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Today
• Generative Adversarial Nets 

• Diffusion Models



Generative Adversarial Nets



Limitations of VAEs
• Cons. Known to be less “sharp,” with much noises 

• Clearly distinguishable from the real images 

• Question. Can we generate samples that are undistinguishable from real ones?



Generative Adversarial Nets
• Idea. Explicitly train for “hard to distinguish” properties, by training a distinguisher together 

• View generative process as a two-player game 

• Generator. Tries to fool the discriminator 

• Discriminator. Tries to distinguish the real / fake images

Dθ(x) = {1 ⋯ if fake
0 ⋯ if real



Generative Adversarial Nets
• Training. Jointly train the generator and discriminator 

• Objective. Minimax function  

 

• Discriminator outputs the likelihood of being real  

• This training objective is actually equivalent to the Jensen-Shannon divergence 

min
θg

max
θd

[𝔼x∼ ̂p log Dθd
(x) + 𝔼z∼p(z) log(1 − Dθd

∘ Gθg
(z))]

Dθd
(x) ∈ [0,1]

D (pθ
̂p + pθ

2 ) + D ( ̂p
̂p + pθ
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Discriminator declares 
real image to be real

Discriminator declares 
fake image to be fake



Generative Adversarial Nets



Generative Adversarial Nets
• Architecture. Generator uses convolutional layers, of course.



• Such training can give very sharp images

Results



• Idea. Add class/text information to the latent code 

• Generate realistic images under specific conditions

Conditional GAN



Conditional GAN



• Training GANs is known to be a very unstable procedure 

• If the discriminator works too well, the generator gives up learning 

• If the generator works too well, the discriminator cannot find meaningful patterns

Pitfalls



• As a result, overfit to few good solutions (called “mode collapse”)

Pitfalls



Diffusion models



VAEs
• Recall: VAEs. A decoder  that generates samples from a code , such that 

 

• Problem. To train such model, we needed a good inverse map 

pθ(x |z) z ∼ 𝒩(0,Ik)

pdata(x) ≈ pθ(x)

pθ(z |x)



VAEs
• Recall: VAEs. A decoder  that generates samples from a code , such that 

 

• Problem. To train such model, we needed a good inverse map  

• Idea. Jointly train an encoder, which generates Gaussians from inputs 

• As the “distribution of images” is very complicated, maybe our neural nets have too low 
capacity to do this in a single forward…

pθ(x |z) z ∼ 𝒩(0,Ik)

pdata(x) ≈ pθ(x)

pθ(z |x)



Diffusion models
• Observation. Another natural way to generate Gaussian-like distribution from inputs (i.e., encode) 

• Add Gaussian noise to the input, gradually:



Diffusion models
• Observation. Another natural way to generate Gaussian-like distribution from inputs (i.e., encode) 

• Add Gaussian noise to the input, gradually: 

• Sample the data  from the distribution 

 

• That is, we do  

(We put scaling to preserve the  norm)

xt

q(xt |xt−1) = 𝒩 (xt | αtxt−1, (1 − αt)I)
x ↦ αtx + 1 − αtϵ, ϵ ∼ 𝒩(0,I)

ℓ2



Diffusion models
• Observation. Another natural way to generate Gaussian-like distribution from inputs (i.e., encode) 

• Add Gaussian noise to the input, gradually: 

• Sample the data  from the distribution 

 

• That is, we do  

(We put scaling to preserve the  norm) 

• Idea. Let this be our (probabilistic) encoder! 

• Question. How can we train a decoder?

xt

q(xt |xt−1) = 𝒩 (xt | αtxt−1, (1 − αt)I)
x ↦ αtx + 1 − αtϵ, ϵ ∼ 𝒩(0,I)

ℓ2



Diffusion models
• Decoder. Train a reverse model  which approximates pθ(xt−1 |xt) q(xt−1 |xt)



Diffusion models
• Decoder. Train a reverse model  which approximates  

• This reverse model will be parameterized as a Gaussian: 

 

• That is, we train the mean predictor and variance predictor. 

• Dependent on the time 

pθ(xt−1 |xt) q(xt−1 |xt)

pθ(xt−1 |xt) = 𝒩(xt−1 |μθ,t(xt), Σθ,t(xt))

t



Training a Diffusion Model
• Training. Suppose that we draw some sample sequence  using the forward diffusion: x0, …, xT

q(x0:T) = q(x0)
T

∏
t=1

q(xt |xt−1)



Training a Diffusion Model
• Training. Suppose that we draw some sample sequence  using the forward diffusion: 

 

                     Then, train to maximize the log probability of generating the real image 

 

                     where the reverse diffusion process is given as: 

.

x0, …, xT

q(x0:T) = q(x0)
T

∏
t=1

q(xt |xt−1)

𝔼q(x0) [log pθ(x0)]

pθ(x0:T) = pθ(xT)
T

∏
t=1

pθ(xt−1 |xt)



Evidence Lower Bound
• As in VAE, we use the Jensen’s inequality. 

 

                                   

                                   

                                  

𝔼q(x0) [log pθ(x0)] = 𝔼q(x0) [log (∫ pθ(x0:T) dx1:T)]
= 𝔼q(x0) [log (∫ q(x1:T |x0)

pθ(x0:T)
q(x1:T |x0)

dx1:T)]
= 𝔼q(x0) [log 𝔼q(x1:T|x0) [ pθ(x0:T)

q(x1:T |x0) ]]
≥ 𝔼q(x0:T) [log

pθ(x0:T)
q(x1:T |x0) ]



Evidence Lower Bound
• The ELBO is further decomposed into: 

 

                                                 

                                                

𝔼q(x0:T) [log
pθ(x0:T)

q(x1:T |x0) ] = 𝔼q log
pθ(xT)∏T

t=1 pθ(xt−1 |xt)

∏T
t=1 q(xt |xt−1)

= 𝔼q [log pθ(xT) +
T

∑
t=1

log
pθ(xt−1 |xt)
q(xt |xt−1) ]

= 𝔼q [log pθ(xT) +
T

∑
t=2

log
pθ(xt−1 |xt)
q(xt |xt−1)

+ log
pθ(x0 |x1)
q(x1 |x0) ]



Evidence Lower Bound
• Do additional conditioning 

 𝔼q [log pθ(xT) +
T

∑
t=2

log
pθ(xt−1 |xt)
q(xt |xt−1)

+ log
pθ(x0 |x1)
q(x1 |x0) ]

= 𝔼q [log pθ(xT) +
T

∑
t=2

log ( pθ(xt−1 |xt)
q(xt−1 |xt, x0)

⋅
q(xt−1 |x0)
q(xt |x0) ) + log

pθ(x0 |x1)
q(x1 |x0) ]

q(xt |xt−1) = q(xt |xt−1, x0)

=
q(xt, xt−1 |x0)

q(xt−1 |x0)

=
q(xt−1 |xt, x0)q(xt |x0)

q(xt−1 |x0)



Evidence Lower Bound
• Do additional conditioning 

 

 

 

𝔼q [log pθ(xT) +
T

∑
t=2

log
pθ(xt−1 |xt)
q(xt |xt−1)

+ log
pθ(x0 |x1)
q(x1 |x0) ]

= 𝔼q [log pθ(xT) +
T

∑
t=2

log ( pθ(xt−1 |xt)
q(xt−1 |xt, x0)

⋅
q(xt−1 |x0)
q(xt |x0) ) + log

pθ(x0 |x1)
q(x1 |x0) ]

= 𝔼q [log pθ(xT) +
T

∑
t=2

log
pθ(xt−1 |xt)

q(xt−1 |xt, x0)
+

T

∑
t=2

log
q(xt−1 |x0)
q(xt |x0)

+ log
pθ(x0 |x1)
q(x1 |x0) ]

= 𝔼q [log
pθ(xT)

q(xT |x0)
+

T

∑
t=2

log
pθ(xt−1 |xt)

q(xt−1 |xt, x0)
+ log pθ(x0 |x1)]



Evidence Lower Bound
• Tidying up, we get 

 

 

𝔼q [log
pθ(xT)

q(xT |x0)
+

T

∑
t=2

log
pθ(xt−1 |xt)

q(xt−1 |xt, x0)
+ log pθ(x0 |x1)]

= 𝔼q[log pθ(x0 |x1)] − 𝔼qD(q(xT |x0) p(xT)) −
T

∑
t=2

𝔼qD(q(xt−1 |xt, x0) pθ(xt−1 |xt))



Evidence Lower Bound
• Tidying up, we get 

 

 

• First term. We know that this is the squared loss of the mean predictor. 

• Assuming that  for simplicity, we have: 

𝔼q [log
pθ(xT)

q(xT |x0)
+

T

∑
t=2

log
pθ(xt−1 |xt)

q(xt−1 |xt, x0)
+ log pθ(x0 |x1)]

= 𝔼q[log pθ(x0 |x1)]−𝔼qD(q(xT |x0) p(xT)) −
T

∑
t=2

𝔼qD(q(xt−1 |xt, x0) pθ(xt−1 |xt))

Σ = I

𝔼q[log pθ(x0 |x1)] = −
1
2

𝔼q∥x0 − μθ,1(x1)∥2



Evidence Lower Bound
• Tidying up, we get 

 

 

• First term. We know that this is the squared loss of the mean predictor. 

• Assuming that  for simplicity, we have: 

 

• Second term. This does not involve any learnable parameters. 

• Thus, ignore!

𝔼q [log
pθ(xT)

q(xT |x0)
+

T

∑
t=2

log
pθ(xt−1 |xt)

q(xt−1 |xt, x0)
+ log pθ(x0 |x1)]

= 𝔼q[log pθ(x0 |x1)]−𝔼qD(q(xT |x0) p(xT))−
T

∑
t=2

𝔼qD(q(xt−1 |xt, x0) pθ(xt−1 |xt))

Σ = I

𝔼q[log pθ(x0 |x1)] = −
1
2

𝔼q∥x0 − μθ,1(x1)∥2



Evidence Lower Bound
 

• Third term. First, we look at the LHS of the KL divergence. 

• If we have the relationship 

 

 

           (we use the shorthands ) 

Then the following relationship holds (exercise; use Bayes’ theorem) 

−
1
2

∥x0 − μt,1(x1)∥2 −
T

∑
t=2

𝔼qD(q(xt−1 |xt, x0) pθ(xt−1 |xt))

xt−1 = ᾱt−1x0 + 1 − ᾱt−1ϵ

xt = αtxt−1 + 1 − αtϵ′ 

ᾱi = α1 ⋅ α2 ⋅ ⋯ ⋅ αi

q(xt−1 |xt, x0) = 𝒩 (
αt(1 − ᾱt−1)

1 − ᾱt
xt +

ᾱt−1(1 − αt)

1 − ᾱt
x0,

(1 − αt)(1 − ᾱt−1)

1 − ᾱt
I)



Evidence Lower Bound
 

• Now, the KL-divergence between Gaussians can be written simply as: 

 

• Plug this in to get the loss (ignoring the variance terms) 

 

−
1
2

∥x0 − μt,1(x1)∥2 −
T

∑
t=2

𝔼qD(q(xt−1 |xt, x0) pθ(xt−1 |xt))

D(𝒩(μ1, σ2
1 I) 𝒩(μ2, σ2

2 I)) = log
σ2

σ1
−

d
2

+
dσ2

1 + ∥μ1 − μ2∥2

2σ2
2

T

∑
i=2

μθ,t(xt) −
αt(1 − ᾱt−1)

1 − ᾱt
xt +

ᾱt−1(1 − αt)

1 − ᾱt
x0

2

=:
T

∑
i=1

∥μθ,t(xt) − μq(xt, x0)∥2



In a nutshell
• In a nutshell, training the reverse diffusion process is: 

• Sample an image  from the dataset 

• Sample  using  

• Pick a time : 

• Train  to minimize  

• Repeat

x0

x1, …, xT q( ⋅ )

t

μθ,t( ⋅ ) ∥μθ,t(xt) − μq(xt, x0)∥2



In a nutshell
• In a nutshell, training the reverse diffusion process is: 

• Sample an image  from the dataset 

• Sample  using  

• Pick a time : 

• Train  to minimize  

• Repeat 

• This is typically reparametrized as a noise prediction (i.e., residual of the prediction)

x0

x1, …, xT q( ⋅ )

t

μθ,t( ⋅ ) ∥μθ,t(xt) − μq(xt, x0)∥2



Prediction
• Generation is done by starting from a Gaussian distribution, then keep denoising…



Latent Diffusion
• We use diffusion in some latent space. 

• Combine with the ideas of VAE 

• Plus, we do some conditioning



Pros & Cons



More references
• https://huggingface.co/blog/annotated-diffusion 

• https://lilianweng.github.io/posts/2021-07-11-diffusion-models/ 

• https://arxiv.org/abs/2403.18103

https://huggingface.co/blog/annotated-diffusion
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://arxiv.org/abs/2403.18103


Cheers


