point, where the gradient is zero.

• Thus, the critical point condition is:

J(θ) =
1
2n

∥y − Xθ∥2

∇J(θ) =
1
2n

∇((y − Xθ)⊤(y − Xθ))
=

1
2n

∇(y⊤y + θ⊤X⊤Xθ − 2y⊤Xθ)
=

1
2n (2θ⊤X⊤X − 2y⊤X) = 0

X⊤Xθ = X⊤y

Multivariate case

• If the matrix happens to be invertible, then we have a unique solution

X⊤Xθ = X⊤y

X⊤X
̂θ = (X⊤X)−1X⊤y

Multivariate case

• If the matrix happens to be invertible, then we have a unique solution

• If not invertible, there exists infinitely many critical points (which are all minima, luckily).

• One solution. The above takes the form of

• Thus simply use QR decomposition

X⊤Xθ = X⊤y

X⊤X
̂θ = (X⊤X)−1X⊤y

Aθ = b

Multivariate case

• If the matrix happens to be invertible, then we have a unique solution

• If not invertible, there exists infinitely many critical points (which are all minima, luckily).

• One solution. The above takes the form of

• Thus simply use QR decomposition

• This gives you Moore-Penrose pseudo-inverse
which gives you a minimum norm solution among all possible

X⊤Xθ = X⊤y

X⊤X
̂θ = (X⊤X)−1X⊤y

Aθ = b

(X⊤X)†

θ

Multivariate case

• Fun exercise. Count the number of FLOPs to compute the optimum parameter
 (i.e., compute the training cost)

• Hint. This depends on the order of computation!

̂θ = (X⊤X)−1X⊤y

Alternative way to optimize:
Gradient descent

Gradient Descent
• Rough idea. Repeat taking steps in the downward direction.

Gradient Descent
• Rough idea. Repeat taking steps in the downward direction.

• Pick a random initial parameter , and use the gradient to update θ(0) θ(1), θ(2), …

Gradient Descent
• Rough idea. Repeat taking steps in the downward direction.

• Pick a random initial parameter , and use the gradient to update

• Intuition. Gradient = direction of fastest increase
 Negative gradient = direction of fastest decrease

• Take a step toward that direction, with some step size

θ(0) θ(1), θ(2), …

⇒

η

θ(t+1) = θ(t) − η ⋅ ∇θJ(θ(t))

Gradient Descent
• Rough idea. Repeat taking steps in the downward direction.

• Pick a random initial parameter , and use the gradient to update

• Intuition. Gradient = direction of fastest increase
 Negative gradient = direction of fastest decrease

• Take a step toward that direction, with some step size

• Plugging in the gradient formula, we get

θ(0) θ(1), θ(2), …

⇒

η

θ(t+1) = θ(t) − η ⋅ ∇θJ(θ(t))

θ ← θ −
η
n (X⊤Xθ − X⊤y)

Remarks

• Theoretical. For certain cases, GD is guaranteed to converge

• Usually requires diminishing step size

θ ← θ −
η
n (X⊤Xθ − X⊤y)

Remarks

• Theoretical. For certain cases, GD is guaranteed to converge

• Usually requires diminishing step size

• Computational. How computationally heavy is GD?

• One can pre-compute and re-use and over all iterations

• The pre-computing cost is almost same as solving explicitly (thus little merit)

• Will become handy in cases where no explicit solution is available

θ ← θ −
η
n (X⊤Xθ − X⊤y)

A :=
η
n

X⊤X b :=
η
n

X⊤y

θ ← (I − A)θ − b

Remarks
• SGD. You don’t need full data for GD

• Use a randomly drawn subset of samples in each iteration ()

• Called mini-batch GD (or stochastic GD when k=1)

• This saves much RAM!

k k ≪ n

Wrapping up
• A basic background for machine learning

• Empirical risk minimization

• Supervised learning

• Linear regression

• Explicit solution

• Gradient descent

Next up
• Naïve Bayes

• Logistic Regression

• Nearest Neighbors

Cheers

