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• This week. Deep learning for language (specifically, text) 

• Architectures 

• Preprocessing 

• RNNs and Transformers 

• Language modeling
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Preview: Text vs. Image
• Question. Why should language processing be different 

                    from image processing? 

• Language is discrete: 

• Interpolating “ ” & “ ” vs. “A” & “C” 

• To-do: Vectorization mechanism needed 

• Language has variable length 

• To-do: Need a neural network architecture that 
             can handle sequences effectively 

• Language has weaker locality than images 

• To-do: Architecture that can cover far distance 

• Note. Later, we will see how image processing can be made similar to texts

“The boy did not have 
   any idea where he is at.” 
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Pre-processing
• Translating text data into a sequence of vectors: 

• Typically involves: 

• Normalization 

• Pre-tokenization 

• Tokenization 

• Embedding

“The boy did not have 
   any idea where he is at.” 

(x1, x2, …, xn), xi ∈ ℝd
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Pre-processing
• Translating text data into a sequence of vectors: 

• Typically involves: 

• Normalization 

• Pre-tokenization 

• Tokenization 

• Embedding 

• The first three are responsible for 
chunking the text and mapping 
them to codes. 

• Embedding maps each chunk 
to a vector 

• Want to keep our dictionary 
small enough for handling!

[token 1] x1 ∈ ℝd

[token 2] x2 ∈ ℝd

⋯

[token 30522] x30522 ∈ ℝd



Normalization
• Various cleanups on the given text to reduce data complexity 

• Lowercasing 

• e.g., “hello” and “Hello” has the same meaning 

• Removing unnecessary whitespaces, accents, punctuations 

• e.g., “I  ate it all” —> “I ate it all” 
        “café” —> “cafe”    “e-mail” —> “email”



Normalization
• Various cleanups on the given text to reduce data complexity 

• Lowercasing 

• e.g., “hello” and “Hello” has the same meaning 

• Removing unnecessary whitespaces, accents, punctuations 

• e.g., “I  ate it all” —> “I ate it all” 
        “café” —> “cafe”    “e-mail” —> “email” 

• Date & Numerics 

• “01/31/2024,” “31st Jan. 2024” —> “2024-01-31” 

• Unicode normalization 

• handling many equivalences 

• https://www.unicode.org/reports/tr15/

https://www.unicode.org/reports/tr15/


Pre-tokenization
• Facilitate more accurate tokenization (chunking) by breaking down text into manageable units. 

• Handling contractions 

• “can’t” —> “can” + “’t" 

• Dealing with punctuations 

• “(some sentence).” —> “(some sentence)” + “.” 

• Abbreviations and acronyms 

• “DMZ” should not be “D” + “MZ”
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• Breaking the sentence down into tokens 

• Word-based tokenization 

• Good semantics 

• Too many vocabularies…
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Tokenization
• Breaking the sentence down into tokens 

• Word-based tokenization 

• Character-based tokenization 

• Subword tokenization 

• Frequent words are kept as a single token 

• Rare words are subdivided 

• Reduces expected sequence length 

• How to take “spaces” into account differs from tokenizer to tokenizer
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Byte-Pair Encoding
• Data-driven generation of tokenization policy 

• Start from the character-level tokens 

• Generate combined codes for the frequent tokens 

• Example.  

• Suppose that our text corpus consists of five words. 

• Then our initial vocabulary will be: ["b", "g", "h", "n", "p", "s", “u”] 

• Count the word frequencies. 

• Use this to count subword frequencies, and expand the vocabulary 

• Repeat until the desired vocab. size is met. 

• Note. Many other ways to do it, e.g., WordPiece.



Embedding
• Each token IDs is translated into one-hot encodings, and then to embeddings 

• Implementable with lookup tables 

• Embedding is trainable as well — more details on this later



Architectures



Architectures
• We will cover two architectures that are designed for sequence-like inputs / outputs 

• RNNs 

• Transformers 

• Should be able to handle all following cases…



RNNs 
(follows exposition of https://cs231n.github.io/rnn/)

https://cs231n.github.io/rnn/


Recurrent Neural Networks
• Idea. Handle sequential input using a state-space model  

• The internal state  contains the (compressed) information 

from the past history of inputs .

ŷt = fθ(xt; ht−1)

ht−1 = gθ(xt−1; ht−2)
x1, x2, …, xt−1

RNN RNN (unrolled)



Recurrent Neural Networks
• Parameterization.  

In the simplest form (Rumelhart, 1986), the recurrence can be formalized as: 

 

                                      

(recall: hidden Markov models)

ht = tanh(Whhht−1 + Wxhxt)

yt = Whyht



RNN for language modeling
• Example (Language Model). 

Suppose that we want to generate new 
sentences with: 

• Character-level tokens 

• Single-layer RNN 

• No embedding layer 

• Then, we can feed the generated character 
as an RNN input to keep on generating 
new characters. 

• Similar in transformers 
(much compute!)



Deep RNNs
• Stack multiple RNN blocks to build a deep RNN 

• Strengthens the “memory” of RNNs 

• Can capture longer-term relationships, theoretically 

• but this is actually quite difficult!



Limitations
• Hard to capture long-term dependencies. Due to vanishing/exploding gradients from  

• Suppose that we want to use the loss at time t (i.e., ), 

to update the information that we should have kept at time 1 (i.e., ). 

• The partial derivative of current state w.r.t. past state is: 

tanh( ⋅ )

Lt
h1

∂ht

∂ht−1
= tanh′ (Whhht−1 + Wxhxt)Whh



Limitations
• Hard to capture long-term dependencies. Due to vanishing/exploding gradients from  

• Suppose that we want to use the loss at time t (i.e., ), 

to update the information that we should have kept at time 1 (i.e., ). 

• The partial derivative of current state w.r.t. past state is: 

 

• The gradient with respect to the loss at time t ( ) can be written as: 

 

                                                  

tanh( ⋅ )

Lt
h1

∂ht

∂ht−1
= tanh′ (Whhht−1 + Wxhxt)Whh

Lt
∂Lt

∂h1
=

∂Lt

∂ht
⋅

∂ht

∂ht−1
⋅ ⋯ ⋅

∂h2

∂h1

=
∂Lt

∂ht
⋅ (

t

∏
i=2

tanh′ (Whhhi−1 + Wxhxi)) Wt−1
hh



Limitations

• Solution. 

• Adopt extra modules that is designed for long-term dependencies 

• called LSTM (not covered in this course) 

• Let the very old input directly affect the new output 

• called Transformers



Transformers



• Consists of a stack of encoders blocks, 
and a stack of decoder blocks 

• Encoder-only. BERT 

• Decoder-only. GPT (our focus)

Transformers



• Consists of a stack of encoders blocks, 
and a stack of decoder blocks 

• Encoder-only. BERT 

• Decoder-only. GPT (our focus) 

• Each block consists of four elements: 

• Multi-head self-attention (MHA) 

• Feed-forward network (FFN) 

• LayerNorm / RMSNorm 

• Residual connections

Transformers



• MHA and FFN plays a complementary role 

• MHA. Captures inter-token dependency 

• FFN. Applies intra-token operations 

• Same operation for all tokens

MHA and FFN



• Idea. Measures the relevance of other tokens 
           for processing the target token 

• The token output will be a weighted sum of 
“values” from other tokens

Self-Attention



• Idea. Measures the relevance of other tokens 
           for processing the target token 

• The token output will be a weighted sum of 
“values” from other tokens 

• To measure the relevance, we use the 
so-called attention score 

• Expressed as a softmax of the 
dot products of query (self) and key 
(other tokens) 

• Also pays attention to the self 

• thus called self-attention

Self-Attention



• Step 1. For each token, we compute query, key, and value. 

• Weight matrices are shared over the tokens

Self-Attention
https://jalammar.github.io/illustrated-transformer/



• Step 2. Compute dot product of the query (self) and key (self, others)

Self-Attention
https://jalammar.github.io/illustrated-transformer/



• Step 3. Compute output as a weighted sum of values, weighted by the softmax of dot products. 

• Normalized by the dimensions

Self-Attention
https://jalammar.github.io/illustrated-transformer/



• Computation & Memory.  
Suppose that we have  tokens. 

• Q/K/V computation. 

•  

• Attention for each Q-K pairs. 

•  

• Weighted sum. 

•  

• Unlike RNN, requires quadratic operation 
with respect to the sequence length!

n

O(n)

O(n2)

O(n2)

Self-Attention



• Typically, we use multiple parallel self-attention layers in a transformer block 

• The outputs of the SA blocks are concatenated, and linearly projected.

Multi-head SA
https://d2l.ai/chapter_attention-mechanisms-and-transformers/multihead-attention.html



• Typically, we use multiple parallel self-attention layers in a transformer block 

• The outputs of the SA blocks are concatenated, and linearly projected 

• The heads indeed tend to capture diverse attention patterns

Multi-head SA
https://d2l.ai/chapter_attention-mechanisms-and-transformers/multihead-attention.html



• In decoder-only transformers (like GPT), the self-attention layers are masked 

• For generating th token, one can only see t x1, …, xt−1

Causal masking for attention



• Fully-connected layers that follow the MHA 

• If very basic, simply use two-layer nets 

• Takes the inverted bottleneck structure 

• Tend to be very compute-heavy 

• Especially so for larger models

Feed-forward network
Mehta�et�al.,�“DeLight:�Deep�and�lightweight�transformer,”�ICLR�2021



• Observation. Self-attention mechanism is neat, but it disregards positional information! 

• Solution. To resolve this, it is common to add position-specific information to the data 
                 (positional encoding; added to initial embeddings)

Positional encoding
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/



More references
• Beginner. Jay Alammar’s blog posts 

• https://jalammar.github.io/illustrated-transformer/ 

• Advanced.  

• Phuong and Hutter, “Formal Algorithms for Transformers,” 2022 

• https://arxiv.org/abs/2207.09238 

• He and Hoffman, “Simplifying Transformer Blocks,” 2023 

• https://arxiv.org/abs/2311.01906

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/2207.09238
https://arxiv.org/abs/2311.01906


Cheers


