Recap: Linear Algebra EECE454 Intro. to Machine Learning Systems

Last class

- An extremely rough description about ML
 - We have some many models at hand
 - potentially parametrized by some state heta
 - ML algorithm selects the right model (i.e., optimizes) by evaluating the model on the data
 - The selected model is deployed to new data

Last class

- An extremely rough description about ML
 - We have some many models at hand
 - potentially parametrized by some state heta
 - ML algorithm selects the right model (i.e., optimizes) by evaluating the model on the data
 - The selected model is deployed to new data
- Did not talk about:
 - How to formalize the models, how to optimize, how to capture the randomness of the data

Last class

- An extremely rough description about ML

 - by evaluating the model on the data

- Brief recap of linear algebra
 - MML book: Chapter 1 Chapter 6
 - D2DL: Section 2.3. 2.6.
 - https://cs229.stanford.edu/lectures-spring2022/cs229-linear_algebra_review.pdf ullet
 - https://www.3blue1brown.com/topics/linear-algebra •
- Next week. Probability & optimization

Today

- Brief recap of linear algebra
 - MML book: Chapter 1 Chapter 6
 - D2DL: Section 2.3. 2.6.
 - https://cs229.stanford.edu/lectures-spring2022/cs229-linear_algebra_review.pdf
 - https://www.3blue1brown.com/topics/linear-algebra
- Next week. Probability & optimization

• **Disclaimer.** Boring & incomplete; use the slides as a guide for self-study

Today

Experimental feature

- For the sake of not-being-boring, let us go through this session with Quiz-like format.
 - Login to <u>slido.com</u> with your mobile ullet
 - Enter the code #1794667
 - Alternatively, use the QR code

Why matrices?

Why matrices?

- - Used as a building block of more elaborate systems, e.g., neural nets.
 - Used for characterizing models, data, ...

• Matrices are the **simplest model** of the relationship between multidimensional input & output.

Vectors and Matrices

Formalisms

Symbol

 $a, b, c, \alpha, \beta, \gamma$ $oldsymbol{x},oldsymbol{y},oldsymbol{z}$ $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}$ $oldsymbol{x}^ op,oldsymbol{A}^ op$ $oldsymbol{A}^{-1}$ $\langle \boldsymbol{x}, \boldsymbol{y} \rangle$ $x^{\top}y$ $B = [b_1, b_2, b_3]$ $\mathcal{B} = \{ b_1, b_2, b_3 \}$ \mathbb{Z},\mathbb{N} \mathbb{R},\mathbb{C} \mathbb{R}^{n}

Typical meaning

Scalars are lowercase Vectors are bold lowercase Matrices are bold uppercase Transpose of a vector or matrix Inverse of a matrix Inner product of x and yDot product of x and y $B = (\boldsymbol{b}_1, \boldsymbol{b}_2, \boldsymbol{b}_3)$ (Ordered) tuple Set of vectors (unordered)

- Matrix of column vectors stacked horizontally Integers and natural numbers, respectively Real and complex numbers, respectively *n*-dimensional vector space of real numbers

Formalisms

Symbol	Typical meaning
$\forall x$	Universal quantifier
$\exists x$	Existential quantifie
a := b	a is defined as b
a =: b	b is defined as a
$a \propto b$	a is proportional to
$g \circ f$	Function composition
\iff	If and only if
\implies	Implies
\mathcal{A},\mathcal{C}	Sets
$a \in \mathcal{A}$	a is an element of s
Ø	Empty set
$\mathcal{A} ackslash \mathcal{B}$	$\mathcal A$ without $\mathcal B$: the se

r: for all *x* er: there exists *x*

b, i.e., $a = \text{constant} \cdot b$ on: "g after f"

- set \mathcal{A}
- et of elements in ${\mathcal A}$ but not in ${\mathcal B}$

Formalisms

Symbol	Typical meaning
I_m	Identity matrix of si
$0_{m,n}$	Matrix of zeros of s
$1_{m,n}$	Matrix of ones of size
$oldsymbol{e}_i$	Standard/canonical
\dim	Dimensionality of v
$\operatorname{rk}(\boldsymbol{A})$	Rank of matrix A
$\operatorname{Im}(\Phi)$	Image of linear map
$\ker(\Phi)$	Kernel (null space)
$\operatorname{span}[m{b}_1]$	Span (generating se
tr(A)	Trace of \boldsymbol{A}
$\det(\boldsymbol{A})$	Determinant of \boldsymbol{A}
·	Absolute value or d
	Norm; Euclidean, u
$oldsymbol{x} \perp oldsymbol{y}$	Vectors x and y are or
V	Vector space
V^{\perp}	Orthogonal compleme

size $m \times m$ size $m \times n$ size $m \times n$ al vector (where *i* is the component that is 1) vector space

pping Φ of a linear mapping Φ set) of \boldsymbol{b}_1

determinant (depending on context) unless specified

rthogonal

Orthogonal complement of vector space ${\cal V}$

Quiz #1

- Let there be a vector $\mathbf{x} \in \mathbb{R}^n$ (bold lowercase) This is ...

(C)

$\mathbf{x} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$

(b)

Quiz #1

- Let there be a vector $\mathbf{x} \in \mathbb{R}^n$ (bold lowercase) This is ...

(C)

$\mathbf{x}^{\mathsf{T}} = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$ We call this **x** transposed

• Let there be a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ (bold uppercase) This is ...

Quiz #2

(b) $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{1n} \\ & & & & \\ a_{m1} & a_{m2} & \cdots & x_{mn} \end{bmatrix} \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ & & & & \\ a_{1n} & a_{2n} & \cdots & x_{mn} \end{bmatrix}$

Quiz #2

• Let there be a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ (bold uppercase) This is ...

$m \times n$ means *m* rows and *n* columns

Multiplications

Products of vectors

• There are two different types: Inner, and Outer

Inner product (a.k.a. dot product)

$$\mathbf{x}^{\mathsf{T}}\mathbf{y} = \sum_{i=1}^{n} x_i y_i$$

- ${\boldsymbol x}$ and ${\boldsymbol y}$ to have same dimensions
- You will use it on a daily basis
- Alternate notation: $\langle x, y \rangle$
- Intuition: alignedness of vectors

Outer product

$$\mathbf{x}\mathbf{y}^{\mathsf{T}} = \begin{bmatrix} x_1 y_1 & \cdots & x_1 y_n \\ & \cdots & & \\ x_m y_1 & \cdots & x_m y_n \end{bmatrix}$$

- Can have different dimensions
- <u>Intuition</u>: measuring alignedness of each entries (scalar)

Matrix-Vector Multiplication

- Performing multiple inner products with row vectors
 - Measuring alignedness of input with *m* reference vectors (some sort of dictionaries)

Matrix-Vector Multiplication

- Performing multiple inner products with row vectors
- Alternatively, we are taking a weighted sum of column vectors
 - Inputs are recipes, columns are ingredients, and output is the food.

• Measuring alignedness of input with *m* different internal states (some sort of dictionaries)

MVM: System perspective

• The matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ can be viewed as an axis transformation.

Matrix-Matrix Multiplication

- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} = \mathbb{R}^{n \times p}$
- Performing a matmul is equivalent to performing mp inner products
 - measuring alignedness between m reference vectors and p input signals

Matrix-Matrix Multiplication

- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} = \mathbb{R}^{n \times p}$
- Performing a **matmul** is equivalent to performing *mp* inner products
 - measuring alignedness between *m* reference vectors and *p* input signals
- Alternatively, performing *n* outer products

Matrix-Matrix Multiplication

- Let $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} = \mathbb{R}^{n \times p}$
- Performing a **matmul** is equivalent to performing *mp* inner products
 - measuring alignedness between *m* reference vectors and *p* input signals
- Alternatively, performing *n* outer products
- Or *p* (or *m*) matrix-vector multiplications

$$\mathbf{AB} = \begin{bmatrix} \mathbf{B} \\ \mathbf{Ab}_1 & \cdots & \mathbf{Ab}_n \\ \mathbf{Bb}_n & \cdots & \mathbf{Ab}_n \end{bmatrix}$$

Quiz #3

• To multiply $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$ how many scalar multiplications do we need?

Quiz #3

• To multiply $\mathbf{A} \in \mathbb{R}^{m \times n}$ and $\mathbf{B} \in \mathbb{R}^{n \times p}$ how many scalar multiplications do we need?

- Answer. *mnp*
 - We do *mp* inner products
 - Each inner product requires *n* multiplications.

Norms

- A measure of length: || ||
 - A function $\mathbb{R}^n \to \mathbb{R}$
- Defined axiomatically by the following properties:
 - $\|\mathbf{x}\| \ge 0$ • Nonnegativity:
 - $\|\mathbf{x}\| = 0 \Leftrightarrow \mathbf{x} = \mathbf{0}$ Definiteness: •
 - Absolute Homogeneity: $\|c\mathbf{x}\| = \|c\| \cdot \|\mathbf{x}\|$
 - Triangle Inequality: $||\mathbf{x}|| + ||\mathbf{y}|| \ge ||\mathbf{x} + \mathbf{y}||$

Norm

- For a vector $\mathbf{x} \in \mathbb{R}^n$
 - The ℓ_2 norm: $\|\mathbf{x}\|_2 = \sqrt{x_1^2 + \dots + x_n^2}$
 - That is, $\|\mathbf{x}\|_2^2 = \mathbf{x}^T \mathbf{x}$
 - The ℓ_1 norm: $\|\mathbf{x}\|_1 = |x_1| + \dots + |x_n|$
 - The ℓ_p norm: $\|\mathbf{x}\|_p = (|x_1|^p + \dots + |x_p|)$
 - The \mathscr{C}_{∞} norm: $\|\mathbf{x}\|_{\infty} = \max_{i \in \{1, \dots, n\}} |x_i|$

Norm

$$\left| {p \atop n} \right|^p \Big)^{1/p}$$

Quiz #4

- Let us define the quantity ℓ_0 norm as $\|\mathbf{x}\|_0 = |x_1|^0 + \dots + |x_n|^0$
 - Assume that we use the convention $0^0 = 0$
 - That is, the ℓ_0 norm counts the number of nonzeros.
- **Question.** Is this really a norm?

Quiz #4

- Let us define the quantity ℓ_0 norm as $\|\mathbf{x}\|_0 = |x_1|^0 + \dots + |x_n|^0$
 - Assume that we use the convention $0^0 = 0$
 - That is, the ℓ_0 norm counts the number of nonzeros.
- Question. Is this really a norm?
- Answer. A formal proof as a homework :P

Column / Row / Null Space

Linear Combination

• The **linear combination** of k different vectors can be written as

 $\lambda_1 \mathbf{x}_1 + \cdots + \lambda_k \mathbf{x}_k$

Linear Combination

The linear combination of k different vectors can be written as

- The vectors $\mathbf{x}_1, \dots, \mathbf{x}_k$ are called **linearly independent** whenever
 - $\lambda_1 \mathbf{x}_1 + \dots + \lambda_k \mathbf{x}_k = 0$
 - That is, no vector is a linear combination of the others.

 $\lambda_1 \mathbf{x}_1 + \cdots + \lambda_k \mathbf{x}_k$

)
$$\Leftrightarrow \lambda_1 = \cdots = \lambda_k = 0$$

Linear Combination

- The linear combination of k different vectors can be written as
- The vectors x₁, ..., x_k are called linearly independent whenever
 - $\lambda_1 \mathbf{x}_1 + \cdots + \lambda_k \mathbf{x}_k = 0 \quad \Leftrightarrow \quad \lambda_1 = \cdots = \lambda_k = 0$
 - That is, no vector is a linear combination of the others.
- The **span** is the set of all linear combinations

span({
$$\mathbf{x}_1, ..., \mathbf{x}_k$$
}) = { $\lambda_1 \mathbf{x}_1 + \cdots + \lambda_k \mathbf{x}_k \mid \lambda_i \in \mathbb{R}, \quad \forall i \in [n]$ }

• Example. \mathbb{R}^2 is spanned by $\{[1,0]^{\mathsf{T}}, [0,1]^{\mathsf{T}}\}$

 $\lambda_1 \mathbf{x}_1 + \cdots + \lambda_k \mathbf{x}_k$

• The **basis** of a vector space V is a minimal set $A = \{\mathbf{x}_1, \dots, \mathbf{x}_k\}$ such that

• Example. One possible choice of the basis of \mathbb{R}^2 is

- <u>Property 1</u>. Basis is linearly independent.
- <u>Property 2</u>. Adding any element to the basis breaks the linear independence. •

Basis

 $\operatorname{span}(A) = V$

 $\{[1,3]^{\mathsf{T}}, [4,1]^{\mathsf{T}}\}$

Column Space

• The column space of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the space spanned by the column vectors of \mathbf{A}

$$C(\mathbf{A}) = \left\{ \lambda_1 \mathbf{a}_1 + \dots + \lambda_n \mathbf{a}_n \mid \lambda_i \in \mathbb{R}, \quad \forall i \in [n] \right\}$$

• A subspace of \mathbb{R}^m

Column Space

- The column space of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is the space spanned by the column vectors of \mathbf{A}

 - A subspace of \mathbb{R}^m
 - One can also write

- <u>Physical meaning</u>. The set of outputs you can get from a model ${f A}$
 - perhaps you should modify your model.

 $C(\mathbf{A}) = \left\{ \lambda_1 \mathbf{a}_1 + \dots + \lambda_n \mathbf{a}_n \mid \lambda_i \in \mathbb{R}, \quad \forall i \in [n] \right\}$

$C(\mathbf{A}) = \{\mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n\}$

$$\mathbf{W}\mathbf{x} = \begin{bmatrix} | & | \\ \mathbf{w}_1 & \cdots & \mathbf{w}_n \\ | & | \end{bmatrix} \mathbf{x} = x_1\mathbf{w}_1 + \cdots +$$

• If the column space of your model does not contain the desired prediction outcomes,

Row Space

- The row space of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

- A subspace of \mathbb{R}^n
- No clean physical meaning by itself
 - One-to-one correspondence holds between R(A) and C(A)

$R(\mathbf{A}) = \{\mathbf{A}^{\mathsf{T}}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^m\}$

Null Space

• The null space of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

- A subspace of \mathbb{R}^n
- The (left) null space is defined as $N(\mathbf{A}^{\mathsf{T}})$

 $N(\mathbf{A}) = \left\{ \mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{0}, \quad \mathbf{x} \in \mathbb{R}^n \right\}$

Null Space

• The null space of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is defined as

- A subspace of \mathbb{R}^n
- The (left) null space is defined as $N(\mathbf{A}^{\mathsf{T}})$
- <u>Physical meaning</u>. The set of inputs that you get $\mathbf{0}$ as a prediction
 - If you add null inputs to another input, the outcome will not change
 - The model cannot detect such change (or is robust to).

Null Space

- <u>Property</u>. The row space is an orthogonal complement of the null space.
 - Thus, the row space can be viewed as the vectors the model A is sensitive to

- The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is:
 - The number of linearly independent columns
 - The number of linearly independent rows
 - Properties. ullet
 - $\operatorname{rank}(\mathbf{A}) \le \min\{m, n\}$
 - $rank(AB) \le min\{rank(A), rank(B)\}$
 - $rank(\mathbf{A} + \mathbf{B}) \le rank(\mathbf{A}) + rank(\mathbf{B})$

Rank

- The rank of a matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ is:
 - The number of linearly independent columns
 - The number of linearly independent rows
 - Properties.
 - $rank(\mathbf{A}) \le min\{m, n\}$
 - $rank(AB) \le min\{rank(A), rank(B)\}$
 - $rank(\mathbf{A} + \mathbf{B}) \leq rank(\mathbf{A}) + rank(\mathbf{B})$
 - the matrix smaller, reducing computations.

Rank

<u>Physical meaning</u>. If we have low rank, we can remove dependent rows/columns to make

Inverse

• Given a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$, the inverse matrix $\mathbf{A}^{-1} \in \mathbb{R}^{n \times n}$ is a matrix such that

- Not always invertible; non-invertible matrices are called singular.
- Properties.
 - The inverse exists iff $rank(\mathbf{A}) = n$
 - $(\mathbf{A}^{-1})^{-1} = \mathbf{A}$
 - $(AB)^{-1} = B^{-1}A^{-1}$
 - $(\mathbf{A}^{\mathsf{T}})^{-1} = (\mathbf{A}^{-1})^{\mathsf{T}}$

- $\mathbf{A}^{-1}\mathbf{A} = \mathbf{A}\mathbf{A}^{-1} = \mathbf{I}_n$

Special Matrices

Identity Matrix

- - Same as "1" in the space of matrices.
 - This is simply ullet

 $\mathbf{I}_n = \begin{bmatrix} 1\\0\\0\\0\end{bmatrix}$

- <u>Physical meaning</u>. A system whose input is same as an output
 - desirable property of information transmission, e.g., "cable" or "memory bus"

• The identity matrix is defined as a matrix that gives identical output as the input when multiplied

 $AI_n = I_m A = A$

Diagonal Matrix

The diagonal matrix is a matrix with nonzero elements only on the diagonal, i.e.,

- <u>Physical meaning</u>. A model which each output entry is a scaled version of input
 - If this is our predictor, it may require very few computations

Orthogonal / Orthonormal Matrix

- An orthogonal matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a matrix whose columns are orthogonal to each other

 $\mathbf{a}_i^{\mathsf{T}} \mathbf{a}_j = 0, \quad \forall i \neq j$

Orthogonal / Orthonormal Matrix

• An orthogonal matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a matrix whose columns are orthogonal to each other

- An orthonormal matrix is an orthogonal matrix with

 - <u>Property 1</u>. We have $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{I}_n$
 - <u>Property 2</u>. The matrix preserves the norm, i.e., $\|\mathbf{A}\mathbf{x}\|_2 = \|\mathbf{x}\|_2$
 - **Proof.** Volunteer?

 $\mathbf{a}_i^{\mathsf{T}} \mathbf{a}_i = 0, \quad \forall i \neq j$

 $\|\mathbf{a}_i\|_2 = 1, \quad \forall i \in [n]$

Symmetric Matrix

• A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a matrix such that

- <u>Property</u>. Have real eigenvalues and orthogonal eigenvectors (useful for SVD)
- Examples. Covariance matrices, the matrices generated as ${f BB}^+$

$\mathbf{A}^{\mathsf{T}} = \mathbf{A}$

Symmetric Matrix

• A symmetric matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a matrix such that

- <u>Property</u>. Have real eigenvalues and orthogonal eigenvectors (useful for SVD)
- Examples. Covariance matrices, the matrices generated as $\mathbf{B}\mathbf{B}^{\mathsf{T}}$
- A **positive-definite matrix** $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a matrix such that

• Semidefinite if holds with \geq instead of >

 $\mathbf{A}^{\mathsf{T}} = \mathbf{A}$

 $\mathbf{x}^{\mathsf{T}}\mathbf{A}\mathbf{x} > \mathbf{0}, \quad \forall \mathbf{x} \neq \mathbf{0}$

Eigenvalues and Eigenvectors

Eigenvalues & Eigenvectors

• An eigenvector $\mathbf{x} \in \mathbb{R}^n$ of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a nonzero vector such that

holds for some λ (called the **eigenvalue**).

 $\mathbf{A}\mathbf{x} = \lambda \mathbf{x}$

Eigenvalues & Eigenvectors

• An eigenvector $\mathbf{x} \in \mathbb{R}^n$ of a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ is a nonzero vector such that

holds for some λ (called the **eigenvalue**).

- <u>Physical meaning</u>. The inputs for which the model performs only scaling
 - Useful as a basis
- Determinant | A | is the product of all eigenvalues
- Trace Tr(A) is the sum of all eigenvalues

 $A\mathbf{x} = \lambda \mathbf{x}$

Eigen-decomposition

- Suppose that we have a square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$
- Consider building a column matrix ${f U}$ of all (unit norm) eigenvectors of ${f A}$.
 - Then, we have

where Λ is a diagonal matrix of all respective eigenvalues.

$AU = U\Lambda$

Eigen-decomposition

- Suppose that we have a square matrix A
- Consider building a column matrix \mathbf{U} of all (unit norm) eigenvectors of \mathbf{A} .
 - Then, we have

where Λ is a diagonal matrix of all respective eigenvalues.

• If ${f U}$ is invertible, the matrix ${f A}$ is said to be **diagonalizable**, and we can write

$AU = U\Lambda$

$\mathbf{A} = \mathbf{U} \Lambda \mathbf{U}^{-1} = \mathbf{U} \Lambda \mathbf{U}^{\mathsf{T}}$

Eigen-decomposition $\mathbf{A} = \mathbf{U} \Lambda \mathbf{U}^{\mathsf{T}}$

- Whenever this is doable, the model \mathbf{A} is actually performing:
 - U¹: Send input to another space
 - Perform scaling for each dimension • A:
 - U: Pull back to the original space

• Further material. Watch <u>https://www.3blue1brown.com/lessons/eigenvalues</u> for visual insights.

Singular Value Decomposition

• SVD decomposes a <u>non-square</u> matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$ into

- $\mathbf{U} \in \mathbb{R}^{m \times m}$ with $\mathbf{U}^{\mathsf{T}} \mathbf{U} = \mathbf{U} \mathbf{U}^{\mathsf{T}} = \mathbf{I}_m$
- $\mathbf{V} \in \mathbb{R}^{n \times n}$ with $\mathbf{V}^{\mathsf{T}} \mathbf{V} = \mathbf{V} \mathbf{V}^{\mathsf{T}} = \mathbf{I}_n$
- $\Sigma \in \mathbb{R}^{m \times n}$ is a diagonal matrix, with zero-paddings.

$A = U\Sigma V^{\dagger}$

Singular Value Decomposition $\mathbf{A} = \mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\mathsf{T}}$

- How?
 - Construct U using the eigenvectors of AA^{\dagger}
 - $\mathbf{A}\mathbf{A}^{\mathsf{T}}$ is real and symmetric, and thus have real orthogonal eigenvectors
 - Construct V using the eigenvectors of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$
 - Compute Σ with the square-root of eigenvalues of $\mathbf{A}^{\mathsf{T}}\mathbf{A}$

Singular Value Decomposition

Wrapping Up

- Today. We have gone through basic linear algebra
- Next class. Gram-Schmidt, Matrix Calculus (optimization), Basic Probability

Cheers