
Fall 2024

EECE454 Intro. to Machine Learning Systems

Vision:
Generative Modeling - 2

Today
• Generative Adversarial Nets

• Diffusion Models

Generative Adversarial Nets

Limitations of VAEs
• Cons. Known to be less “sharp,” with much noises

• Clearly distinguishable from the real images

• Question. Can we generate samples that are undistinguishable from real ones?

Generative Adversarial Nets
• Idea. Explicitly train for “hard to distinguish” properties, by training a distinguisher together

• View generative process as a two-player game

• Generator. Tries to fool the discriminator

• Discriminator. Tries to distinguish the real / fake images

Dθ(x) = {1 ⋯ if fake
0 ⋯ if real

Generative Adversarial Nets
• Training. Jointly train the generator and discriminator

• Objective. Minimax function

• Discriminator outputs the likelihood of being real

• This training objective is actually equivalent to the Jensen-Shannon divergence

min
θg

max
θd

[𝔼x∼ ̂p log Dθd
(x) + 𝔼z∼p(z) log(1 − Dθd

∘ Gθg
(z))]

Dθd
(x) ∈ [0,1]

D (pθ
̂p + pθ

2) + D (̂p
̂p + pθ

2)

Discriminator declares
real image to be real

Discriminator declares
fake image to be fake

Generative Adversarial Nets

Generative Adversarial Nets
• Architecture. Generator uses convolutional layers, of course.

• Such training can give very sharp images

Results

• Idea. Add class/text information to the latent code

• Generate realistic images under specific conditions

Conditional GAN

Conditional GAN

• Training GANs is known to be a very unstable procedure

• If the discriminator works too well, the generator gives up learning

• If the generator works too well, the discriminator cannot find meaningful patterns

Pitfalls

• As a result, overfit to few good solutions (called “mode collapse”)

Pitfalls

Diffusion models

VAEs
• Recall: VAEs. A decoder that generates samples from a code , such that

• Problem. To train such model, we needed a good inverse map

pθ(x |z) z ∼ 𝒩(0,Ik)

pdata(x) ≈ pθ(x)

pθ(z |x)

VAEs
• Recall: VAEs. A decoder that generates samples from a code , such that

• Problem. To train such model, we needed a good inverse map

• Idea. Jointly train an encoder, which generates Gaussians from inputs

• As the “distribution of images” is very complicated, maybe our neural nets have too low
capacity to do this in a single forward…

pθ(x |z) z ∼ 𝒩(0,Ik)

pdata(x) ≈ pθ(x)

pθ(z |x)

Diffusion models
• Observation. Another natural way to generate Gaussian-like distribution from inputs (i.e., encode)

• Add Gaussian noise to the input, gradually:

Diffusion models
• Observation. Another natural way to generate Gaussian-like distribution from inputs (i.e., encode)

• Add Gaussian noise to the input, gradually:

• Sample the data from the distribution

• That is, we do

(We put scaling to preserve the norm)

xt

q(xt |xt−1) = 𝒩 (xt | αtxt−1, (1 − αt)I)
x ↦ αtx + 1 − αtϵ, ϵ ∼ 𝒩(0,I)

ℓ2

Diffusion models
• Observation. Another natural way to generate Gaussian-like distribution from inputs (i.e., encode)

• Add Gaussian noise to the input, gradually:

• Sample the data from the distribution

• That is, we do

(We put scaling to preserve the norm)

• Idea. Let this be our (probabilistic) encoder!

• Question. How can we train a decoder?

xt

q(xt |xt−1) = 𝒩 (xt | αtxt−1, (1 − αt)I)
x ↦ αtx + 1 − αtϵ, ϵ ∼ 𝒩(0,I)

ℓ2

Diffusion models
• Decoder. Train a reverse model which approximates pθ(xt−1 |xt) q(xt−1 |xt)

Diffusion models
• Decoder. Train a reverse model which approximates

• This reverse model will be parameterized as a Gaussian:

• That is, we train the mean predictor and variance predictor.

• Dependent on the time

pθ(xt−1 |xt) q(xt−1 |xt)

pθ(xt−1 |xt) = 𝒩(xt−1 |μθ,t(xt), Σθ,t(xt))

t

Training a Diffusion Model
• Training. Suppose that we draw some sample sequence using the forward diffusion: x0, …, xT

q(x0:T) = q(x0)
T

∏
t=1

q(xt |xt−1)

Training a Diffusion Model
• Training. Suppose that we draw some sample sequence using the forward diffusion:

 Then, train to maximize the log probability of generating the real image

 where the reverse diffusion process is given as:

.

x0, …, xT

q(x0:T) = q(x0)
T

∏
t=1

q(xt |xt−1)

𝔼q(x0) [log pθ(x0)]

pθ(x0:T) = pθ(xT)
T

∏
t=1

pθ(xt−1 |xt)

Evidence Lower Bound
• As in VAE, we use the Jensen’s inequality.

𝔼q(x0) [log pθ(x0)] = 𝔼q(x0) [log (∫ pθ(x0:T) dx1:T)]
= 𝔼q(x0) [log (∫ q(x1:T |x0)

pθ(x0:T)
q(x1:T |x0)

dx1:T)]
= 𝔼q(x0) [log 𝔼q(x1:T|x0) [pθ(x0:T)

q(x1:T |x0)]]
≥ 𝔼q(x0:T) [log

pθ(x0:T)
q(x1:T |x0)]

Evidence Lower Bound
• The ELBO is further decomposed into:

𝔼q(x0:T) [log
pθ(x0:T)

q(x1:T |x0)] = 𝔼q log
pθ(xT)∏T

t=1 pθ(xt−1 |xt)

∏T
t=1 q(xt |xt−1)

= 𝔼q [log pθ(xT) +
T

∑
t=1

log
pθ(xt−1 |xt)
q(xt |xt−1)]

= 𝔼q [log pθ(xT) +
T

∑
t=2

log
pθ(xt−1 |xt)
q(xt |xt−1)

+ log
pθ(x0 |x1)
q(x1 |x0)]

Evidence Lower Bound
• Do additional conditioning

 𝔼q [log pθ(xT) +
T

∑
t=2

log
pθ(xt−1 |xt)
q(xt |xt−1)

+ log
pθ(x0 |x1)
q(x1 |x0)]

= 𝔼q [log pθ(xT) +
T

∑
t=2

log (pθ(xt−1 |xt)
q(xt−1 |xt, x0)

⋅
q(xt−1 |x0)
q(xt |x0)) + log

pθ(x0 |x1)
q(x1 |x0)]

q(xt |xt−1) = q(xt |xt−1, x0)

=
q(xt, xt−1 |x0)

q(xt−1 |x0)

=
q(xt−1 |xt, x0)q(xt |x0)

q(xt−1 |x0)

Evidence Lower Bound
• Do additional conditioning

𝔼q [log pθ(xT) +
T

∑
t=2

log
pθ(xt−1 |xt)
q(xt |xt−1)

+ log
pθ(x0 |x1)
q(x1 |x0)]

= 𝔼q [log pθ(xT) +
T

∑
t=2

log (pθ(xt−1 |xt)
q(xt−1 |xt, x0)

⋅
q(xt−1 |x0)
q(xt |x0)) + log

pθ(x0 |x1)
q(x1 |x0)]

= 𝔼q [log pθ(xT) +
T

∑
t=2

log
pθ(xt−1 |xt)

q(xt−1 |xt, x0)
+

T

∑
t=2

log
q(xt−1 |x0)
q(xt |x0)

+ log
pθ(x0 |x1)
q(x1 |x0)]

= 𝔼q [log
pθ(xT)

q(xT |x0)
+

T

∑
t=2

log
pθ(xt−1 |xt)

q(xt−1 |xt, x0)
+ log pθ(x0 |x1)]

Evidence Lower Bound
• Tidying up, we get

𝔼q [log
pθ(xT)

q(xT |x0)
+

T

∑
t=2

log
pθ(xt−1 |xt)

q(xt−1 |xt, x0)
+ log pθ(x0 |x1)]

= 𝔼q[log pθ(x0 |x1)] − 𝔼qD(q(xT |x0) p(xT)) −
T

∑
t=2

𝔼qD(q(xt−1 |xt, x0) pθ(xt−1 |xt))

Evidence Lower Bound
• Tidying up, we get

• First term. We know that this is the squared loss of the mean predictor.

• Assuming that for simplicity, we have:

𝔼q [log
pθ(xT)

q(xT |x0)
+

T

∑
t=2

log
pθ(xt−1 |xt)

q(xt−1 |xt, x0)
+ log pθ(x0 |x1)]

= 𝔼q[log pθ(x0 |x1)]−𝔼qD(q(xT |x0) p(xT)) −
T

∑
t=2

𝔼qD(q(xt−1 |xt, x0) pθ(xt−1 |xt))

Σ = I

𝔼q[log pθ(x0 |x1)] = −
1
2

𝔼q∥x0 − μθ,1(x1)∥2

Evidence Lower Bound
• Tidying up, we get

• First term. We know that this is the squared loss of the mean predictor.

• Assuming that for simplicity, we have:

• Second term. This does not involve any learnable parameters.

• Thus, ignore!

𝔼q [log
pθ(xT)

q(xT |x0)
+

T

∑
t=2

log
pθ(xt−1 |xt)

q(xt−1 |xt, x0)
+ log pθ(x0 |x1)]

= 𝔼q[log pθ(x0 |x1)]−𝔼qD(q(xT |x0) p(xT))−
T

∑
t=2

𝔼qD(q(xt−1 |xt, x0) pθ(xt−1 |xt))

Σ = I

𝔼q[log pθ(x0 |x1)] = −
1
2

𝔼q∥x0 − μθ,1(x1)∥2

Evidence Lower Bound

• Third term. First, we look at the LHS of the KL divergence.

• If we have the relationship

 (we use the shorthands)

Then the following relationship holds (exercise; use Bayes’ theorem)

−
1
2

∥x0 − μt,1(x1)∥2 −
T

∑
t=2

𝔼qD(q(xt−1 |xt, x0) pθ(xt−1 |xt))

xt−1 = ᾱt−1x0 + 1 − ᾱt−1ϵ

xt = αtxt−1 + 1 − αtϵ′

ᾱi = α1 ⋅ α2 ⋅ ⋯ ⋅ αi

q(xt−1 |xt, x0) = 𝒩 (
αt(1 − ᾱt−1)

1 − ᾱt
xt +

ᾱt−1(1 − αt)

1 − ᾱt
x0,

(1 − αt)(1 − ᾱt−1)

1 − ᾱt
I)

Evidence Lower Bound

• Now, the KL-divergence between Gaussians can be written simply as:

• Plug this in to get the loss (ignoring the variance terms)

−
1
2

∥x0 − μt,1(x1)∥2 −
T

∑
t=2

𝔼qD(q(xt−1 |xt, x0) pθ(xt−1 |xt))

D(𝒩(μ1, σ2
1 I) 𝒩(μ2, σ2

2 I)) = log
σ2

σ1
−

d
2

+
dσ2

1 + ∥μ1 − μ2∥2

2σ2
2

T

∑
i=2

μθ,t(xt) −
αt(1 − ᾱt−1)

1 − ᾱt
xt +

ᾱt−1(1 − αt)

1 − ᾱt
x0

2

=:
T

∑
i=1

∥μθ,t(xt) − μq(xt, x0)∥2

In a nutshell
• In a nutshell, training the reverse diffusion process is:

• Sample an image from the dataset

• Sample using

• Pick a time :

• Train to minimize

• Repeat

x0

x1, …, xT q(⋅)

t

μθ,t(⋅) ∥μθ,t(xt) − μq(xt, x0)∥2

In a nutshell
• In a nutshell, training the reverse diffusion process is:

• Sample an image from the dataset

• Sample using

• Pick a time :

• Train to minimize

• Repeat

• This is typically reparametrized as a noise prediction (i.e., residual of the prediction)

x0

x1, …, xT q(⋅)

t

μθ,t(⋅) ∥μθ,t(xt) − μq(xt, x0)∥2

Prediction
• Generation is done by starting from a Gaussian distribution, then keep denoising…

Latent Diffusion
• We use diffusion in some latent space.

• Combine with the ideas of VAE

• Plus, we do some conditioning

Pros & Cons

More references
• https://huggingface.co/blog/annotated-diffusion

• https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

• https://arxiv.org/abs/2403.18103

https://huggingface.co/blog/annotated-diffusion
https://lilianweng.github.io/posts/2021-07-11-diffusion-models/
https://arxiv.org/abs/2403.18103

Cheers

