
Fall 2024

EECE454 Intro. to Machine Learning Systems

Language:
Architectures

Overview
• Last two weeks. Deep learning for visual data (specifically, image)

• Architectures

• Scalable training

• Generative model

Overview
• Last two weeks. Deep learning for visual data (specifically, image)

• Architectures

• Scalable training

• Generative model

• This week. Deep learning for language (specifically, text)

• Architectures

• Preprocessing

• RNNs and Transformers

• Language modeling

Preview: Text vs. Image
• Question. Why should language processing be different

 from image processing?

Preview: Text vs. Image
• Question. Why should language processing be different

 from image processing?

• Language is discrete:

• Interpolating “ ” & “ ” vs. “A” & “C”

• To-do: Vectorization mechanism needed

Preview: Text vs. Image
• Question. Why should language processing be different

 from image processing?

• Language is discrete:

• Interpolating “ ” & “ ” vs. “A” & “C”

• To-do: Vectorization mechanism needed

• Language has variable length

• To-do: Need a neural network architecture that
 can handle sequences effectively

Preview: Text vs. Image
• Question. Why should language processing be different

 from image processing?

• Language is discrete:

• Interpolating “ ” & “ ” vs. “A” & “C”

• To-do: Vectorization mechanism needed

• Language has variable length

• To-do: Need a neural network architecture that
 can handle sequences effectively

• Language has weaker locality than images

• To-do: Architecture that can cover far distance

• Note. Later, we will see how image processing can be made similar to texts

“The boy did not have
 any idea where he is at.”

Preprocessing

Pre-processing
• Translating text data into a sequence of vectors:

• Typically involves:

• Normalization

• Pre-tokenization

• Tokenization

• Embedding

“The boy did not have
 any idea where he is at.”

(x1, x2, …, xn), xi ∈ ℝd

Model

Pre-processing
• Translating text data into a sequence of vectors:

• Typically involves:

• Normalization

• Pre-tokenization

• Tokenization

• Embedding

• The first three are responsible for
chunking the text and mapping
them to codes.

Pre-processing
• Translating text data into a sequence of vectors:

• Typically involves:

• Normalization

• Pre-tokenization

• Tokenization

• Embedding

• The first three are responsible for
chunking the text and mapping
them to codes.

• Embedding maps each chunk
to a vector

• Want to keep our dictionary
small enough for handling!

[token 1] x1 ∈ ℝd

[token 2] x2 ∈ ℝd

⋯

[token 30522] x30522 ∈ ℝd

Normalization
• Various cleanups on the given text to reduce data complexity

• Lowercasing

• e.g., “hello” and “Hello” has the same meaning

• Removing unnecessary whitespaces, accents, punctuations

• e.g., “I ate it all” —> “I ate it all”
 “café” —> “cafe” “e-mail” —> “email”

Normalization
• Various cleanups on the given text to reduce data complexity

• Lowercasing

• e.g., “hello” and “Hello” has the same meaning

• Removing unnecessary whitespaces, accents, punctuations

• e.g., “I ate it all” —> “I ate it all”
 “café” —> “cafe” “e-mail” —> “email”

• Date & Numerics

• “01/31/2024,” “31st Jan. 2024” —> “2024-01-31”

• Unicode normalization

• handling many equivalences

• https://www.unicode.org/reports/tr15/

https://www.unicode.org/reports/tr15/

Pre-tokenization
• Facilitate more accurate tokenization (chunking) by breaking down text into manageable units.

• Handling contractions

• “can’t” —> “can” + “’t"

• Dealing with punctuations

• “(some sentence).” —> “(some sentence)” + “.”

• Abbreviations and acronyms

• “DMZ” should not be “D” + “MZ”

Tokenization
• Breaking the sentence down into tokens

• Word-based tokenization

• Good semantics

• Too many vocabularies…

Tokenization
• Breaking the sentence down into tokens

• Word-based tokenization

• Character-based tokenization

• Smaller vocabulary size

• Bad semantics

Tokenization
• Breaking the sentence down into tokens

• Word-based tokenization

• Character-based tokenization

• Subword tokenization

• Frequent words are kept as a single token

• Rare words are subdivided

• Reduces expected sequence length

• How to take “spaces” into account differs from tokenizer to tokenizer

Byte-Pair Encoding
• Data-driven generation of tokenization policy

• Start from the character-level tokens

• Generate combined codes for the frequent tokens

Byte-Pair Encoding
• Data-driven generation of tokenization policy

• Start from the character-level tokens

• Generate combined codes for the frequent tokens

• Example.

• Suppose that our text corpus consists of five words:

• Then our initial vocabulary will be: ["b", "g", "h", "n", "p", "s", “u”]

https://huggingface.co/learn/nlp-course/en/chapter6/5?fw=pt

Byte-Pair Encoding
• Data-driven generation of tokenization policy

• Start from the character-level tokens

• Generate combined codes for the frequent tokens

• Example.

• Suppose that our text corpus consists of five words.

• Then our initial vocabulary will be: ["b", "g", "h", "n", "p", "s", “u”]

• Count the word frequencies.

https://huggingface.co/learn/nlp-course/en/chapter6/5?fw=pt

Byte-Pair Encoding
• Data-driven generation of tokenization policy

• Start from the character-level tokens

• Generate combined codes for the frequent tokens

• Example.

• Suppose that our text corpus consists of five words.

• Then our initial vocabulary will be: ["b", "g", "h", "n", "p", "s", “u”]

• Count the word frequencies.

• Use this to count subword frequencies, and expand the vocabulary

https://huggingface.co/learn/nlp-course/en/chapter6/5?fw=pt

Byte-Pair Encoding
• Data-driven generation of tokenization policy

• Start from the character-level tokens

• Generate combined codes for the frequent tokens

• Example.

• Suppose that our text corpus consists of five words.

• Then our initial vocabulary will be: ["b", "g", "h", "n", "p", "s", “u”]

• Count the word frequencies.

• Use this to count subword frequencies, and expand the vocabulary

• Repeat until the desired vocab. size is met.

https://huggingface.co/learn/nlp-course/en/chapter6/5?fw=pt

Byte-Pair Encoding
• Data-driven generation of tokenization policy

• Start from the character-level tokens

• Generate combined codes for the frequent tokens

• Example.

• Suppose that our text corpus consists of five words.

• Then our initial vocabulary will be: ["b", "g", "h", "n", "p", "s", “u”]

• Count the word frequencies.

• Use this to count subword frequencies, and expand the vocabulary

• Repeat until the desired vocab. size is met.

• Note. Many other ways to do it, e.g., WordPiece.

Embedding
• Each token IDs is translated into one-hot encodings, and then to embeddings

• Implementable with lookup tables

• Embedding is trainable as well — more details on this later

Architectures

Architectures
• We will cover two architectures that are designed for sequence-like inputs / outputs

• RNNs

• Transformers

• Should be able to handle all following cases…

RNNs
(follows exposition of https://cs231n.github.io/rnn/)

https://cs231n.github.io/rnn/

Recurrent Neural Networks
• Idea. Handle sequential input using a state-space model

• The internal state contains the (compressed) information

from the past history of inputs .

ŷt = fθ(xt; ht−1)

ht−1 = gθ(xt−1; ht−2)
x1, x2, …, xt−1

RNN RNN (unrolled)

Recurrent Neural Networks
• Parameterization.

In the simplest form (Rumelhart, 1986), the recurrence can be formalized as:

(recall: hidden Markov models)

ht = tanh(Whhht−1 + Wxhxt)

yt = Whyht

RNN for language modeling
• Example (Language Model).

Suppose that we want to generate new
sentences with:

• Character-level tokens

• Single-layer RNN

• No embedding layer

• Then, we can feed the generated character
as an RNN input to keep on generating
new characters.

• Similar in transformers
(much compute!)

Deep RNNs
• Stack multiple RNN blocks to build a deep RNN

• Strengthens the “memory” of RNNs

• Can capture longer-term relationships, theoretically

• but this is actually quite difficult!

Limitations
• Hard to capture long-term dependencies. Due to vanishing/exploding gradients from

• Suppose that we want to use the loss at time t (i.e.,),

to update the information that we should have kept at time 1 (i.e.,).

• The partial derivative of current state w.r.t. past state is:

tanh(⋅)

Lt
h1

∂ht

∂ht−1
= tanh′ (Whhht−1 + Wxhxt)Whh

Limitations
• Hard to capture long-term dependencies. Due to vanishing/exploding gradients from

• Suppose that we want to use the loss at time t (i.e.,),

to update the information that we should have kept at time 1 (i.e.,).

• The partial derivative of current state w.r.t. past state is:

• The gradient with respect to the loss at time t () can be written as:

tanh(⋅)

Lt
h1

∂ht

∂ht−1
= tanh′ (Whhht−1 + Wxhxt)Whh

Lt
∂Lt

∂h1
=

∂Lt

∂ht
⋅

∂ht

∂ht−1
⋅ ⋯ ⋅

∂h2

∂h1

=
∂Lt

∂ht
⋅ (

t

∏
i=2

tanh′ (Whhhi−1 + Wxhxi)) Wt−1
hh

Limitations

• Solution.

• Adopt extra modules that is designed for long-term dependencies

• called LSTM (not covered in this course)

• Let the very old input directly affect the new output

• called Transformers

Transformers

• Consists of a stack of encoders blocks,
and a stack of decoder blocks

• Encoder-only. BERT

• Decoder-only. GPT (our focus)

Transformers

• Consists of a stack of encoders blocks,
and a stack of decoder blocks

• Encoder-only. BERT

• Decoder-only. GPT (our focus)

• Each block consists of four elements:

• Multi-head self-attention (MHA)

• Feed-forward network (FFN)

• LayerNorm / RMSNorm

• Residual connections

Transformers

• MHA and FFN plays a complementary role

• MHA. Captures inter-token dependency

• FFN. Applies intra-token operations

• Same operation for all tokens

MHA and FFN

• Idea. Measures the relevance of other tokens
 for processing the target token

• The token output will be a weighted sum of
“values” from other tokens

Self-Attention

• Idea. Measures the relevance of other tokens
 for processing the target token

• The token output will be a weighted sum of
“values” from other tokens

• To measure the relevance, we use the
so-called attention score

• Expressed as a softmax of the
dot products of query (self) and key
(other tokens)

• Also pays attention to the self

• thus called self-attention

Self-Attention

• Step 1. For each token, we compute query, key, and value.

• Weight matrices are shared over the tokens

Self-Attention
https://jalammar.github.io/illustrated-transformer/

• Step 2. Compute dot product of the query (self) and key (self, others)

Self-Attention
https://jalammar.github.io/illustrated-transformer/

• Step 3. Compute output as a weighted sum of values, weighted by the softmax of dot products.

• Normalized by the dimensions

Self-Attention
https://jalammar.github.io/illustrated-transformer/

• Computation & Memory.
Suppose that we have tokens.

• Q/K/V computation.

•

• Attention for each Q-K pairs.

•

• Weighted sum.

•

• Unlike RNN, requires quadratic operation
with respect to the sequence length!

n

O(n)

O(n2)

O(n2)

Self-Attention

• Typically, we use multiple parallel self-attention layers in a transformer block

• The outputs of the SA blocks are concatenated, and linearly projected.

Multi-head SA
https://d2l.ai/chapter_attention-mechanisms-and-transformers/multihead-attention.html

• Typically, we use multiple parallel self-attention layers in a transformer block

• The outputs of the SA blocks are concatenated, and linearly projected

• The heads indeed tend to capture diverse attention patterns

Multi-head SA
https://d2l.ai/chapter_attention-mechanisms-and-transformers/multihead-attention.html

• In decoder-only transformers (like GPT), the self-attention layers are masked

• For generating th token, one can only see t x1, …, xt−1

Causal masking for attention

• Fully-connected layers that follow the MHA

• If very basic, simply use two-layer nets

• Takes the inverted bottleneck structure

• Tend to be very compute-heavy

• Especially so for larger models

Feed-forward network
Mehta�et�al.,�“DeLight:�Deep�and�lightweight�transformer,”�ICLR�2021

• Observation. Self-attention mechanism is neat, but it disregards positional information!

• Solution. To resolve this, it is common to add position-specific information to the data
 (positional encoding; added to initial embeddings)

Positional encoding
https://kazemnejad.com/blog/transformer_architecture_positional_encoding/

More references
• Beginner. Jay Alammar’s blog posts

• https://jalammar.github.io/illustrated-transformer/

• Advanced.

• Phuong and Hutter, “Formal Algorithms for Transformers,” 2022

• https://arxiv.org/abs/2207.09238

• He and Hoffman, “Simplifying Transformer Blocks,” 2023

• https://arxiv.org/abs/2311.01906

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/2207.09238
https://arxiv.org/abs/2311.01906

Cheers

