
Fall 2024

EECE454 Intro. to Machine Learning Systems

Recap: Matrix Calculus & 
Basic Probability



Last class
• Vectors & Matrices 

• Multiplications 

• Norms, Column / Row / Null space 

• Eigendecomposition & SVD 

• Today. 

• Gram-Schmidt 

• Matrix Calculus 

• Probability



Gram-Schmidt 
(QR decomposition)



QR decomposition
• Last class. We reviewed SVD—a neat method to decompose any  into A ∈ ℝm×n A = UΣV⊤



QR decomposition
• Last class. We reviewed SVD—a neat method to decompose any  into  

• Today. A more compact decomposition, when  

 

•  is a unitary matrix (i.e., ) 

•  is an upper triangular matrix 

A ∈ ℝm×n A = UΣV⊤

m ≥ n

A = QR

Q ∈ ℝm×m Q⊤ = Q−1

R ∈ ℝm×n

A =
| ⋯ |
e1 ⋯ em

| ⋯ |

r11 r12 ⋯ r1n

0 r22 ⋯ r2n
⋯

0 0 ⋯ 0



Idea

 

• Take a look at each column of : 

A =
| ⋯ |
e1 ⋯ em

| ⋯ |

r11 r12 ⋯ r1n

0 r22 ⋯ r2n
⋯

0 0 ⋯ 0

A

a1 =
| ⋯ |
e1 ⋯ em

| ⋯ |

r11

0
0
⋯

, a2 =
| ⋯ |
e1 ⋯ em

| ⋯ |

r12
r22

0
⋯

, ⋯



Idea

 

• Take a look at each column of : 

 

                             
                                 

                                (…)

A =
| ⋯ |
e1 ⋯ em

| ⋯ |

r11 r12 ⋯ r1n

0 r22 ⋯ r2n
⋯

0 0 ⋯ 0

A

a1 =
| ⋯ |
e1 ⋯ em

| ⋯ |

r11

0
0
⋯

, a2 =
| ⋯ |
e1 ⋯ em

| ⋯ |

r12
r22

0
⋯

, ⋯

⇒ a1 = r11e1
a2 = r12e1 + r22e2



Procedure
,     ,      

• Now it is quite easy to see how it works — called Gram-Schmidt process

a1 = r11e1 a2 = r12e1 + r22e2 ⋯



Procedure
,     ,      

• Now it is quite easy to see how it works — called Gram-Schmidt process 

• Make  by normalizing  

a1 = r11e1 a2 = r12e1 + r22e2 ⋯

e1 a1

e1 =
a1

∥a1∥2
, r11 = ∥a1∥2



Procedure
,     ,      

• Now it is quite easy to see how it works — called Gram-Schmidt process 

• Make  by normalizing  

 

• Make  by (1) subtracting the -direction, and (2) normalizing the remainder 

a1 = r11e1 a2 = r12e1 + r22e2 ⋯

e1 a1

e1 =
a1

∥a1∥2
, r11 = ∥a1∥2

e2 a1

r12 = a⊤
2 e1, e2 =

a2 − r12e1

∥a2 − r12e1∥2
, r22 = ∥a2 − r12e1∥2



Procedure
,     ,      

• Now it is quite easy to see how it works — called Gram-Schmidt process 

• Make  by normalizing  

 

• Make  by (1) subtracting the -direction, and (2) normalizing the remainder 

 

• Repeat!

a1 = r11e1 a2 = r12e1 + r22e2 ⋯

e1 a1

e1 =
a1

∥a1∥2
, r11 = ∥a1∥2

e2 a1

r12 = a⊤
2 e1, e2 =

a2 − r12e1

∥a2 − r12e1∥2
, r22 = ∥a2 − r12e1∥2



https://commons.wikimedia.org/wiki/File:Gram-Schmidt_orthonormalization_process.gif



Matrix decomposition
• There are plenty of these. 

• SVD, QR, Cholesky, LU, … 

• These tend to have different purposes. 

• People use QR for solving finding  such that x Ax = y



Matrix decomposition
• There are plenty of these. 

• SVD, QR, Cholesky, LU, … 

• These tend to have different purposes. 

• People use QR for solving finding  such that  

• Different strengths and weaknesses 

• Numerical stability of the algorithm dramatically differs! 
(Sec. 2 of “Numerical Recipes” is much recommended)

x Ax = y



Matrix Calculus



Why matrix calculus?
• Univariate calculus. Finding an optimal scalar  for a one-dimensional datum. 

• Example. Find a linear function    that minimizes the loss function . 

                      Given a single datum , then we are solving 

  

• Question. How do we solve?

w ∈ ℝ

f(x) = wx ℓ( ̂y, y) = ( ̂y − y)2

(x0, y0)

min
w∈ℝ

ℒ(w) := min
w∈ℝ

(y0 − wx0)2



Why matrix calculus?
• Univariate calculus. Finding an optimal scalar  for a one-dimensional datum. 

• Example. Find a linear function    that minimizes the loss function . 

                      Given a single datum , then we are solving 

  

• Question. How do we solve? 

• Answer. Inspect the critical points, where 

w ∈ ℝ

f(x) = wx ℓ( ̂y, y) = ( ̂y − y)2

(x0, y0)

min
w∈ℝ

ℒ(w) := min
w∈ℝ

(y0 − wx0)2

∂ℒ(w)
∂w

= 0



Why matrix calculus?
• Multivariate case. Use vector / matrix calculus to find optimal parameter. 

• Example. Find a linear model   
                  that minimizes the squared  loss . 

Given a single datum , we want to inspect the critical point where 

f(x) = Wx, W ∈ ℝm×n

ℓ2 ℓ(ŷ, y) = ∥ŷ − y∥2
2

(x0, y0)

∂(∥y0 − Wx0∥2
2)

∂W
= 0



Why matrix calculus?
• Multivariate case. Use vector / matrix calculus to find optimal parameter. 

• Example. Find a linear model   
                  that minimizes the squared  loss . 

Given a single datum , we want to inspect the critical point where 

 

• Want to know. How to handle the gradient w.r.t. matrices 

• Note. Sometimes, we want to run iterative algorithms to find solutions (e.g., GD), 
           —> this still requires evaluating gradients (more on next class)

f(x) = Wx, W ∈ ℝm×n

ℓ2 ℓ(ŷ, y) = ∥ŷ − y∥2
2

(x0, y0)

∂(∥y0 − Wx0∥2
2)

∂W
= 0



Gradients
• For a scalar variable , differentiating a … 

• Scalar function    :                

• Vector function    :            

•
Matrix function:    :      

x

y ∈ ℝ
∂y
∂x

y ∈ ℝm ∂y
∂x

= [ ∂y1

∂x ⋯
∂ym

∂x ]
⊤

Y ∈ ℝm×n ∂Y
∂x

=

∂y11

∂x ⋯
∂y1n

∂x
⋯

∂ym1

∂x ⋯
∂ymn

∂x



Gradients
• For a vector variable , differentiating a … 

• Scalar function    :                

•
Vector function    :            

• Note. the direction!

x ∈ ℝn

y ∈ ℝ
∂y
∂x

= [ ∂y
∂x1

⋯ ∂y
∂xn ]

y ∈ ℝm ∂y
∂x

=

∂y1

∂x1
⋯ ∂y1

∂xn
⋯

∂ym

∂x1
⋯

∂ym

∂xn



Gradients
• For a matrix variable , differentiating a … 

•
Scalar function    :                

• Note. again, the direction!

X ∈ ℝm×n

y ∈ ℝ
∂y
∂X

=

∂y
∂x11

⋯ ∂y
∂xm1

⋯
∂y

∂x1n
⋯ ∂y

∂xmn



Reference for self-study
• MML book Sec. 5 

• https://en.wikipedia.org/wiki/Matrix_calculus

https://en.wikipedia.org/wiki/Matrix_calculus


Probability



Why probability?
• In ML, many things are random



Why probability?
• In ML, many things are random 

• The data is drawn randomly 

• Training data     

• Test data           

Z1, ⋯, Zn ∼ P

Znew ∼ P̃



Why probability?
• In ML, many things are random 

• The data is drawn randomly 

• Training data     

• Test data            

• Components of learning algorithms are randomly selected 

• Examples. Initial parameter (neural nets, k-means) 
                    SGD ordering 
                    Noise 

• Reason. Enable efficient computation (Monte Carlo) 
                 Random “likely contains every direction”

Z1, ⋯, Zn ∼ P

Znew ∼ P̃



Probability
• Mathematical foundation due to Kolmogorov (1930s) 

• The probability space  is a triplet of 

• Sample space  

• Set of all possible outcomes 

• Event space  

• Set of all events (set of outcomes) 

• Probability measure  

• Chances assigned to each event

(Ω, ℱ, P)

Ω

ℱ

P : ℱ → [0,1]



Probability
• Consider rolling a die: 

• Sample space 

•  

• Event space 

•  

• Probability measure          (or probability distribution) 

•  

• Note. This should satisfy certain properties!

Ω = {1,2,3,4,5,6}

ℱ = {∅, {1}, ⋯, {6}, {1,2}, ⋯, {5,6}, ⋯, {1,2,3,4,5,6}}
P : ℱ → [0,1]

P(∅) = 0, P({1}) = 1/6, ⋯, P({1,2,3,4,5,6}) = 1



Probability Measure
• A probability measure is a function  satisfying the following axioms. 

•  

• i.e., an outcome will happen, eventually.

P : ℱ → [0,1]

P(Ω) = 1



Probability Measure
• A probability measure is a function  satisfying the following axioms. 

•  

• i.e., an outcome will happen, eventually. 

•  

• i.e., there is no such thing as negative probability

P : ℱ → [0,1]

P(Ω) = 1

P(A) ≥ 0, ∀A ∈ ℱ



Probability Measure
• A probability measure is a function  satisfying the following axioms. 

•  

• i.e., an outcome will happen, eventually. 

•  

• i.e., there is no such thing as negative probability 

•  

• called “additivity”   <— should hold for any countable number of mutually exclusive events 

• Note (advanced). To generalize to arbitrary space, people use special math ( -algebra …)

P : ℱ → [0,1]

P(Ω) = 1

P(A) ≥ 0, ∀A ∈ ℱ

P(A ∪ B) = P(A) + P(B), whenever A ∪ B = ∅

σ



Random variable



Random variable
• We avoid dealing directly with the probability space (for a good reason) 

• A random variable is a real-valued function    X : Ω → ℝ



Random variable
• We avoid dealing directly with the probability space (for a good reason) 

• A random variable is a real-valued function     

• Example. For coin tossing where , we may define the random variable 

 

• Here, we can say that the probability of  under  is equal to  

• Simply use the shorthand 

X : Ω → ℝ

Ω = {H, T}

X(H) = 1, X(T) = 0

X = 1 P P({H})

P(X = 1)



Cumulative Distribution Function (CDF)
• A CDF is defined as 

FX(x) := P(X ≤ x)



Cumulative Distribution Function (CDF)
• A CDF is defined as 

 

• Properties. 

•  

•  

•  

• If , then 

FX(x) := P(X ≤ x)

0 ≤ FX(x) ≤ 1

FX(−∞) = 0

FX(∞) = 1

x ≤ y FX(x) ≤ FX(y)



Probability Mass Function (PMF)
• For a discrete random variable , the PMF is defined as X

pX(x) := P(X = x)



Probability Mass Function (PMF)
• For a discrete random variable , the PMF is defined as 

 

• Properties. 

•  

•  

•

X

pX(x) := P(X = x)

0 ≤ pX(x) ≤ 1

∑
x

pX(x) = 1

∑
x∈A

pX(x) = P(X ∈ A)



Probability Density Function (PDF)
• For a continuous random variable , the PDF is defined as X

fX(s) :=
∂FX(x)

∂x
(s)



Probability Density Function (PDF)
• For a continuous random variable , the PDF is defined as 

 

• Properties. 

•  

•  

•

X

fX(s) :=
∂FX(x)

∂x
(s)

0 ≤ fX(x)

∫ℝ
fX(x) dx = 1

∫A
fX(x) dx = P(X ∈ A)



Probability Density Function (PDF)
• Note. PDF is not really the probability itself 

• Only gives you an estimate via 

 

• Thus, it is okay to have 

P(x ≤ X ≤ x + dx) ≈ p(x) dx

p(x) > 1 used interchangeably with fX(x)



Joint distribution
• Characterized by the joint CDF 

FXY(x, y) = P(X ≤ x, Y ≤ y)



Joint distribution
• Characterized by the joint CDF 

 

• Marginal CDF can be recovered via 

FXY(x, y) = P(X ≤ x, Y ≤ y)

FX(x) = lim
y→∞

FXY(x, y), FY(y) = lim
x→∞

FXY(x, y)



Joint distribution
• Characterized by the joint CDF 

 

• Marginal CDF can be recovered via 

 

• When discrete, we write the joint PMF as 

 

where we have 

FXY(x, y) = P(X ≤ x, Y ≤ y)

FX(x) = lim
y→∞

FXY(x, y), FY(y) = lim
x→∞

FXY(x, y)

pXY(x, y) = P(X = x, Y = y)

pX(x) = ∑
y

pXY(x, y)



Conditional distribution
• Conditional probability of an event is given as 

P(A |B) =
P(A, B)

P(B)

both A and B happening; , preciselyP(A ∩ B)



Conditional distribution
• Conditional probability of an event is given as 

 

• Conditional PMF (discrete) 

 

• Conditional PDF (continuous) 

P(A |B) =
P(A, B)

P(B)

pY|X(y |x) =
pXY(x, y)

pX(x)

fY|X(y |x) =
fXY(x, y)

f(x)



Basic arithmetics
• Product rule. 

 

• Bayes’ theorem. 

p(x, y) = p(y |x)p(x)

p(x |y) =
p(y |x)p(x)

p(y)



Statistics of random variables



Expectation (1st order)
• For discrete random variables, the expected value is defined as a weighted sum 

 

• For continuous r.v.s, defined as 

𝔼[g(X)] = ∑
x

g(x)pX(x)

𝔼[g(X)] = ∫ℝ
g(x)fX(x) dx



Expectation (1st order)
• For discrete random variables, the expected value is defined as a weighted sum 

 

• For continuous r.v.s, defined as 

 

• Properties. 

• , for a constant  

•         (linearity)

𝔼[g(X)] = ∑
x

g(x)pX(x)

𝔼[g(X)] = ∫ℝ
g(x)fX(x) dx

𝔼[a] = a a

𝔼[af(X) + bg(X)] = a𝔼[ f(X)] + b𝔼[g(X)]



Variance (2nd order)
• The variance is defined as 

Var[X] := 𝔼[(X − 𝔼[X])2]



Variance (2nd order)
• The variance is defined as 

 

• Properties. 

• ,    for constant  

•  

• The standard deviation is defined as 

                                       

Var[X] := 𝔼[(X − 𝔼[X])2]

Var[a] = 0 a

Var[af(X)] = a2Var[ f(X)]

σX = Var(X)



A fact
• Question. Suppose that we have a random variable , with a known distribution . 

• What is our best blind guess of  when we want to minimize the expected squared error? 

 

• How much would the expected squared error be, for this estimate?

X P(X)

X

min
c∈ℝ

𝔼[(X − c)2]



Another fact
• Question. What is our best guess, if we are no longer blind and can utilize some observation  

                    jointly distributed with ? 

 

• That is,  and  is not known,  is observed.

Y
X

min
f

𝔼[(X − f(Y))2]

(X, Y) ∼ pXY X Y



Covariance and Correlation
• Covariance measures the joint variability of two RVs. 

 

• Related to whether one variable is predictive of another

Cov[X, Y] := 𝔼[(X − 𝔼[X])(Y − 𝔼[Y])]



Covariance and Correlation
• Covariance measures the joint variability of two RVs. 

 

• Related to whether one variable is predictive of another 

• (Pearson) Correlation is defined as 

 

• lies in [-1,+1]

Cov[X, Y] := 𝔼[(X − 𝔼[X])(Y − 𝔼[Y])]

corr[X, Y] =
Cov[X, Y]

σXσY



Independence



Independence
• Two random variables  and  are independent whenever 

 

• Properties. If independent… 

•  

•  

•

X Y

p(x, y) = p(x)p(y)

p(y |x) = p(y)

Var[X + Y] = Var[X] + Var[Y]

Cov[X, Y] = 0



Conditional independence
• Random variables  and  are conditionally independent given  whenever 

 

• Denoted by 

X Y Z

p(x, y |z) = p(x |z)p(y |z)

X ⊥ Y |Z



Conditional independence
• Random variables  and  are conditionally independent given  whenever 

 

• Denoted by  

• Theorem. We have ,  if and only if there exists two functions  such that 

 

• Neat tool to verify the conditional independence 
(no need to check whether each are valid probability functions)

X Y Z

p(x, y |z) = p(x |z)p(y |z)

X ⊥ Y |Z

X ⊥ Y |Z g, h

p(x, y |z) = g(x, z)h(y, z)



Common probability 
distributions



Bernoulli (coin toss)
• A Bernoulli random variable  is a binary random variable with 

 

•  

•

X ∼ Bern(p)

P(X = 1) = p, P(X = 0) = 1 − p

𝔼[X] = p

Var[X] = p(1 − p)



Binomial (many coin tosses)
• A Binomial random variable  is a discrete r.v. with 

 

• Here, the shorthand is  

              

•  

•

X ∼ Bin(n, p)

P(X = k) = (n
k) pk(1 − p)n−k

(n
k) =

n!
k!(n − k)!

𝔼[X] = np

Var[X] = np(1 − p)



Uniform
• Discrete. A uniform random variable  is a r.v. with X ∼ Unif({1,…, k})

P(X = 1) = ⋯ = P(X = k) =
1
k



Uniform
• Discrete. A uniform random variable  is a r.v. with 

 

• Continuous. A uniform random variable  is a r.v. with 

 

•  

•

X ∼ Unif({1,…, k})

P(X = 1) = ⋯ = P(X = k) =
1
k

X ∼ Unif([a, b])

fX(x) =
1

b − a
1{x ∈ [a, b]}

𝔼[X] =
a + b

2

Var[X] =
(b − a)2

12



Gaussian (a.k.a. normal)
• A Gaussian random variable  is a continuous r.v. with 

 

•  

•  

• Importance. The central limit theorem 
                         (homework: review)

X ∼ 𝒩(μ, σ2)

fX(x) =
1

σ 2π
exp (−

(x − μ)2)
2σ2 )

𝔼[X] = μ

Var[X] = σ2



Exponential
• An Exponential random variable  is a nonnegative continuous r.v. with 

 

•  

•  

• Models an event that can either stop or continue 
at each infinitesimal time 

• Closely related with Poisson r.v. 
(not discussed today)

X ∼ Exp(λ)

fX(x) = λ exp(−λx)

𝔼[X] =
1
λ

Var[X] =
1
λ2



Beta
• A Beta random variable  is a continuous r.v. with 

 

• Here,  is the Gamma function 

• Complicated, but satisfies  for integer  

•  

•  

• General version of uniform r.v.

X ∼ Beta(α, β)

fX(x) =
Γ(α + β)
Γ(α)Γ(β)

xα−1(1 − x)β−1, x ∈ [0,1]

Γ( ⋅ )

Γ(α) = (α − 1)! α

𝔼[X] =
α

α + β

Var[X] =
αβ

(α + β)2(α + β + 1)



Gamma
• A Gamma random variable  is a continuous r.v. with 

 

•  

•  

• Generalizes the exponential distribution

X ∼ Gamma(α, β)

fX(x) =
1

Γ(a)
βαxα−1 exp(−βx)

𝔼[X] =
α
β

Var[X] =
α
β2



Concentration inequalities



Concentration inequalities
• Gives more fine-grained information on the tail behavior of r.v.s 

• Typically takes the form 

P(X − 𝔼[X] > t) ≤ small value



Concentration inequalities
• Gives more fine-grained information on the tail behavior of r.v.s 

• Typically takes the form 

 

• Example. Two random variables 

,     

                   have … 

• Same mean and variance 

• Very different tail probabilities

P(X − 𝔼[X] > t) ≤ small value

X ∼ 𝒩(0,1) Y ∼ Unif([− 3, 3])



Standard inequalities
• Markov. For a nonnegative r.v. , we have X

P(X ≥ a) ≤
𝔼[X]

a
, ∀a > 0



Standard inequalities
• Markov. For a nonnegative r.v. , we have 

 

• Chebyshev. For a r.v.  with finite variance, we have 

 

• A simple application of Markov’s inequality

X

P(X ≥ a) ≤
𝔼[X]

a
, ∀a > 0

X

P( |X − E[X] | ≥ a) ≤
Var[X]

a2
, ∀a > 0



Standard inequalities
• Chernoff. We have 

 

• Another simple application of Markov’s inequality 

• Homework. Revisit moment-generating functions & cumulant-generating functions. 

• Note (advanced). Hoeffding’s inequality 
                                 McDiarmid’s inequality 
                                 Bernstein’s inequality

P(X ≥ a) ≤ 𝔼[exp(t ⋅ X)] ⋅ exp(−t ⋅ a) ∀a ∈ ℝ, t > 0



Further readings
• Bruce Hajek, “Random Processes for Engineers” 

• https://hajek.ece.illinois.edu/ECE534Notes.html

https://hajek.ece.illinois.edu/ECE534Notes.html


Next up
• Finally some machine learning stuff! 

• Starting from linear models



Cheers


