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[.ast class

« Vectors & Matrices

- Multiplications

- Norms, Column / Row / Null space
- Eigendecomposition & SVD

- Today.

- Gram-Schmidt

- Matrix Calculus

- Probability



Gram-schmidt
(QR decomposition)



QR decomposition

. Last class. We reviewed SVD—a neat method to decompose any A € R™" into A = UZV"'




QR decomposition

. Today. A more compact decomposition, whenm > n
A =QR
. Q € R™M s q unitary matrix (e, Q' = Q™)

. R € R"™" s an upper triangular matrix






[dea

: al — rllel
Ay = I',€1 + 1€,

(...)



Procedure

A =T11€, Ay = T12€ T 1€,

- Now it is quite easy to see how it works — called Gram-Schmidt process



Procedure

A =T11€, Ay = T12€ T 1€,

- Make e; by normalizing a,

€ = , 11 = llagfl,
la; [,



Procedure

A =T11€, Ay = T12€ T 1€,

- Make e, by (1) subtracting the a;-direction, and (2) normalizing the remainder

.
Fip =a,€, €)= , Ty = |la, — rpe4]]5



Procedure

A =T11€, Ay = T12€ T 1€,

- Repeat!



https://commons.wikimedia.org/wiki/File:Gram-Schmidt_orthonormalization_process.gif



Matrix decomposition

- There are plenty of these.

- SVD, QR, Cholesky, LU, ...

- These tend to have different purposes.

. People use QR for solving finding X such that AX =y



Matrix decomposition

THIRD EDITION

. Different strengths and weaknesses

- Numerical stability of the algorithm dramatically differs!
(Sec. 2 of “Numerical Recipes” is much recommended)




Matrix Calculus



Why matrix calculus?

. Univariate calculus. Finding an optimal scalar w € R for a one-dimensional datum.
. Example. Find a linear function f(x) = wx that minimizes the loss function Z(3,y) = (5 — y)*.

Given a single datum (x,, ¥p), then we are solving

min L(w) = min (yy— wxo)2
weR weR

. Question. How do we solve?




Why matrix calculus?

min L(w) = min (yy— on)z
weR weR
0Z (w) B

0

. Answer. Inspect the critical points, where

ow



Why matrix calculus?

- Multivariate case. Use vector / matrix calculus to find optimal parameter.

. Example. Find a linear model f(x) = Wx, W € R
that minimizes the squared &, loss £(y,y) = ||y — YH%-

Given a single datum (X, ¥(). we want to inspect the critical point where

Allyo — Wxoll)
oW

0



Why matrix calculus?

ollyo — Wxoll2) _ A

- Want to know. How to handle the gradient w.r.t. matrices

- Note. Sometimes, we want to run iterative algorithms to find solutions (e.g., GD),
—> this still requires evaluating gradients (more on next class)




GGradients

. For a scalar variable x, differentiating a ...

0

. Scalar function y € R: o4
0x

. Vector function y € R _y — li ﬁ]
o0x 0x ox

T
0Y 0x 0x
Matrix function: 'Y € R™" — =




GGradients

- For a vector variable x € R", differentiating a ...

0
. Scalar function y € R: el = lﬁ 6y] .
ox Lom 0%, Figure 5.2
w0y Dimensionality of
dy ox, ox, (partial) derivatives.

Vector function 'y € R™;

X 0y, 0y,
R \; x|
f ()

- Note. the direction!

of
ox




. For a matrix variable X € R"™" differentiating a ...

Scalar function y € R:

- Note. again, the direction!

GGradients

dy B
oX

0y
ox 11

dy
ax 1n

ox

ml

ox

mn



Reterence for self-study

« MML book Sec. 5

. https://enwikipedia.org/wiki/Matrix_calculus

Condition

a is not a function of X

A is not a function of x

A is not a function of x

a is not a function of X,
u=u(x)

v =W(X),
a is not a function of X

v =v(X), u = u(x)

A is not a function of X,

u = u(x)

u = u(x), v=v(x)

u = u(x)

u = u(x)

Denominator
Numerator layout, T
layout, i.e. by y

and x

Expression
P i.e. by y and x!

8a_ 0

=

o(u+v) Ju Ov

ox ox | ox
Og(u) Og(u) du Ou Og(u)
ox ou 0x 0x Ou
of(g(u)) | Of(g) dg(u) du  du Jg(u) 0f(g)

ox | Og Ou 0x O0x Ou Og


https://en.wikipedia.org/wiki/Matrix_calculus

Propapbility



Why probability?

- In ML, many things are random



Why probability?

- The data is drawn randomly

. Training data  Zy, -, 24, ~ P

~/

. Test data /. ..~ P

new



Why probability?

- Components of learning algorithms are randomly selectead

- Examples. Initial parameter (neural nets, k-means)
SGD ordering
Noise

- Reason. Enable efficient computation (Monte Carlo)
Random “likely contains every direction”




Probability

- Mathematical foundation due to Kolmogorov (1930s)
. The probability space (€2, #, P) is a triplet of
« Sample space €2

.« Set of all possible outcomes

« Event space &

- Set of all events (set of outcomes)

« Probability measure P : & — [0,1]

- Chances assigned to each event



Probability

- Consider rolling a die:

« Sample space

. Q=1{12345,6)

« Event space

F = {@, (11, e (61,1121, . {5.6), -or. {1,2,3,4,5,6}}

« Probability measure P : & — [0,1] (or probability distribution)

. P(@)=0, P({1})=1/6, -, P({123.456)) =1

- Note. This should satisty certain properties!



Probability Measure

- A probability measure is a function P : & — [0, 1] satisfying the following axioms.
. P(QQ) =1

. i.e., an outcome will happen, eventually.



Probability Measure

- A probability measure is a function P : & — [0,1] satisfying the following axioms.

- P(A) > 0, VAe F

. j.e., there is no such thing as negative probability



Probability Measure

- A probability measure is a function P : & — [0,1] satisfying the following axioms.

. PAUB) = P(A) + P(B), whenever A U B = &

. called “additivity” <— should hold for any countable number of mutually exclusive events

- Note (advanced). To generalize to arbitrary space, people use special math (e-algebra ...)




Random variaple



Random variable

- We avoid dealing directly with the probability space (for a good reason)

. A random variable is a real-valued function X : € — R



Random variable

. Example. For coin tossing where 2 = { H, T'}, we may define the random variable
XH)=1, X(T)=0
. Here, we can say that the probability of X = 1 under P is equal to P({H })

. Simply use the shorthand P(X = 1)



Cumulative Distribution Function (CDF)

« A CDF is defined as

Fy(x) :== P(X < x)



Cumulative Distribution Function (CDF)

Fy(x) :== P(X < x)

- Properties.
- 0 < Fy(x) £ 1 b Fy : 1ty
+ Fy(—00) =0 ._._
+ Fy(o0) =1 ._.—

. Ifx <y, then Fy(x) < Fy(y) ] -



Probablllty Mass Function (PMF)

. For a discrete random variable X the PMF is defined as

Px(x) .= P(X = x)

|||||||




Probability Mass Function (PMF)

- Properties.

) pxx) = P(X € A) -

S N T R E R B
XEA 0 1 2 3 4 5 6




Probability Density Function (PDF)

. For a continuous random variable X, the PDF is defined as

OF 5 (x)

Jx(8) = I (5)




Probability Density Function (PDF)

- Properties.

+ 0 < fx(x)

[ fr(x)dx =1

[ fx(x)dx =P(X € A) —



Probability Density Function (PDF)

- Note. PDF is not really the probability itself

- Only gives you an estimate via

Px<X<x+dx) =~ p(x)dx

N

. Thus, it is okay to have p(x) > 1 used interchangeably with f;(x)



Joint distribution

- Characterized by the joint CDF

Fyy(x,y) =PX <x,Y L y)



Joint distribution

- Marginal CDF can be recovered via

FX(X) — hm FXY(x9 y)a FY(y) — hm FXY(xa y)

y—00 X—00



Joint distribution

- When discrete, we write the joint PMF as
Pxy(X,y) = P(X=x,Y =Yy)

where we have py(x) = pry(X, y)
y



Conditional distribution

- Conditional probability of an event is given as both A and B happening; P(A N B), precisely

P(A, B) 4

P(B)

P(A|B) =



Conditional distribution

- Conditional PMF (discrete)

pXY(-xa y)
PY\X(Y | x) =
px(x)
- Conditional PDF (continuous)
fXY(xa y)
fY\X(}’ | x) =

J(x)



Basic arithmetics

 Product rule.

px,y) = p(y|x)p(x)
« Bayes’ theorem.

p(y|x)p(x)
p(y)

pxly) =



Statistics of random variaples



Expectation (1st order)

- For discrete random variables, the expected value is defined as a weighted sum

(001 = ) g(0)px()

« For continuous rv.s, defined as

—[g(X)] = J g(x)fx(x) dx

R



Expectation (1st order)

- Properties.

- [Ela] = a, for a constant a

- Elaf(X) + bg(X)] = aE[f(X)] + bE[g(X)]  (linearity)




Variance (2nd order)

- The variance is defined as

Var[X] := E[(X — E[X])]

400 Average = 100

mm SD=10
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N
o
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Variance (2nd order)

. PrOQertieS. 400-

Average = 100

mm SD=10

350

- Var|la]l =0, forconstanta

300-

. Var[af(X)] = a*Var[ f(X)]

200-

Number per bi

- The standard deviation is defined as

150+

oy =4/ Var(X) 1°°

50 -

0 | .
<0 0 10 20 30 40 50 60 70 80 90 100110 120130140150160 170 180 190 200 210 220 230+



A fact

. Question. Suppose that we have a random variable X, with a known distribution P(X).

- What is our best blind guess of X when we want to minimize the expected squared error?

min E[(X — ¢)?]

ceER

ow much would the expected squared error be, for this estimate?



Another fact

« Question. What is our best guess, if we are no longer blind and can utilize some observation Y
jointly distributed with X7

mfin [(X = f(Y))’]

« Thatis, (X, Y) ~ pyyand X is not known, Y is observed.



Covariance and Correlation ,,

« Covariance measures the joint variability of two RVs.

Cov[X, Y] := E[(X —

—[X DAY =

« Related to whether one variable is predictive of another

=[Y])]

> X
cov(X,Y)<O




Covariance and Correlation

» (Pearson) Correlation is defined as

e liesin [-1,+1]

corr| X, Y| =

Cov|X, Y]

OxOy

> X
cov(X,Y)<O




[Nndependence



Independence

. Two random variables X and Y are independent whenever

px,y) = p(x)p(y)

. Properties. If independent...
- p(y|x) = p(y)
- Var|X + Y| = Var|X]| + Var| Y]

- Cov[X, Y] =0



Conditional independence

« Random variables X and Y are conditionally independent given Z whenever

px,y|z) = px|2)p(yl|z)

- Denotedby X 1L Y|Z



Conditional independence

- Theorem. We have X L Y|Z, if and only if there exists two functions g, & such that

px,y|z) = g, 2)h(y, 2)

- Neat tool to verity the conditional independence
(no need to check whether each are valid probability functions)




Common propapility
distriputions



Bernoulli (coin toss)

+ A Bernoulli random variable X ~ Bern(p) is a binary random variable with

PX=1)=p, PX=0)=1-p

- E[X]=p

» Var[X] = p(1 — p)



Binomial (many coin tosses)

. A Binomial random variable X ~ Bin(n, p) is a discrete r.v. with

P@=m=(

. Here the shorthand is

(n) B n!
k)] k!(n—k)

- Var[X]| = np(1 - p)

- E[X] =np

n

k

) p*(1 = py*

0.10 0.15 0.20 0.25

0.05

. ®
— SR 2200000 00"

* p=0.5 anc
n=0.7 anc

®* p=0.5 anc

n=20
n=20
n=40

1
20




Uniform

iscrete. A uniform random variable X ~ Unif({1,...,k})is arv. with




Uniform

. Continuous. A uniform random variable X ~ Unif(|a, b]) is a rv. with

|
Jx(x) = b 1{x € |a, b]}

da
f(x)
- 1x] = a+b
2 ol
N2
Var[x] = L =%
12




Gaussian (a.k.a. normal)

. A Gaussian random variable X ~ 4/ (i, 6°) is a continuous rv. with

e =)
Jx(x) = 0 \/Zz CXP 572

_[X] — U 1.0 | \
| U=0, 0%=0.2, m—
. P=0, 0%= 10, m—

. Var[X] — 02 | U=0, 0%=50, = |
PU==2, 0°=(05, w—

- Importance. The central limit theorem
(homework: review)




Exponential

. An Exponential random variable X ~ Exp(4) is a nonnegative continuous r.v. with

Jx(x) = Aexp(—4x)

1
| X = -
— A =(.5
1 1.4 - —_— A=1.0
— A =1.5
. var| X]| = — 12
12
1.0 -
- Models an event that can either stop or continue x 08
at each infinitesimal time 0.6-
0.4 - \
. Closely related with Poisson r.v. 05 - -
(not discussed today) 0o




Beta

- A Beta random variable X ~ Beta(a, f) is a continuous r.v. with

— r(a +'B) a—11 _ \f—1
fr(x) = F(a)F(ﬁ)x (1 —x)y—, x € [0,1]
. Here, I'( - ) is the Gamma function 2.5 \ —

nmmnnil o

OON WKW,

QQQQQ
b,
NNHUL

TP |

. Complicated, but satisfies1 ' (ax) = (¢ — 1) ! forinteger a 2

CE[X] = * . 15 |
a + ﬁ S
1
Qa
~ Var|X] = p
(a+ p)(a+p+1) 0.5
- General version of uniform r.v. 0




Gamma

- A Gamma random variable X ~ Gamma(a, /) is a continuous r.v. with

1
Jx(x) = pox " exp(—px)

I'(a)

FIX] = —
‘ p

a
. Var[X] = ﬁ

- Generalizes the exponential distribution
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Concentration inegualities



Concentration inequalities

- Gives more fine-grained information on the tail behavior of rv.s

. Typically takes the form

P(X—-E[X]>1 < smallvalue




Concentration inequalities

- Example. Two random variables

X ~ #(0,1), Y~ Unif([—/3,1/3])
have ...

« Same mean and variance

- Very different tail probabilities



Standard inequalities

.+ Markov. For a nonnegative rv. X, we have

=p.q
P(X>a)< : Va > 0

d




Standard inequalities

« Chebyshev. For a rv. X with finite variance, we have

Var| X]
P(1X - E[X]| 2a) £ ———, Va >0

d

- A simple application of Markov's inequality



Standard inequalities

- Chernoff. We have

P(X > a) < [E[exp(t- X)] - exp(—1 - a) VaeR,t>0

- Another simple application of Markov’'s inequality

omework. Revisit moment-generating functions & cumulant-generating functions.

Note (advanced). Hoeffding's inequality
McDiarmid’s inequality
Bernstein’s inequality




Further readings

- Bruce Hajek, “Random Processes for Engineers”

« https://hajek.ece.illinois.edu/ECE534Notes.html


https://hajek.ece.illinois.edu/ECE534Notes.html

Next up

- Finally some machine learning stuff!

. Starting from linear models



Cheers



