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EECE454 Intro. to Machine Learning Systems

Recap: Linear Algebra



Last class
• An extremely rough description about ML 

• We have some many models at hand 

• potentially parametrized by some state  

• ML algorithm selects the right model (i.e., optimizes) 
by evaluating the model on the data 

• The selected model is deployed to new data
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Last class
• An extremely rough description about ML 

• We have some many models at hand 

• potentially parametrized by some state  

• ML algorithm selects the right model (i.e., optimizes) 
by evaluating the model on the data 

• The selected model is deployed to new data 

• Did not talk about: 

• How to formalize the models, how to optimize, 
how to capture the randomness of the data
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• An extremely rough description about ML 

• We have some many models at hand 

• potentially parametrized by some state  

• ML algorithm selects the right model (i.e., optimizes) 
by evaluating the model on the data 
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• How to formalize the models, how to optimize, 
how to capture the randomness of the data

θ

Training 
Data

Model 
(Hypothesis) 
(Predictor)

Learning 
Algorithm

Cybernetics Perspective

Statistical Learning Perspective

Model

Param 
̂θ

Model

Param 
θ0

Update 
w/ data

Model 1 Model 2 Model N…

Search 
Algorithm

Training 
Data

Vectors & Matrices Matrix Calculus

Probability



Today
• Brief recap of linear algebra 

• MML book: Chapter 1 — Chapter 6 

• D2DL: Section 2.3. — 2.6. 

• https://cs229.stanford.edu/lectures-spring2022/cs229-linear_algebra_review.pdf 

• https://www.3blue1brown.com/topics/linear-algebra 

• Next week. Probability & optimization

https://cs229.stanford.edu/lectures-spring2022/cs229-linear_algebra_review.pdf
https://www.3blue1brown.com/topics/linear-algebra


Today
• Brief recap of linear algebra 

• MML book: Chapter 1 — Chapter 6 

• D2DL: Section 2.3. — 2.6. 

• https://cs229.stanford.edu/lectures-spring2022/cs229-linear_algebra_review.pdf 

• https://www.3blue1brown.com/topics/linear-algebra 

• Next week. Probability & optimization 

• Disclaimer. Boring & incomplete; use the slides as a guide for self-study

https://cs229.stanford.edu/lectures-spring2022/cs229-linear_algebra_review.pdf
https://www.3blue1brown.com/topics/linear-algebra


Experimental feature
• For the sake of not-being-boring, let us go through this session with Quiz-like format. 

• Login to slido.com with your mobile 

• Enter the code #1794667 

• Alternatively, use the QR code

http://slido.com


Why matrices?
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model parameter (or “internal state”)

Why matrices?
• Matrices are the simplest model of the relationship between multidimensional input & output. 

• Used as a building block of more elaborate systems, e.g., neural nets. 

• Used for characterizing models, data, … 



Vectors and Matrices



Formalisms



Formalisms



Formalisms



Quiz #1
• Let there be a vector  (bold lowercase) 

This is …
x ∈ ℝn

(a) (b)

x = [x1 x2 ⋯ xn] x =

x1
x2
⋯
xn



Quiz #1
• Let there be a vector  (bold lowercase) 

This is …
x ∈ ℝn

(a) (b)

x⊤ = [x1 x2 ⋯ xn] x =

x1
x2
⋯
xn

We call this  transposedx



Quiz #2
• Let there be a matrix  (bold uppercase) 

This is …
A ∈ ℝm×n

(a) (b)

A =

a11 a12 ⋯ a1n
a21 a22 ⋯ a1n

⋯
am1 am2 ⋯ xmn

A =

a11 a21 ⋯ am1
a12 a22 ⋯ am2

⋯
a1n a2n ⋯ xmn



Quiz #2
• Let there be a matrix  (bold uppercase) 

This is …
A ∈ ℝm×n

(a)

A =

a11 a12 ⋯ a1n
a21 a22 ⋯ a1n

⋯
am1 am2 ⋯ xmn

 means  rows and  columnsm × n m n

A =
| |

a1 ⋯ an

| |

A =
− a⊤

1 −
⋯

− a⊤
m −



Multiplications



Products of vectors
• There are two different types: Inner, and Outer

Inner product (a.k.a. dot product) Outer product

x⊤y =
n

∑
i=1

xiyi xy⊤ = [
x1y1 ⋯ x1yn

⋯
xmy1 ⋯ xmyn]

•  and  to have same dimensions 

• You will use it on a daily basis 

• Alternate notation:  

• Intuition: alignedness of vectors

x y

⟨x, y⟩

• Can have different dimensions 

• Intuition: measuring alignedness of 
                 each entries (scalar)



Matrix-Vector Multiplication
• Performing multiple inner products with row vectors 

• Measuring alignedness of input with  reference vectors (some sort of dictionaries)m

Wx =
− w⊤

1 −
⋯

− w⊤
m −

x =
w⊤

1 x
⋯

w⊤
mx



Matrix-Vector Multiplication
• Performing multiple inner products with row vectors 

• Measuring alignedness of input with  different internal states (some sort of dictionaries) 

• Alternatively, we are taking a weighted sum of column vectors 

• Inputs are recipes, columns are ingredients, and output is the food.

m

Wx =
| |

w1 ⋯ wn

| |
x = x1w1 + ⋯ + xnwn



MVM: System perspective
• The matrix  can be viewed as an axis transformation.A ∈ ℝm×n

W
1
0
⋯
0

= w1 W
0
0
⋯
1

= wn⋯

[1
0]

[0
1]

w2

w1

W



Matrix-Matrix Multiplication
• Let  and  

• Performing a matmul is equivalent to performing  inner products 

• measuring alignedness between  reference vectors and  input signals

A ∈ ℝm×n B = ℝn×p

mp

m p

AB =
− a⊤

1 −
⋯

− a⊤
m −

| |
b1 ⋯ bp

| |
=

a⊤
1 b1 ⋯ a⊤

1 bp
⋯ ⋯ ⋯

a⊤
mb1 ⋯ a⊤

mbp



Matrix-Matrix Multiplication
• Let  and  

• Performing a matmul is equivalent to performing  inner products 

• measuring alignedness between  reference vectors and  input signals 

• Alternatively, performing  outer products

A ∈ ℝm×n B = ℝn×p

mp

m p

n

AB =
| |

a1 ⋯ an

| |

− b1 −
⋯

− bn −
= a1b⊤

1 + ⋯ + anb⊤
n



Matrix-Matrix Multiplication
• Let  and  

• Performing a matmul is equivalent to performing  inner products 

• measuring alignedness between  reference vectors and  input signals 

• Alternatively, performing  outer products 

• Or  (or ) matrix-vector multiplications

A ∈ ℝm×n B = ℝn×p

mp

m p

n

p m

AB =
| |

Ab1 ⋯ Abp

| |
=

− a⊤
1 B −
⋯

− a⊤
mB −



Quiz #3
• To multiply  and  

how many scalar multiplications do we need?
A ∈ ℝm×n B ∈ ℝn×p

AB =
− a⊤

1 −
⋯

− a⊤
m −

| |
b1 ⋯ bp

| |
=

a⊤
1 b1 ⋯ a⊤

1 bp
⋯ ⋯ ⋯

a⊤
mb1 ⋯ a⊤

mbp



Quiz #3
• To multiply  and  

how many scalar multiplications do we need? 

• Answer.  

• We do  inner products 

• Each inner product requires  multiplications.

A ∈ ℝm×n B ∈ ℝn×p

mnp

mp

n

AB =
− a⊤

1 −
⋯

− a⊤
m −

| |
b1 ⋯ bp

| |
=

a⊤
1 b1 ⋯ a⊤

1 bp
⋯ ⋯ ⋯

a⊤
mb1 ⋯ a⊤

mbp



Norms



Norm
• A measure of length:  

• A function  

• Defined axiomatically by the following properties: 

• Nonnegativity:                    

• Definiteness:                       

• Absolute Homogeneity:    

• Triangle Inequality:            

∥ ⋅ ∥

ℝn → ℝ

∥x∥ ≥ 0

∥x∥ = 0 ⇔ x = 0

∥cx∥ = |c | ⋅ ∥x∥

∥x∥ + ∥y∥ ≥ ∥x + y∥



Norm
• For a vector  

• The  norm:     

• That is,  

• The  norm:      

• The  norm:      

• The  norm:    

x ∈ ℝn

ℓ2 ∥x∥2 = x2
1 + ⋯ + x2

n

∥x∥2
2 = x⊤x

ℓ1 ∥x∥1 = |x1 | + ⋯ + |xn |

ℓp ∥x∥p = (|x1 |p + ⋯ + |xn |p )1/p

ℓ∞ ∥x∥∞ = max
i∈{1,…,n}

|xi |



Quiz #4
• Let us define the quantity  norm as     

• Assume that we use the convention  

• That is, the  norm counts the number of nonzeros. 

• Question. Is this really a norm?

ℓ0 ∥x∥0 = |x1 |0 + ⋯ + |xn |0

00 = 0

ℓ0



Quiz #4
• Let us define the quantity  norm as     

• Assume that we use the convention  

• That is, the  norm counts the number of nonzeros. 

• Question. Is this really a norm? 

• Answer. A formal proof as a homework :P

ℓ0 ∥x∥0 = |x1 |0 + ⋯ + |xn |0

00 = 0

ℓ0



Column / Row / Null Space



Linear Combination
• The linear combination of  different vectors can be written as k

λ1x1 + ⋯ + λkxk



Linear Combination
• The linear combination of  different vectors can be written as 

 

• The vectors  are called linearly independent whenever 

 

• That is, no vector is a linear combination of the others.

k

λ1x1 + ⋯ + λkxk

x1, …, xk

λ1x1 + ⋯ + λkxk = 0 ⇔ λ1 = ⋯ = λk = 0



Linear Combination
• The linear combination of  different vectors can be written as 

 

• The vectors  are called linearly independent whenever 

 

• That is, no vector is a linear combination of the others. 

• The span is the set of all linear combinations 

 

• Example.  is spanned by 

k

λ1x1 + ⋯ + λkxk

x1, …, xk

λ1x1 + ⋯ + λkxk = 0 ⇔ λ1 = ⋯ = λk = 0

span({x1, …, xk}) = {λ1x1 + ⋯ + λkxk λi ∈ ℝ, ∀i ∈ [n]}
ℝ2 {[1,0]⊤, [0,1]⊤}



Basis
• The basis of a vector space  is a minimal set  such that 

 

• Example. One possible choice of the basis of  is 

 

• Property 1. Basis is linearly independent. 

• Property 2. Adding any element to the basis  breaks the linear independence.

V A = {x1, ⋯, xk}

span(A) = V

ℝ2

{[1,3]⊤, [4,1]⊤}



Column Space
• The column space of a matrix  is the space spanned by the column vectors of  

 

• A subspace of 

A ∈ ℝm×n A

C(A) = {λ1a1 + ⋯ + λnan λi ∈ ℝ, ∀i ∈ [n]}
ℝm



Column Space
• The column space of a matrix  is the space spanned by the column vectors of  

 

• A subspace of  

• One can also write 

 

• Physical meaning. The set of outputs you can get from a model  

• If the column space of your model does not contain the desired prediction outcomes, 
perhaps you should modify your model.

A ∈ ℝm×n A

C(A) = {λ1a1 + ⋯ + λnan λi ∈ ℝ, ∀i ∈ [n]}
ℝm

C(A) = {Ax | x ∈ ℝn}

A

Wx =
| |

w1 ⋯ wn

| |
x = x1w1 + ⋯ + xnwn

recall…



Row Space
• The row space of a matrix  is defined as 

 

• A subspace of  

• No clean physical meaning by itself 

• One-to-one correspondence holds between  and 

A ∈ ℝm×n

R(A) = {A⊤x | x ∈ ℝm}

ℝn

R(A) C(A)



Null Space
• The null space of a matrix  is defined as 

 

• A subspace of  

• The (left) null space is defined as 

A ∈ ℝm×n

N(A) = {x Ax = 0, x ∈ ℝn}
ℝn

N(A⊤)



Null Space
• The null space of a matrix  is defined as 

 

• A subspace of  

• The (left) null space is defined as  

• Physical meaning. The set of inputs that you get  as a prediction 

• If you add null inputs to another input, the outcome will not change 

• The model cannot detect such change (or is robust to).

A ∈ ℝm×n

N(A) = {x Ax = 0, x ∈ ℝn}
ℝn

N(A⊤)

0



• Property. The row space is an orthogonal complement of the null space. 

• Thus, the row space can be viewed as the vectors the model  is sensitive toA

Null Space



• The rank of a matrix  is: 

• The number of linearly independent columns 

• The number of linearly independent rows 

• Properties. 

•  

•  

•

A ∈ ℝm×n

rank(A) ≤ min{m, n}

rank(AB) ≤ min{rank(A), rank(B)}

rank(A + B) ≤ rank(A) + rank(B)

Rank



• The rank of a matrix  is: 

• The number of linearly independent columns 

• The number of linearly independent rows 

• Properties. 

•  

•  

•  

• Physical meaning. If we have low rank, we can remove dependent rows/columns to make 
                                   the matrix smaller, reducing computations.

A ∈ ℝm×n

rank(A) ≤ min{m, n}

rank(AB) ≤ min{rank(A), rank(B)}

rank(A + B) ≤ rank(A) + rank(B)

Rank



• Given a square matrix , the inverse matrix  is a matrix such that 

 

• Not always invertible; non-invertible matrices are called singular. 

• Properties. 

• The inverse exists iff  

•  

•  

•

A ∈ ℝn×n A−1 ∈ ℝn×n

A−1A = AA−1 = In

rank(A) = n

(A−1)−1 = A

(AB)−1 = B−1A−1

(A⊤)−1 = (A−1)⊤

Inverse



Special Matrices



• The identity matrix is defined as a matrix that gives identical output as the input when multiplied 

 

• Same as “1” in the space of matrices. 

• This is simply 

• Physical meaning. A system whose input is same as an output 

• desirable property of information transmission, e.g., “cable” or “memory bus”

AIn = ImA = A

Identity Matrix

In =

1 0 ⋯ 0 0
0 1 ⋯ 0 0

⋯
0 0 ⋯ 1 0
0 0 ⋯ 0 1



• The diagonal matrix is a matrix with nonzero elements only on the diagonal, i.e.,  

• Physical meaning. A model which each output entry is a scaled version of input 

• If this is our predictor, it may require very few computations

Diagonal Matrix

D =

d1 0 ⋯ 0 0
0 d2 ⋯ 0 0

⋯
0 0 ⋯ dn−1 0
0 0 ⋯ 0 dn



• An orthogonal matrix  is a matrix whose columns are orthogonal to each other A ∈ ℝn×n

a⊤
i aj = 0, ∀i ≠ j

Orthogonal / Orthonormal Matrix



• An orthogonal matrix  is a matrix whose columns are orthogonal to each other 

 

• An orthonormal matrix is an orthogonal matrix with 

 

• Property 1. We have  

• Property 2. The matrix preserves the norm, i.e.,  

• Proof. Volunteer?

A ∈ ℝn×n

a⊤
i aj = 0, ∀i ≠ j

∥ai∥2 = 1, ∀i ∈ [n]

A⊤A = AA⊤ = In

∥Ax∥2 = ∥x∥2

Orthogonal / Orthonormal Matrix



• A symmetric matrix  is a matrix such that 

 

• Property. Have real eigenvalues and orthogonal eigenvectors (useful for SVD) 

• Examples. Covariance matrices, the matrices generated as 

A ∈ ℝn×n

A⊤ = A

BB⊤

Symmetric Matrix



• A symmetric matrix  is a matrix such that 

 

• Property. Have real eigenvalues and orthogonal eigenvectors (useful for SVD) 

• Examples. Covariance matrices, the matrices generated as  

• A positive-definite matrix  is a matrix such that 

 

• Semidefinite if holds with  instead of 

A ∈ ℝn×n

A⊤ = A

BB⊤

A ∈ ℝn×n

x⊤Ax > 0, ∀x ≠ 0

≥ >

Symmetric Matrix



Eigenvalues and Eigenvectors



Eigenvalues & Eigenvectors
• An eigenvector  of a matrix  is a nonzero vector such that 

 

    holds for some  (called the eigenvalue).

x ∈ ℝn A ∈ ℝn×n

Ax = λx

λ



Eigenvalues & Eigenvectors
• An eigenvector  of a matrix  is a nonzero vector such that 

 

    holds for some  (called the eigenvalue). 

• Physical meaning. The inputs for which the model performs only scaling 

• Useful as a basis 

• Determinant  is the product of all eigenvalues 

• Trace  is the sum of all eigenvalues

x ∈ ℝn A ∈ ℝn×n

Ax = λx

λ

|A |

Tr(A)



Eigen-decomposition
• Suppose that we have a square matrix  

• Consider building a column matrix  of all (unit norm) eigenvectors of . 

• Then, we have 

 

    where  is a diagonal matrix of all respective eigenvalues.

A ∈ ℝn×n

U A

AU = UΛ

Λ



Eigen-decomposition
• Suppose that we have a square matrix  

• Consider building a column matrix  of all (unit norm) eigenvectors of . 

• Then, we have 

 

    where  is a diagonal matrix of all respective eigenvalues. 

• If  is invertible, the matrix  is said to be diagonalizable, and we can write 

A

U A

AU = UΛ

Λ

U A

A = UΛU−1 = UΛU⊤



Eigen-decomposition
 

• Whenever this is doable, the model  is actually performing: 

• :    Send input to another space 

• :       Perform scaling for each dimension 

• :       Pull back to the original space 

• Further material. Watch https://www.3blue1brown.com/lessons/eigenvalues for visual insights.

A = UΛU⊤

A

U⊤

Λ

U

https://www.3blue1brown.com/lessons/eigenvalues


Singular Value Decomposition
• SVD decomposes a non-square matrix  into 

 

•  with  

•  with  

•  is a diagonal matrix, with zero-paddings.

A ∈ ℝm×n

A = UΣV⊤

U ∈ ℝm×m U⊤U = UU⊤ = Im

V ∈ ℝn×n V⊤V = VV⊤ = In

Σ ∈ ℝm×n



Singular Value Decomposition
 

• How? 

• Construct  using the eigenvectors of  

•  is real and symmetric, and thus have real orthogonal eigenvectors 

• Construct  using the eigenvectors of  

• Compute  with the square-root of eigenvalues of 

A = UΣV⊤

U AA⊤

AA⊤

V A⊤A

Σ A⊤A



Singular Value Decomposition



Wrapping Up
• Today. We have gone through basic linear algebra 

• Next class. Gram-Schmidt, Matrix Calculus (optimization), Basic Probability



Cheers


