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ATHEMATICS o
Today WACHINE LEARNING

. Brief recap of linear algebro
- MML book: Chapter 1 — Chapter 6

« D2DL: Section 2.3. — 2.6.

. https://cs?229 stanford.edu/lectures-spring2022/cs229-linear_algebra_review.padf

. https:// www.3bluelbrown.com/topics/linear-algebra

- Next week. Probability & optimization


https://cs229.stanford.edu/lectures-spring2022/cs229-linear_algebra_review.pdf
https://www.3blue1brown.com/topics/linear-algebra

MATHEMATICS o1
Today MACHINE LEARNING

. Disclaimer. Boring & incomplete; use the slides as a guide for self-study


https://cs229.stanford.edu/lectures-spring2022/cs229-linear_algebra_review.pdf
https://www.3blue1brown.com/topics/linear-algebra

Experimental teature

- For the sake of not-being-boring, let us go through this session with Quiz-like format.

. Login to slido.com with your mobile

- Enter the code #1794667

. Alternatively, use the QR code



http://slido.com

Why matrices?



Why matrices?

- Matrices are the simplest model of the relationship between multidimensional input & output.
- Used as a building block of more elaborate systems, e.g., neural nets.

- Used for characterizing models, data, ...

Hidden Layers :
| model parameter (or “internal state”)
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Vectors anad Matrices



Formalisms

Symbol Typical meaning

a.b.c,a, 3.7 Scalars are lowercase

T, Y,z Vectors are bold lowercase

A B,.C Matrices are bold uppercase
r . A' Transpose of a vector or matrix
A Inverse of a matrix

(x,y) Inner product of  and y

x'y Dot product of  and y

B = (b,,b,,b;) (Ordered) tuple

B = |b;,b,,b;] Matrix of column vectors stacked horizontally
B ={b,,by,bs} Set of vectors (unordered)

Z.,IN Integers and natural numbers, respectively
R,C Real and complex numbers, respectively

R" n-dimensional vector space of real numbers



Formalisms

Symbol Typical meaning
Va Universal quantifier: for all x
dx Existential quantifier: there exists x
a .= a is defined as b
a =: b is defined as a
a X b a is proportional to b, i.e., a = constant - b
gof Function composition: “g after f”
= If and only if
= Implies
A, C Sets
ac A a is an element of set A
0 Empty set

A\B

A without B: the set of elements in A but not in B



Formalisms

Symbol Typical meaning

I . Identity matrix of size m X m

0,1 Matrix of zeros of size m X n

| I Matrix of ones of size m X n

e; Standard/canonical vector (where 2 is the component that is 1)

dim Dimensionality of vector space

rk(A) Rank of matrix A

Im(P) Image of linear mapping P

ker(®) Kernel (null space) of a linear mapping ¢

span|b, | Span (generating set) of b,

tr(A) Trace of A

det(A) Determinant of A
: Absolute value or determinant (depending on context)
B Norm; Euclidean, unless specified

x|y Vectors x and y are orthogonal

V Vector space

% Orthogonal complement of vector space V



. Letthere be avectorX € |
Thisis ...

Quiz #1

" (bold lowercase)



Quiz #1

. Let there be a vector x € R" (bold lowercase)
Thisis ...

(a) (b)

X' =[x X X

We call this X transposed




QuiZ #2

. Let there be a matrix A € R"™" (bold uppercase)
Thisis ...

(a) (b)

di1 42 4

n
_ | 921 Yz 0 Ay A
Al Y92 " Ao



QuiZ #2

. Let there be a matrix A € R"™" (bold uppercase)
Thisis ...

m X 1 means 1 rows and 7 columns




Multiplications



Products of vectors

- There are two different types: Inner, and Quter

Inner product (a.k.a. dot product) Outer product
L A1 0 Ay
Ty — T
XY= 2 Wl Xy =
i=1 AmY1 0 AmVn
+ X andy to have same dimensions - Can have different dimensions
- You will use it on a daily basis . |ntuition: measuring alignedness of

each entries (scalar)
. Alternate notation: (X, y)

ntuition: alignedness of vectors




Matrix-Vector Multiplication

- Performing multiple inner products with row vectors

- Measuring alignedness of input with m reference vectors (some sort of dictionaries)

- W, - Wi X
Wx = X —
T T
- W, - WX



Matrix-Vector Multiplication

. Alternatively, we are taking a weighted sum of column vectors

. Inputs are recipes, columns are ingredients, and output is the food.

Wx = |W; = W IX =xW +-:-+xW,



MVM: System perspective

. The matrix A € R™" can be viewed as an axis transformation.

1 0
Wil =w Wl 2| =w
0

m‘ — Z
) .

n




Matrix-Matrix Multiplication

. LetA € R™"and B = R™P

+ Performing a matmul is equivalent to performing mp inner products

+ measuring alignedness between m reference vectors and p input signals

— al —| || | a/b, - ajb,
AB = .o b1 oos bp — ‘o
T T T
— a, - | | a,b, - a,b,



Matrix-Matrix Multiplication

. LetA € R™"and B = R™P

. Alternatively, performing n outer products

‘ ‘ T bl -
AB = |[a; - a, =ab; +--+ab,
| | L= Pn -



Matrix-Matrix Multiplication

. LetA € R™"and B = R™P

» Or p (or m) matrix-vector multiplications

| | - a/B -
AB = Abl Abp —



. To multiply A € R"™" g
how many scalar multip

ndB el

nxp

Quiz #3

ications do we need?



. To multiply A € R™" g
how many scalar multip

- Answer. mnp

Quiz #3

nd B € R™P

ications do we need?

R I
b, b,
:

I 1 | | |

- We do mp inner products

- Each inner product requires n multiplications.



Norms



Norm

. A measure of length: || - ||

. AfunctionR" - R

- Defined axiomatically by the following properties:

. Nonnegativity: [x]| > O
. Definiteness: IX] =0 x=10
. Absolute Homogeneity: |lex]|| = |c]| - [|x]]

. Triangle Inequality: I1x|| + [yl = ||x+ ¥



- ForavectorXx € |

Norm

. The &, norm: [|x][, = \/x12 + o 4 x?

. That s, HXH% =X 'X

.« TheZ;norm: ||x]||; = |x;| + -+ + | x|
1
. The Z,norm:  [[x]|,, = (\xl P+ - + | x, \p) P

. TheZ_norm: [|X||, = max |x;]
ie{l,....,n}



Quiz #4

. Let us define the quantity £, normas  ||X]||g = | X, \O + .+ \xn\o

. Assume that we use the convention QY = 0

. That is, the £y norm counts the number of nonzeros.

+ Question. Is this really a norm?



Quiz #4

- Answer. A formal proof as a homework :P



Column / Row / Null Space



Linear Combination

. The linear combination of k different vectors can be written as

/IIXI + *e + /Ika



Linear Combination

- The vectors Xy, ..., X, are called linearly independent whenever
/11X1+'°°+/1ka=O N /11=”'=/1k=0

« Thatis, no vector is a linear combination of the others.



Linear Combination

- The span is the set of all linear combinations

. Examp

Span({Xl, ’Xk}) — {/llxl + ee /Ika

e. R?is spanned by {[1,0]", [0,1]"}

A €

R, Vie [n]}



Basis

. The basis of a vector space Vis a minimal set A = {X, **+, X, } such that

span(A) =V

- Example. One possible choice of the basis of R?

1S

([1.3]",[4.1]")

- Property 1. Basis is linearly independent.

- Property 2. Adding any element to the basis breaks the linear independence.



Column Space

. The column space of a matrix A € R"™" s the space spanned by the column vectors of A

C(A) = {/Ila1+ w4ia |1LER, Vie [n]}

. A subspace of R™



Column Space

« One can also write recall...

C(A) ={Ax | x e R"}

=
e
[
=
=

A x =xw + -+ xw,

. Phvsical meaning. The set of outputs you can get from a model A

f the column space of your model does not contain the desired prediction outcomes,
nerhaps you should modity your model.




Row Space

. The row space of a matrix A € R"™" is defined as
RA) = {A'x | x e R™)
. A subspace of R”

- No clean physical meaning by itself

. One-to-one correspondence holds between R(A) and C(A)



Null Space

. The null space of a matrix A € R™" is defined as

N(A) = {X Ax =0, XEIR”}

. A subspace of R”

.- The (left) null space is defined as N(AT)



Null Space

. Physical meaning. The set of inputs that you get () as a prediction

- |f you add null inputs to another input, the outcome will not change

- The model cannot detect such change (or is robust to).



Null Space

- Property. The row space is an orthogonal complement of the null space.

- Thus, the row space can be viewed as the vectors the model A is sensitive to

C(A)
dim r

column space
all Ax

row space
all Ay

left nullspace

nullspace Ay=0

Ax =10

N (A)
dimension n-r

N(A")
dimension m—r



Rank

. The rank of a matrix A € R"™" js;

he number of linearly independent columns

- The number of linearly independent rows

- Properties.

- rank(A) < min{m, n}
. rank(AB) < min{rank(A), rank(B)}

. rank(A + B) < rank(A) + rank(B)



Rank

 Physical meaning. It we have low rank, we can remove dependent rows/columns to make
the matrix smaller, reducing computations.




Inverse

. Given a square matrix A € R™" the inverse matrix A~! € R™" is a matrix such that
ATTA=AAT =T
- Not always invertible; non-invertible matrices are called singular.

- Properties.

. The inverse exists iff rank(A) = n
. (ATH) T =A

. (AB)"' =B~ !A~!

- (AN =A™



Special Matrices



[dentity Matrix

- The identity matrix is defined as a matrix that gives identical output as the input when multiplied
AL =1 A=A
- Same as “1" in the space of matrices.

 This is simply

o O i
o O —_ O
i o O
—_ O o O

- Physical meaning. A system whose input is same as an output

. desirable property of information transmission, e.g., “‘cable” or “memory bus”



Diagonal Matrix

- The diagonal matrix is a matrix with nonzero elements only on the diagonadl, i.e.,

d 0 - 0 0
0 d - 0 0
D —
0 0 - d_,

n_

0
0 0 - 0 d

- Physical meaning. A model which each output entry is a scaled version of input

- |t this is our predictor, it may require very few computations



Orthogonal / Orthonormal Matrix

n

. An orthogonal matrix A € R™" is a matrix whose columns are orthogonal to each other

aja =0, Vi#j



Orthogonal / Orthonormal Matrix

- An orthonormal matrix is an orthogonal matrix with

HaiHZ — 19 VZ & [I’l]

. Property1 Wehave A'A = AA' =T

. Property 2. The matrix preserves the norm, i.e., ||AX||, = [|X]|,

« Proof. \/olunteer?



Symmetric Matrix

n

X is g matrix such that

. A symmetric matrix A € [
Al = A
 Property. Have real eigenvalues and orthogonal eigenvectors (useful for SVD)

- Examples. Covariance matrices, the matrices generated as BB'



Symmetric Matrix

. A positive-definite matrix A € R is a matrix such that
x' Ax >0, Vx#0

. Semidefinite if holds with > instead of >



Figenvalues and Eigenvectors



Eigenvalues & Eigenvectors

. An eigenvector X € R" of a matrix A € R™" is a nonzero vector such that
AXx = Ax

holds for some A (called the eigenvalue).



Eigenvalues & Eigenvectors

- Physical meaning. The inputs for which the model performs only scaling

- Useful as a basis

. Determinant |A | is the product of all eigenvalues

. Trace Tr(A) is the sum of all eigenvalues



Eigen-decomposition
. Suppose that we have a square matrix A € R™*"

. Consider building a column matrix U of all (unit norm) eigenvectors of A.

- Then, we have
AU = UA

where A is a diagonal matrix of all respective eigenvalues.



Eigen-decomposition

. If Uisinvertible, the matrix A is said to be diagonalizable, and we can write

A = UAU ! = UAU'



Eigen-decomposition

A = UAU'

. Whenever this is doable, the model A is actually performing:

. U". Send input to another space
- A\:  Perform scaling for each dimension

- U:. Pull back to the original space

UT

" S

=S

N

- Further material. Watch https://www.3bluelbrown.com/lessons/eigenvalues for visual insights.



https://www.3blue1brown.com/lessons/eigenvalues

Singular Value Decomposition

. SVD decomposes a non-sguare matrix A € R™" into

A=0xV'
. UeR™ywithU'U=U0U"=1

. VER™withVIV=VV' =1

. X € R™"is a diagonal matrix, with zero-paddings.



Singular Value Decomposition

A=0UxV'

e How?

. Construct U using the eigenvectors of AA "
. AA ' is real and symmetric, and thus have real orthogonal eigenvectors
. Construct V using the eigenvectors of ATA

. Compute 2. with the square-root of eigenvalues of A'A



Singular Value Decomposition

0 )
—)O

M=U-2-V*




Wrapping Up
- Today. We have gone through basic linear algebrao

- Next class. Gram-Schmidt, Matrix Calculus (optimization), Basic Probability



Cheers



