Language:
Architectures

-ECE454 Intro. to Machine Learning systems

Fall 2024

Overview

- Last two weeks. Deep learning for visual data (specifically, image)
. Architectures
- Scalable training

« Generative model

Overview

- This week. Deep learning for language (specifically, text)
- Architectures

- Preprocessing

- RNNs and Transtformers

- Language modeling

. Question. WF

fro

V'S
m |

Preview: Text vs. Image

nould language processing be different e \ | 2N

ONTTOR

)

. -
",
- 0
\ 3
N 9
R
BN,
\
g
g e -
. v
.’ .

mage processing?

R AR \\&

W\ LR RTINS R

AR

J m
m \\\S’\\\\\&“\Q\ % h: '\":'_b

o~

. '
Py

;
52

Preview: Text vs. Image

- Language is discrete:

. Interpolating “W” & “W” vs. ‘A" & “C”

. To-do: Vectorization mechanism needed

Preview: Text vs. Image

Are we still on for later?

yeah.

What time do you want to

- Language has variable length meet?

» To-do: Need a neural network architecture that
can handle sequences effectively

could do 7.

Great, see you later!

see you then.

Preview: Text vs. Image

“The boy did not have
any idea where he is at.”

- Language has weaker locality than images

- To-do: Architecture that can cover far distance

- Note. Later, we will see how image processing can be made similar to texts

Preprocessing

Pre-processing

« Translating text data into a sequence of vectors:
. Typically involves: The boy did not have

. Normalization any idea where heis at.”

e Pre-tokenization

e Tokenization

« Embedding

(X, X5, ...,X,), X €I

!

Pre-processing

Tokens Characters

31 137

There are plenty of different ways to tokenize the text into multiple
« Normalization pieces. GPT-40 and GPT-3.5 are actually using different tokenizers.

e Pre-tokenization

o Tokenization

Text Token IDs

« The first three are responsible for
[5632, 553, 13509, 328, 2647, 6984, 316, 192720, 290, 2201, 1511, 7598,

chunking the text and mapping 12762, 13, 174803, 12, 19, 78, 326, 174803, 12, 18, 13, 20, 553, 4771,
them to codes. 2360, 2647, 6602, 24223, 131

Text Token IDs

Pre-processing

[5632, 553, 13509, 328, 2647, 6984, 316, 192720, 290, 2201, 1511, 7598,
12762, 13, 174803, 12, 19, 78, 3206, 174803, 12, 18, 13, 20, 553, 4771,
2360, 2647, 6602, 24223, 13]

Text Token IDs

« Embedding

[token1] — X, €|
[token2] — X, €| d

« Embedding maps each chunk
to a vector

» Want to keep our dictionary [token 30522] = X3p509 € | d
small enough for handling!

Normalization

« Various cleanups on the given text to reduce data complexity

e [owercasing

e 9., "hello” and “Hello” has the same meaning
« Removing unnecessary whitespaces, accents, punctuations

e 2.0, ateitall”"—>"“lateitall”
‘caté” —> “cafe” “e-mail” —> “email”

Subtype Examples

Font variants g) N H

Normalization —

Linebreaking differences [N BS P] —_ [S PAC E]

Positional variant forms &

o
|

e &
= —> &
L 3 —_— &
Circled variants @ . 1
Width variants 7] - j]
° DCIte & Numerics Rotated variants - - {
. "01/31/2024, “31st Jan. 2024" —> “2024-01-31" .
Superscripts/subscripts . -
« Unicode normalization Sy . ¢ 5
« handling many eqguivalences g — 19
. Squared characters)¢ — / \o_
« https://www.unicode.org/reports/tr15 o e X
Fractions % . 1/4
Other dz . dz

https://www.unicode.org/reports/tr15/

Pre-tokenization

« Facilitate more accurate tokenization (chunking) by breaking down text into manageable units.
« Handling contractions
e ‘cant” —>"can” + "t"
« Dealing with punctuations
e “(some sentence).” —> “(some sentence)” +
« Abbreviations and acronyms

« "DMZ" should not be “D” + "MZ”

Tokenization

- Breaking the sentence down into tokens
- Word-based tokenization
- Good semantics

- Too many vocabularies...

Split on spaces

Let’s do tokenization!

Split on punctuation

Let 'S do tokenization

Tokenization

- Character-based tokenization
- Smaller vocabulary size

« Bad semantics

Tokenization

» Subword tokenization
- Frequent words are kept as a single token
- Rare words are subdivided
- Reduces expected sequence length

- How to take “spaces” into account differs from tokenizer to tokenizer

Let’s </w> do</w> token 1Ization</w> I</w>

Byte-Pair Encoding

- Data-driven generation of tokenization policy
. Start from the character-level tokens

- Generate combined codes for the frequent tokens

https://huggingface.co/learn/nlp-course/en/chapter6/57fw=pt

Byte-Pair Encoding

- Example.

« Suppose that our text corpus consists of five words: "hug", "pug", "pun", "bun", "hugs"

- Then our initial vocabulary will be: ["0", "g", "h" "n", "p" "s", “U”]

https://huggingface.co/learn/nlp-course/en/chapter6/57fw=pt

Byte-Pair Encoding

- Example.

- Count the word freguencies.

(“hug“, 10)’ (Ilpug”, 5), (IlpunII, 12), (IlbunII, 4), (“hugS“, 5)

(Ilhll llull I II' 10)’ (Ilpll llull “g“, 5), (Ilpll IIUII IInII, 12), (Ilbll IIUII IInII, 4), (llhll Ilull IIgII ”S”, 5)

https://huggingface.co/learn/nlp-course/en/chapter6/57fw=pt

Byte-Pair Encoding

- Example.

- Use this to count subword frequencies, and expand the vocabulary

(llhll llull i II’ 10), (llpll llull IIgII, 5), (Ilpll IIUII IlnII, 12), (Ilbll IIUII IlnII, 4)' (llhll Ilull Ilgll IISII, 5)

Vocabulary: [llbll, IIgII, Ilhll’ IInII, IIpII, ”S", IIuII, Ilugll]
COIpUS: (Ilhll llugll' 10), (llpll IlugII' 5)’ (llpll Ilull IInII’ 12), (Ilbll Ilull IInII, 4)' (Ilhll Ilugll ”S"' 5)

https://huggingface.co/learn/nlp-course/en/chapter6/57fw=pt

Byte-Pair Encoding

- Example.

- Repeat until the desired vocab. size is met.

Vocabulary: [IIbII, IIgII, IIhII, IInII, IlplI' IISII, IIuII, IlugII’ IlunlI’ Ilhugll]
COIpUS: (Ilhug”’ 1@)' (Ilpll lluglI, 5)' (Ilpll IlunII' 12)' (Ilbll IIunII, 4), (Ilhugll ”S“' 5)

Byte-Pair Encoding

- Note. Many other ways to do it, e.g., WordPiece.

« Implementable with lookup tables

Embedding

« Each token IDs is translated into one-hot encodings, and then to embeddings

« Embeddingis trainable as well — more details on this later

Tokens

Token IDs

One Hot Encoding

<2>

<4>

<3>

<1>

<5>

N

The | eats | cat |mouse
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0
0 0 0 1

Embedding

Dim 1

Dim 2

Dim 3

>0 0 @
103

@ O O

om0 O O
0O @ O
om0 O O

Architectures

Architectures

- We will cover two architectures that are designed for sequence-like inputs / outputs
« RNNSs
« Transformers

- Should be able to handle all following cases...

one to one one to many many to one many to many many to many

RNNS
(follows exposition of nttps://cs23Tn.githubio/rmn/)

https://cs231n.github.io/rnn/

Recurrent Neural Networks

- ldea. Handle sequential input using a state-space model y, = fy(X,; h,_;)

. The internal state h,_; = go(X,_;; h,_,) contains the (compressed) information

from the past history of inputs Xy, Xy, ..., X,_1.

RNN RNN (unrolled)

Recurrent Neural Networks

« Parameterization.

In the simplest form (Rumelhart, 1986), the recurrence can be formalized as:

ht — tanh(Whhht_l + WXhXt)

Y: = Whyht
(recall: hidden Markov models)
- 000 O 00 O B O
.=tanh(......_'_.....) _ O
- 000 O 00 O O
. 000 O 00 O

ht I/I/hh ht—l th Xt Vi Wh y ht

- Example (Language Model).

RNN for language modeling

target chars:

Suppose that we want to generate new
sentences with:

output layer

« Character-level tokens

- Single-layer RNN

- No embedding layer

hidden layer

- Then, we can feed the generated character

as dn
New C

« Similar in transformers

RNN N

Out to keep o

Naracters.

(much computel)

N generating

iInput layer

input chars:

“I”

1.0
2.2
-3.0
4.1

0.5
0.3
-1.0
1.2

|

|

0.3
-0.1
0.9

W hh

S |00 = —s

Deep RNNs

. Stack multiple RNN blocks to build a deep RNN 4

- Strengthens the “memory” of RNNs
- Can capture longer-term relationships, theoretically

. put this is actually quite difficult!

depth

time

[.1mitations

- Hard to capture long-term dependencies. Due to vanishing/exploding gradients from tanh(-)

» Suppose that we want to use the loss at time t (i.e., L)),

to update the information that we should have kept at time 1 (i.e., hy).

- The partial derivative of current state w.r.t. past state is:

oh,
oh,_,

— tanh'(Whhht_l —+ WXhXt)Whh

[.1mitations

» The gradient with respect to the loss at time t (L,) can be written as:
oL, oL, Ooh, oh,
oh, oh, oh,_, oh,

oL, !
= — . tanh(W,. h. + W..x,) | W!
oh, (g (Winh,_4 xh)) hh

[.1mitations

“the trailers were the best part of the whole movie.”

\

trailers whole movie

ICE ON RNN OUTPUT

» Solution.
- Adopt extra modules that is designed for long-term dependencies

- called LSTM (not covered in this course)

. Let the very old input directly affect the new output

. called Transformers

Transtormers

Transtormers

« Consists of a stack of encoders blocks,
and a stack of decoder blocks

- Encoder-only. BERT

S THE TRANSFORMER
2

| am a student

- Decoder-only. GPT (our focus) meoomsmac '?E..C.".'?F.R..ST."F.'.‘I)
(oo oo)
oo), oo)
oo) (oo)
T — (ST
(oo) o).
oo) (mwn)

INPUT | Je suis etudiant

Transtormers

« Fach block consists of four elements:

- Multi-head self-attention (MHA)
» Feed-forward network (FFN)
« LayerNorm / RMSNorm

« Residual connections

Normal Structure

]

LayerNorm

T

MLP
A

>

LayerNorm

T

Attention

T

Input

Pre-normalization

>T
MLP

T

RMSNorm
A

-

Attention

T

RMSNorm

T

Input

MHA and FFN

- MHA and FFN plays a complementary role

- MHA. Captures inter-token dependency

T
- FFN. Applies intra-token operations T ’ |T| l
- Same operation for all tokens o For o For
Neural Network Neural Network

L]
T

C | j
i i

x: [P x2 [

[L]

Self-Attention

- ldea. Measures the relevance of other tokens The_ The_
for processing the target token animal_ animal
- The token output will be a weighted sum of didn_ didn_
“values” from other tokens = -
t_ t_
Cross._ Cross._
the_ the_
street_ street_
because_ because._
it It_
was_ was_
too_ {oo_
tire tire

Self-Attention

The_ The_
animal_ animal_
didn_ didn_
t t
Cross_ Cross._
- To measure the relevance, we use the the_ the_
so-called attention score street street
. Expressed as a softmax of the because_ because_
dot products of query (self) and key T T
(other tokens) i i ™
too_ 100_
. Also pays attention to the self s fre

- thus called self-attention d d

https://jalammar.github.io/illustrated-transformer/

Self-Attention

» Step 1. For each , We compute , , and

- Weight matrices are shared over the tokens

Input

Embedding

Queries

Keys

Values

https://jalammar.github.io/illustrated-transformer/

Self-Attention

« Step 2. Compute of the query (self) and key (self, others)
Input Thi:king Machines
Embedding X | X2
Queries 01 g2
Keys K1 K2
Values V1 V2
Score i1 ® Ki= i1 ® K2 =

https://jalammar.github.io/illustrated-transformer/

Self-Attention

» Step 3. Compute as a weighted sum of values, weighted by the

- Normalized by the dimensions

Softmax()

Self-Attention

- Computation & Memory.
Suppose that we have n tokens.

- Q/K/V computation.
. O(n)

. Attention for each Q-K pairs.
. O(n)

- Weighted sum.
. O(n%)

- Unlike RNN, requires quadratic operation
with respect to the sequence length!

Input

Embedding

Queries

Keys

Values

Score

Divide by 8 (

Softmax

Softmax
X

Sum

Vi)

https://d21l.ai/chapter attention-mechanisms—-and-transformers/multihead-attention.html

Multi-head SA

- Typically, we use multiple parallel self-attention layers in a transtormer block

- The outputs of the SA blocks are concatenated, and linearly projected.

Attention Attention

Queries Keys Values

https://d21l.ai/chapter attention-mechanisms—-and-transformers/multihead-attention.html

Multi-head SA

- The heads indeed tend to capture diverse attention patterns

— o — o — o = o

I o £ o O Z o £ o = < o £ o o = < o E o o =
T = S S S5 N < T = S S 5 N < = = S 3 3 N < =9 = S 3 3 N <
w § o o &8 2 T O ¢ w v ¥§ o o 58 2 T O ¢ w w § o o &8 2 T O ¢ w w § o o &8 2 T T ¢ w

this this this this

IS IS IS IS

the the the the

first first first first

book book book book

that that that that

I I I [

did did did did

[END] [END] [END] [END]
Head 1 Head 2 Head 3

Head 4

Causal masking for attention

. |In decoder-only transtformers (like GPT), the self-attention layers are masked

- For generating fth token, one can only see Xy, ..., X,_{

Self-Attention Masked Self-Attention

Mehta et al., °“ DelLight: Deep and lightweight transformer, > ICLR 2021

Feed-forward network

Fully-connected layers that follow the MHA

I
f basic, simpl two-| t = =z z
. ver ASsIC, SlIMm use tWO-1avyer NEeLS
Y P1Y Y Query Key Value
- Takes the inverted bottleneck structure gl dn dp dp
= —
Q .
- Tend to be very compute-heavy z > Attention H
. = !
- Especially so for larger models 2 | Attention ops: |Concat
% % % % 2| Odmn®) 2
1 FLOPs/ FLOPS FLOPS FLOPS FLOPS
description update MHA FFN attn logit l dm
8 OPT setups 7 Add [«
9 760M 4.3E+15 35% 44% 14.8% 5.8% T l 4
10 1.3B 1.3E+16 32% 51% 12.7% 5.0% e / \FFN params:
11 2.7B 25E+16 29% 56% 112% 3.3% 3 -y 2
QO —
12 6.7B 11E+17 24% 65% 8.1% 2.4% Z y J—om m
13 13B 41E+17 22% 69% 69% 1.6% E \ /
14 30B 9.0E+17 20% 74% 53% 1.0% “ | dm N
15 66B 95E+17 18% 77% 43% 0.6% % » Add Depth =4
16 175B 24E+18 17% 80% 3.3% 0.3% is ' \ g

https://kazemnejad.com/blog/transformer_architecture_positional encoding/

Positional encoding

- Observation. Self-attention mechanism is neat, but it disregards positional information!

. Solution. To resolve this, it is common to add position-specific information to the dato
(positional encoding; added to initial embeddings)

sin(wk t), ifi=2k _ 1
cos(wg.t), ifi =2k+1 100002k/4

il |
' 5 i ||}|l

m'-51 i || Lo
N |'III|.||I } I 0.
. .. .lll J || Ioso
|I|I 075
) |
g '..h‘l 1

Il
I| l
0.00
& llli
0.25
oA
L= 'I
0 20 60 100

Depth

(2) .
pi = f(t) =

More reterences

- Beginner. Jay Alommar’s blog posts

. https://jalammar.github.io/illustrated-transtormer/

- Advanced.

- Phuong and Hutter, “Formal Algorithms for Transformers,” 2022
. Nttps://arxiv.org/apns/2207.09238
- He and Hoffman, “Simplitying Transformer Blocks,” 2023

. https://arxiv.org/abs/2311.01906

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/2207.09238
https://arxiv.org/abs/2311.01906

Cheers

