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Overview
• Today. Basic training of language representations 

• Word2Vec:    Prediction 

• GloVe:            Co-occurence 

• BERT:              Masking 

• GPT:                Next token prediction



Word2Vec



Text representations
• Goal. Train a nice text embedding     

• Example. One-hot encoding 

• Does not reflect any semantics & high-dimensional

f(word) = vector



Skip-gram model
• Idea. Train a model to predict context words from the target word 

• Suppose that we have a sentence “The quick brown fox jumps over the lazy dog” 

• Use a sliding window to generate training samples



Skip-gram model
• Idea. Train a model to predict context words 

• Suppose that we have a sentence “The quick brown fox jumps over the lazy dog” 

• Use a sliding window to generate training samples 

• Train an hourglass predictor based on the samples, using some loss 

• The bottleneck will be our feature



Continuous Bag-of-Words
• CBoW. Very similar idea, but reverted input-output 

• Can use multiple inputs with shared input-layer weights, which is then averaged.



Loss function
• Softmax. For skip-gram, we can simply maximize the posterior probability 

p(xctx |xtgt) =
exp( ˜[WWxtgt]ctx)

∑V
i=1 exp( ˜[WWxtgt]i)
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• Note. In fact, this is actually taking a dot product between two embeddings: 
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Loss function
• Softmax. For skip-gram, we can simply maximize the posterior probability 

 

• Note. In fact, this is actually taking a dot product between two embeddings: 

• Problem. Summing over all  words is cumbersome! 

• Idea (Negative sampling). Choose several negative samples, and try to maximize: 

 

• Also do some “subsampling” to disregard common words, e.g., “the”

p(xctx |xtgt) =
exp( ˜[WWxtgt]ctx)

∑V
i=1 exp( ˜[WWxtgt]i)

V

exp(u⊤
ctxvtgt)

exp(u⊤
ctxvtgt) + ∑i∈neg. sam. exp(u⊤

i vtgt)



Word2vec
• Such a representation space tends to be well-aligned with human semantics: 

• Interesting properties, e.g., arithmetics



GloVe



GloVe
• Suppose that  is a co-occurence matrix 

•  denotes the number of times word  occurs in the context of word 

X

xij i j



GloVe
• Suppose that  is a co-occurence matrix 

•  denotes the number of times word  occurs in the context of word  

• GloVe. Find nice embeddings  such that 
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GloVe
• Suppose that  is a co-occurence matrix 

•  denotes the number of times word  occurs in the context of word  

• GloVe. Find nice embeddings  such that 

                        

• Training. Simply minimize the squared loss: 

 

• As a feature for word , use 

X

xij i j

ui, vj ∈ ℝN

log xij ≈ u⊤
i vj + bi + bj ⇔ xij ≈ exp(u⊤

i vj + bi + b̃j)

V

∑
i=1

V

∑
j=1

(log xij − u⊤
i vj − bi − b̃j)2

i (ui + vi)/2



BERT



BERT
• Basically a self-supervised learning scheme 

• Train representations by letting it solve simple tasks with unlabeled data



BERT
• Task#1. Randomly mask out some words 

               from the sentence in the corpus 
               (Masked Language Modeling) 

• Ask your transformer to predict the 
masked-out words from contexts 

• Note. Similar to word2vec, but with a 
           heavyweight encoder!



BERT
• Task#2. Train the transformer to classify 

                the relationship between two 
                sentences 
               (Next sentence prediction) 

• Use special tokens: 

• [CLS]: Class token 

• [SEP]: Separation token



BERT
• Usage. Can be fine-tuned on other tasks



GPT



Next token prediction
• Idea. We have a lot of unlabeled sentences on web. 

• Train a model that can do next-word prediction



Next token prediction
• Idea. We have a lot of unlabeled sentences on web. 

• Train a model that can do next-word prediction 

• That is, find a generative model  that maximizes the likelihood 

 

• Pick some sentence from the dataset 

• Feed  consecutive tokens 

• Predict the next token 

• Update the model

pθ( ⋅ )

L(θ) = ∑
i

log pθ(xi | xi−k, …, xi−1)

k

Context Length



Use case
• Question. How can we use such next-token generators for various tasks?
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Use case
• Question. How can we use such next-token generators for various tasks? 

• GPT-1. Fine-tune the weight parameters on a small, supervised dataset 

• GPT-2. If the dataset is large enough, simply use the unsupervised model with long prompts 

• No more supervised fine-tuning.



Generated!



Use case
• GPT-3. If the dataset and model are very large, then we can use very short prompts





• It turns out that we can easily reduce the test loss of GPT-like models, 
simply by increasing computation, dataset, and model

Scaling law



Limitation (until GPT-3)
• Problem. Because everything is unsupervised, difficult to fix the behavior of LLMs 

• e.g., wrong information
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Limitation (until GPT-3)
• Problem. Because everything is unsupervised, difficult to fix the behavior of LLMs 

• e.g., wrong information 

• e.g., biased/toxic behavior 

• e.g., misuse



Alignment
• Idea. Use human feedback + RL



Alignment
• Idea. Use human feedback + RL



Alignment
• Idea. Use human feedback + RL



Next class
• Multimodal intelligence



Cheers


