
Fall 2024

EECE454 Intro. to Machine Learning Systems

Language:
Representation Learning

Overview
• Today. Basic training of language representations

• Word2Vec: Prediction

• GloVe: Co-occurence

• BERT: Masking

• GPT: Next token prediction

Word2Vec

Text representations
• Goal. Train a nice text embedding

• Example. One-hot encoding

• Does not reflect any semantics & high-dimensional

f(word) = vector

Skip-gram model
• Idea. Train a model to predict context words from the target word

• Suppose that we have a sentence “The quick brown fox jumps over the lazy dog”

• Use a sliding window to generate training samples

Skip-gram model
• Idea. Train a model to predict context words

• Suppose that we have a sentence “The quick brown fox jumps over the lazy dog”

• Use a sliding window to generate training samples

• Train an hourglass predictor based on the samples, using some loss

• The bottleneck will be our feature

Continuous Bag-of-Words
• CBoW. Very similar idea, but reverted input-output

• Can use multiple inputs with shared input-layer weights, which is then averaged.

Loss function
• Softmax. For skip-gram, we can simply maximize the posterior probability

p(xctx |xtgt) =
exp(˜[WWxtgt]ctx)

∑V
i=1 exp(˜[WWxtgt]i)

Loss function
• Softmax. For skip-gram, we can simply maximize the posterior probability

• Note. In fact, this is actually taking a dot product between two embeddings:

p(xctx |xtgt) =
exp(˜[WWxtgt]ctx)

∑V
i=1 exp(˜[WWxtgt]i)

p(xctx |xtgt) =
exp(x⊤

ctxW̃Wxtgt)

∑V
i=1 exp(x⊤

i W̃Wxtgt)

=
exp(u⊤

ctxvtgt)

∑V
i=1 exp(u⊤

i vtgt)

Loss function
• Softmax. For skip-gram, we can simply maximize the posterior probability

• Note. In fact, this is actually taking a dot product between two embeddings:

• Problem. Summing over all words is cumbersome!

• Idea (Negative sampling). Choose several negative samples, and try to maximize:

• Also do some “subsampling” to disregard common words, e.g., “the”

p(xctx |xtgt) =
exp(˜[WWxtgt]ctx)

∑V
i=1 exp(˜[WWxtgt]i)

V

exp(u⊤
ctxvtgt)

exp(u⊤
ctxvtgt) + ∑i∈neg. sam. exp(u⊤

i vtgt)

Word2vec
• Such a representation space tends to be well-aligned with human semantics:

• Interesting properties, e.g., arithmetics

GloVe

GloVe
• Suppose that is a co-occurence matrix

• denotes the number of times word occurs in the context of word

X

xij i j

GloVe
• Suppose that is a co-occurence matrix

• denotes the number of times word occurs in the context of word

• GloVe. Find nice embeddings such that

X

xij i j

ui, vj ∈ ℝN

log xij ≈ u⊤
i vj + bi + bj ⇔ xij ≈ exp(u⊤

i vj + bi + b̃j)

log xij ui

vj≈

V

V V

N

N

V

GloVe
• Suppose that is a co-occurence matrix

• denotes the number of times word occurs in the context of word

• GloVe. Find nice embeddings such that

• Training. Simply minimize the squared loss:

• As a feature for word , use

X

xij i j

ui, vj ∈ ℝN

log xij ≈ u⊤
i vj + bi + bj ⇔ xij ≈ exp(u⊤

i vj + bi + b̃j)

V

∑
i=1

V

∑
j=1

(log xij − u⊤
i vj − bi − b̃j)2

i (ui + vi)/2

BERT

BERT
• Basically a self-supervised learning scheme

• Train representations by letting it solve simple tasks with unlabeled data

BERT
• Task#1. Randomly mask out some words

 from the sentence in the corpus
 (Masked Language Modeling)

• Ask your transformer to predict the
masked-out words from contexts

• Note. Similar to word2vec, but with a
 heavyweight encoder!

BERT
• Task#2. Train the transformer to classify

 the relationship between two
 sentences
 (Next sentence prediction)

• Use special tokens:

• [CLS]: Class token

• [SEP]: Separation token

BERT
• Usage. Can be fine-tuned on other tasks

GPT

Next token prediction
• Idea. We have a lot of unlabeled sentences on web.

• Train a model that can do next-word prediction

Next token prediction
• Idea. We have a lot of unlabeled sentences on web.

• Train a model that can do next-word prediction

• That is, find a generative model that maximizes the likelihood

• Pick some sentence from the dataset

• Feed consecutive tokens

• Predict the next token

• Update the model

pθ(⋅)

L(θ) = ∑
i

log pθ(xi | xi−k, …, xi−1)

k

Context Length

Use case
• Question. How can we use such next-token generators for various tasks?

Use case
• Question. How can we use such next-token generators for various tasks?

• GPT-1. Fine-tune the weight parameters on a small, supervised dataset

Use case
• Question. How can we use such next-token generators for various tasks?

• GPT-1. Fine-tune the weight parameters on a small, supervised dataset

Use case
• Question. How can we use such next-token generators for various tasks?

• GPT-1. Fine-tune the weight parameters on a small, supervised dataset

• GPT-2. If the dataset is large enough, simply use the unsupervised model with long prompts

• No more supervised fine-tuning.

Generated!

Use case
• GPT-3. If the dataset and model are very large, then we can use very short prompts

• It turns out that we can easily reduce the test loss of GPT-like models,
simply by increasing computation, dataset, and model

Scaling law

Limitation (until GPT-3)
• Problem. Because everything is unsupervised, difficult to fix the behavior of LLMs

• e.g., wrong information

Limitation (until GPT-3)
• Problem. Because everything is unsupervised, difficult to fix the behavior of LLMs

• e.g., wrong information

• e.g., biased/toxic behavior

Limitation (until GPT-3)
• Problem. Because everything is unsupervised, difficult to fix the behavior of LLMs

• e.g., wrong information

• e.g., biased/toxic behavior

• e.g., misuse

Alignment
• Idea. Use human feedback + RL

Alignment
• Idea. Use human feedback + RL

Alignment
• Idea. Use human feedback + RL

Next class
• Multimodal intelligence

Cheers

