Vision: Generative Modeling - 2 EECE454 Intro. to Machine Learning Systems

- Generative Adversarial Nets
- Diffusion Models

Today

Limitations of VAEs

- **Cons.** Known to be less "sharp," with much noises
 - Clearly distinguishable from the real images
 - <u>Question</u>. Can we generate samples that are undistinguishable from real ones? ullet

- Idea. Explicitly train for "hard to distinguish" properties, by training a distinguisher together
 - View generative process as a two-player game •
 - <u>Generator</u>. Tries to fool the discriminator
 - <u>Discriminator</u>. Tries to distinguish the real / fake images

- **Training.** Jointly train the generator and discriminator
 - <u>Objective</u>. Minimax function ullet

$$\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{\mathbf{x} \sim \hat{p}} \left| \log D_{\theta_d}(\mathbf{x}) + \mathbb{E}_{\mathbf{z} \sim p(z)} \right| \log(1 - D_{\theta_d} \circ G_{\theta_g}(z)) \right]$$

Discriminator declares
real image to be real Discriminator declares
fake image to be fake

- Discriminator outputs the likelihood of

$$D\left(p_{\theta} \left\| \frac{\hat{p} + p_{\theta}}{2} \right) + D\left(\hat{p} \left\| \frac{\hat{p} + p_{\theta}}{2} \right)\right)$$

3

being real
$$D_{\theta_d}(\mathbf{x}) \in [0,1]$$

• This training objective is actually equivalent to the Jensen-Shannon divergence

• Architecture. Generator uses convolutional layers, of course.

Results

• Such training can give very sharp images

Conditional GAN

- Idea. Add class/text information to the latent code
 - Generate realistic images under specific conditions

Conditional GAN

Conditional GAN

Input

Van Gogh

Cezanne

Pitfalls

- Training GANs is known to be a very unstable procedure
 - If the discriminator works too well, the generator gives up learning
 - If the generator works too well, the discriminator cannot find meaningful patterns

Pitfalls

As a result, overfit to few good solutions (called "mode collapse")

S	4	3	V?	۰.	z	V	ंभ	8	ŝ	7	4	9	9	Į
Ģ	1	4	Ŧ	4	5	5	Y	4	ł	0	0	Ļ	4	5
V2	3	Ģ	?	Ģ	5	?	Z	Ģ	0	£1	0	P		Į
4	2	1.	I	3	7	3	6	0	0	L	3	3	7	5
1	5	Z	?	4	5	Ģ	6	ų,	5	ę	8		\$	9
5	B	4	"	6	5	Z	1	7	ę	0	1		5	5
11	Y	3	~	1	3	ş	5	1	Ŧ	T	5	\mathcal{O}	5	F
(?	Ģ	ç	?~	T.	4	T.	~ {	0	ş	7	!	S	S,	5
ţ.	,Ê	,Ê	ŧÊ.	ŧ₽.	,Ê	,fi	,Ê	LI	L	21	21	21	21	2
ţ.	,Ê	,ª	t,	÷.	,Ê	ţ.	,Ê	L	L	L	L	L	L	L
ት ት	H. H.	H H	H. H.	ħ. ħ.	14 14	H. H.	14 H	レレ	とし	とし	レレ	とし	とし	とし
Th. Th. Th.	F. F. F.	H. H. H.	H. H. H.	ት ት ት	H H H	Th. Th. Th.	** ** **	レレレレ	レレレレ	レレレレ	レレレレ	レレレレ	レレレレ	ししし
ት ት ት ት	H. H. H. H.	H. H. H. H.	H. H. H. H.	ት ት ት	** ** ** **	The The The The	** ** **	レレレレレ	レレレレレ	レレレレレ	レレレレレ	レレレレレ	レレレレレ	しししし
Fu Fu Fu Fu Fu	** ** ** **	** ** ** **	** ** ** **	F. F. F. F. F.	** ** ** **	The The The The The	** ** ** **	レレレレレレ	レレレレレ	レレレレレレ	レレレレレ	レレレレレレ	ししししし	ししししし
The The The The The	** ** ** ** **	** ** ** **	** ** ** ** **	F. F. F. F. F. F.	** ** ** ** **	** ** ** ** **	** ** ** ** **	レレレレレレレ	レレレレレレ	レレレレレレレ	レレレレレレ	レレレレレレレ	しししししし	しししししし

10k steps

20k steps

50K steps

100k steps

• Recall: VAEs. A decoder $p_{\theta}(\mathbf{x} \mid \mathbf{z})$ that generates samples from a code $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, I_k)$, such that

- <u>Problem</u>. To train such model, we needed a good inverse map $p_{\theta}(\mathbf{z} \mid \mathbf{x})$

VAES

 $p_{\text{data}}(\mathbf{x}) \approx p_{\theta}(\mathbf{x})$

VAES

Recall: VAEs. A decoder $p_{\theta}(\mathbf{x} \mid \mathbf{z})$ that generates samples from a code $\mathbf{z} \sim \mathcal{N}(0, I_k)$, such that

- <u>Problem</u>. To train such model, we needed a good inverse map $p_{\theta}(\mathbf{z} \mid \mathbf{x})$
- Idea. Jointly train an encoder, which generates Gaussians from inputs ullet
 - As the "distribution of images" is very complicated, maybe our neural nets have too low capacity to do this in a single forward...

 $p_{\text{data}}(\mathbf{x}) \approx p_{\theta}(\mathbf{x})$

- - Add Gaussian noise to the input, gradually:

• Observation. Another natural way to generate Gaussian-like distribution from inputs (i.e., encode)

- - Add Gaussian noise to the input, gradually:
 - Sample the data \mathbf{X}_{t} from the distribution

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}\left(\mathbf{x}_t | \sqrt{\alpha_t} \mathbf{x}_{t-1}, (1 - \alpha_t)I\right)$$

• That is, we do $\mathbf{x} \mapsto \sqrt{\alpha_t} \mathbf{x} + \sqrt{1 - \alpha_t} \epsilon$ (We put scaling to preserve the ℓ_2 norm)

Observation. Another natural way to generate Gaussian-like distribution from inputs (i.e., encode)

$$\epsilon, \quad \epsilon \sim \mathcal{N}(0,I)$$

- - Add Gaussian noise to the input, gradually:
 - Sample the data \mathbf{X}_{t} from the distribution

$$q(\mathbf{x}_t | \mathbf{x}_{t-1}) = \mathcal{N}$$

- That is, we do $\mathbf{x} \mapsto \sqrt{\alpha_t} \mathbf{x} + \sqrt{1 \alpha_t} \epsilon$, $\epsilon \sim \mathcal{N}(0, I)$ (We put scaling to preserve the ℓ_2 norm)
- Idea. Let this be our (probabilistic) encoder!
 - <u>Question</u>. How can we train a decoder?

Observation. Another natural way to generate Gaussian-like distribution from inputs (i.e., encode)

 $\left(\mathbf{x}_{t} | \sqrt{\alpha_{t}} \mathbf{x}_{t-1}, (1 - \alpha_{t})I\right)$

• Decoder. Train a reverse model $p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)$ which approximates $q(\mathbf{x}_{t-1} | \mathbf{x}_t)$

- **Decoder.** Train a reverse model $p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t})$ which approximates $q(\mathbf{x}_{t-1} \mid \mathbf{x}_{t})$
 - This reverse model will be parameterized as a Gaussian:

$$p_{\theta}(\mathbf{x}_{t-1} \,|\, \mathbf{x}_t) = \mathcal{N}$$

- That is, we train the mean predictor and variance predictor. •
 - Dependent on the time *t*

 $\mathcal{V}(\mathbf{x}_{t-1} | \mu_{\theta,t}(\mathbf{x}_t), \Sigma_{\theta,t}(\mathbf{x}_t)))$

Training a Diffusion Model

• Training. Suppose that we draw some sample sequence $\mathbf{x}_0, \ldots, \mathbf{x}_T$ using the forward diffusion:

 $q(\mathbf{x}_{0:T}) = q(\mathbf{x}_0) \prod q(\mathbf{x}_t | \mathbf{x}_{t-1})$ t=1

Training a Diffusion Model

Training. Suppose that we draw some sample sequence $\mathbf{x}_0, \ldots, \mathbf{x}_T$ using the forward diffusion:

 $q(\mathbf{X}_{0.T}) = q($

Then, train to maximize the log probability of generating the real image

where the reverse diffusion process is given as:

 $p_{\theta}(\mathbf{x}_{0 \cdot T}) = p_{\theta}(\mathbf{x}_{0 \cdot T})$

$$(\mathbf{x}_0) \prod_{t=1}^{T} q(\mathbf{x}_t | \mathbf{x}_{t-1})$$

 $\mathbb{E}_{q(\mathbf{x}_0)} \left| \log p_{\theta}(\mathbf{x}_0) \right|$

$$(\mathbf{x}_T) \prod_{t=1}^T p_{\theta}(\mathbf{x}_{t-1} \,|\, \mathbf{x}_t).$$

• As in VAE, we use the Jensen's inequality.

$$\mathbb{E}_{q(\mathbf{x}_{0})} \left[\log p_{\theta}(\mathbf{x}_{0}) \right] = \mathbb{E}_{q(\mathbf{x}_{0})} \left[\log \left(\int p_{\theta}(\mathbf{x}_{0:T}) \right) \right]$$
$$= \mathbb{E}_{q(\mathbf{x}_{0})} \left[\log \left(\int q(\mathbf{x}_{1:T} | \mathbf{x}_{0}) \right) \right]$$
$$= \mathbb{E}_{q(\mathbf{x}_{0})} \left[\log \mathbb{E}_{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \left[\frac{1}{q(\mathbf{x}_{1:T} | \mathbf{x}_{0})} \right] \right]$$

• The ELBO is further decomposed into:

$$\frac{\prod_{t=1}^{T} p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})}{\prod_{t=1}^{T} q(\mathbf{x}_{t} | \mathbf{x}_{t-1})} \right]$$

+
$$\sum_{t=1}^{T} \log \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})}{q(\mathbf{x}_{t} | \mathbf{x}_{t-1})} \right]$$

+
$$\sum_{t=2}^{T} \log \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})}{q(\mathbf{x}_{t} | \mathbf{x}_{t-1})} + \log \frac{p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1})}{q(\mathbf{x}_{1} | \mathbf{x}_{0})} \right]$$

• Do additional conditioning

$$\mathbb{E}_{q} \left[\log p_{\theta}(\mathbf{x}_{T}) + \sum_{t=2}^{T} \log \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})}{q(\mathbf{x}_{t} | \mathbf{x}_{t-1})} + \log \frac{p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1})}{q(\mathbf{x}_{1} | \mathbf{x}_{0})} \right]$$
$$= \mathbb{E}_{q} \left[\log p_{\theta}(\mathbf{x}_{T}) + \sum_{t=2}^{T} \log \left(\frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} \cdot \frac{q(\mathbf{x}_{t-1} | \mathbf{x}_{0})}{q(\mathbf{x}_{t} | \mathbf{x}_{0})} \right) + \log \frac{p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1})}{q(\mathbf{x}_{1} | \mathbf{x}_{0})} \right]$$

$$q(\mathbf{x}_{t} | \mathbf{x}_{t-1}) = q(\mathbf{x}_{t} | \mathbf{x}_{t-1}, \mathbf{x}_{0})$$

$$= \frac{q(\mathbf{x}_{t}, \mathbf{x}_{t-1} | \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{0})}$$

$$= \frac{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})q}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})q}$$

 $\frac{q(\mathbf{x}_t \mid \mathbf{x}_0)}{\mathbf{x}_0}$

 Do additional conditioning $\mathbb{E}_{q}\left[\log p_{\theta}(\mathbf{x}_{T}) + \sum_{t=2}^{T}\log \frac{p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t})}{q(\mathbf{x}_{t} \mid \mathbf{x}_{t-1})} + \log \frac{p_{\theta}(\mathbf{x}_{0} \mid \mathbf{x}_{1})}{q(\mathbf{x}_{1} \mid \mathbf{x}_{0})}\right]$ $= \mathbb{E}_q \log p_{\theta}(\mathbf{x}_T) + \sum_{t=2}^T \log \left(\frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)}{q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)} \right)$ $= \mathbb{E}_{q} \left| \log p_{\theta}(\mathbf{x}_{T}) + \sum_{t=2}^{T} \log \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \sum_{t=2}^{T} \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0$ $= \mathbb{E}_q \left[\log \frac{p_{\theta}(\mathbf{x}_T)}{q(\mathbf{x}_T | \mathbf{x}_0)} + \sum_{t=2}^T \log \frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_t)}{q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0)} \right]$

$$\frac{q(\mathbf{x}_{t-1} | \mathbf{x}_0)}{q(\mathbf{x}_t | \mathbf{x}_0)} + \log \frac{p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1)}{q(\mathbf{x}_1 | \mathbf{x}_0)} \right]$$

$$\sum_{k=2}^{T} \log \frac{q(\mathbf{x}_{t-1} | \mathbf{x}_0)}{q(\mathbf{x}_t | \mathbf{x}_0)} + \log \frac{p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1)}{q(\mathbf{x}_1 | \mathbf{x}_0)} \right]$$

$$+ \log p_{\theta}(\mathbf{x}_0 | \mathbf{x}_1)$$

• Tidying up, we get $\mathbb{E}_{q}\left[\log\frac{p_{\theta}(\mathbf{x}_{T})}{q(\mathbf{x}_{T} | \mathbf{x}_{0})} + \sum_{t=2}^{T}\log\frac{p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})}{q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0})} + \log p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1})\right]$ $= \mathbb{E}_{q}[\log p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1})] - \mathbb{E}_{q}D\Big(q(\mathbf{x}_{T} | \mathbf{x}_{0}) \| p(\mathbf{x}_{T})\Big) - \sum_{l=1}^{I} \mathbb{E}_{q}D\Big(q(\mathbf{x}_{l-1} | \mathbf{x}_{l}, \mathbf{x}_{0}) \| p_{\theta}(\mathbf{x}_{l-1} | \mathbf{x}_{l})\Big)$

- Tidying up, we get $\mathbb{E}_{q}\left[\log\frac{p_{\theta}(\mathbf{x}_{T})}{q(\mathbf{x}_{T} \mid \mathbf{x}_{0})} + \sum_{t=2}^{T}\log\frac{p_{\theta}(\mathbf{x}_{t-1} \mid \mathbf{x}_{t})}{q(\mathbf{x}_{t-1} \mid \mathbf{x}_{t}, \mathbf{x}_{0})} + \log p_{\theta}(\mathbf{x}_{0} \mid \mathbf{x}_{1})\right]$ $= \mathbb{E}_{q}[\log p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1})] - \mathbb{E}_{q}D\left(q(\mathbf{x}_{T} | \mathbf{x}_{0}) \| p(\mathbf{x}_{T})\right) - \sum_{q} \mathbb{E}_{q}D\left(q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0}) \| p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})\right)$
- **First term.** We know that this is the squared loss of the mean predictor.
 - Assuming that $\Sigma = I$ for simplicity, we have:
 - $\mathbb{E}_{q}[\log p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1})] =$

$$= -\frac{1}{2} \mathbb{E}_q \|\mathbf{x}_0 - \boldsymbol{\mu}_{\theta,1}(\mathbf{x}_1)\|^2$$

- Tidying up, we get $\mathbb{E}_{q}\left[\log\frac{p_{\theta}(\mathbf{x}_{T})}{q(\mathbf{x}_{T}|\mathbf{x}_{0})} + \sum_{t=2}^{T}\log\frac{p_{\theta}(\mathbf{x}_{t-1}|\mathbf{x}_{t})}{q(\mathbf{x}_{t-1}|\mathbf{x}_{t},\mathbf{x}_{0})} + \log p_{\theta}(\mathbf{x}_{0}|\mathbf{x}_{1})\right]$ $= \mathbb{E}_{q}[\log p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1})] - \mathbb{E}_{q}D\left(q(\mathbf{x}_{T} | \mathbf{x}_{0}) \| p(\mathbf{x}_{T})\right) - \sum_{t} \mathbb{E}_{q}D\left(q(\mathbf{x}_{t-1} | \mathbf{x}_{t}, \mathbf{x}_{0}) \| p_{\theta}(\mathbf{x}_{t-1} | \mathbf{x}_{t})\right)$
- First term. We know that this is the squared loss of the mean predictor.
 - Assuming that $\Sigma = I$ for simplicity, we have:

- **Second term.** This does not involve any learnable parameters.
 - Thus, ignore!

 $\mathbb{E}_{q}[\log p_{\theta}(\mathbf{x}_{0} | \mathbf{x}_{1})] = -\frac{1}{2}\mathbb{E}_{q}||\mathbf{x}_{0} - \mu_{\theta,1}(\mathbf{x}_{1})||^{2}$

$$-\frac{1}{2} \|\mathbf{x}_0 - \boldsymbol{\mu}_{t,1}(\mathbf{x}_1)\|^2 - \sum_{t=2}^{T} \mathbb{E}$$
• **Third term.** First, we look at the LHS of the KL of

• If we have the relationship

 $\mathbf{x}_{t-1} = \sqrt{\bar{\alpha}_{t-1}}$ $\mathbf{x}_t = \sqrt{\alpha_t} \mathbf{x}_t$ (we use the shorthands $\bar{\alpha}_i = \alpha_1 \cdot \alpha_2 \cdot \cdots \cdot$ Then the following relationship holds (exercise; use Bayes' theorem) $\sqrt{\alpha_t}(1-\bar{\alpha}_{t-1})$ $q(\mathbf{x}_{t-1} | \mathbf{x}_t, \mathbf{x}_0) = \mathcal{N} \left(\begin{array}{c} \mathbf{v} & \mathbf{v} \\ 1 & -\bar{\alpha}_t \end{array} \right)$

$$\mathsf{E}_{q} D\Big(q(\mathbf{x}_{t-1} \,|\, \mathbf{x}_{t}, \mathbf{x}_{0}) \,\Big|\, p_{\theta}(\mathbf{x}_{t-1} \,|\, \mathbf{x}_{t})\Big)$$

KL divergence.

$$\overline{A}_{t-1} \mathbf{x}_{0} + \sqrt{1 - \bar{\alpha}_{t-1}} \epsilon$$
$$\overline{A}_{t-1} + \sqrt{1 - \alpha_{t}} \epsilon'$$
$$\alpha_{i}$$

$$\left(-\mathbf{x}_t + \frac{\sqrt{\bar{\alpha}_{t-1}}(1-\alpha_t)}{1-\bar{\alpha}_t} \mathbf{x}_0, \frac{(1-\alpha_t)(1-\sqrt{\bar{\alpha}_{t-1}})}{1-\bar{\alpha}_t} I \right)$$

$$-\frac{1}{2} \|\mathbf{x}_0 - \mu_{t,1}(\mathbf{x}_1)\|^2 - \sum_{t=2}^T \mathbb{E}_q D\Big(q(\mathbf{x}_{t-1} \,|\, \mathbf{x}_t, \mathbf{x}_0) \Big\| p_\theta(\mathbf{x}_{t-1} \,|\, \mathbf{x}_t)\Big)$$

• Now, the KL-divergence between Gaussians can be written simply as:

$$D\left(\mathcal{N}(\mu_1, \sigma_1^2 I) \| \mathcal{N}(\mu_2, \sigma_2^2 I)\right) = \log \frac{\sigma_2}{\sigma_1} - \frac{d}{2} + \frac{d\sigma_1^2 + \|\mu_1 - \mu_2\|^2}{2\sigma_2^2}$$

• Plug this in to get the loss (ignoring the variance terms)

$$\sum_{i=2}^{T} \left\| \mu_{\theta,t}(\mathbf{x}_{t}) - \frac{\sqrt{\alpha_{t}}(1 - \bar{\alpha}_{t-1})}{1 - \bar{\alpha}_{t}} \mathbf{x}_{t} + \frac{\sqrt{\bar{\alpha}_{t-1}}(1 - \alpha_{t})}{1 - \bar{\alpha}_{t}} \mathbf{x}_{0} \right\|^{2}$$
$$=: \sum_{i=1}^{T} \|\mu_{\theta,t}(\mathbf{x}_{t}) - \mu_{q}(\mathbf{x}_{t}, \mathbf{x}_{0})\|^{2}$$

In a nutshell

- In a nutshell, training the reverse diffusion process is:
 - Sample an image \mathbf{x}_0 from the dataset
 - Sample $\mathbf{x}_1, \ldots, \mathbf{x}_T$ using $q(\cdot)$
 - Pick a time *t*:
 - Train $\mu_{\theta,t}(\cdot)$ to minimize $\|\mu_{\theta,t}(\mathbf{x}_t) \mu_q(\mathbf{x}_t, \mathbf{x}_0)\|^2$
 - Repeat

In a nutshell

- - Sample an ima
 1: repeat

 - - Train $\mu_{\theta,t}(\cdot$
 - Repeat

- In a nutshell, trainin Algorithm 1 Training

 - Sample $\mathbf{x}_1, \ldots, 2$: $\mathbf{x}_0 \sim q(\mathbf{x}_0)$
 - Pick a time t: 4: $t \sim \text{Uniform}(\{1, \dots, T\})$

 - 5: Take gradient descent step on $\nabla_{\theta} \left\| \boldsymbol{\epsilon} - \boldsymbol{\epsilon}_{\theta} (\sqrt{\bar{\alpha}_t} \mathbf{x}_0 + \sqrt{1 - \bar{\alpha}_t} \boldsymbol{\epsilon}, t) \right\|^2$
 - 6: until converged
- This is typically reparametrized as a noise prediction (i.e., residual of the prediction)

Prediction

• Generation is done by starting from a Gaussian distribution, then keep denoising...

Algorithm 2 Sampling

1:
$$\mathbf{x}_T \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$$

2: for $t = T, \dots, 1$ do
3: $\mathbf{z} \sim \mathcal{N}(\mathbf{0}, \mathbf{I})$ if $t > 1$
4: $\mathbf{x}_{t-1} = \frac{1}{\sqrt{\alpha_t}} \left(\mathbf{x}_t - \frac{1}{\sqrt{\alpha_t}} \right)$

6: return \mathbf{x}_0

> 1, else $\mathbf{z} = \mathbf{0}$ - $\frac{1-\alpha_t}{\sqrt{1-\bar{\alpha}_t}} \boldsymbol{\epsilon}_{\theta}(\mathbf{x}_t, t) + \sigma_t \mathbf{z}$

- We use diffusion in some latent space.
 - Combine with the ideas of VAE
- Plus, we do some conditioning

Latent Diffusion

Generative Adversarial Networks

Variational Autoencoders, Normalizing Flows

More references

- <u>https://huggingface.co/blog/annotated-diffusion</u>
- <u>https://lilianweng.github.io/posts/2021-07-11-diffusion-models/</u>
- <u>https://arxiv.org/abs/2403.18103</u>

Cheers