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Recap
• Generative Modeling. 

Using unlabeled training data , 
approximate the data-generating distribution such that 

                                     

• Classic Example. Gaussian mixture models 

• The cluster information may help performing the 
downstream classification 

• Helps you evaluate how likely each data is: 

• Anomaly detection, novelty detection

x1, …, xn ∼ pdata(x)

pθ(x) ≈ pdata(x)



Generative Modeling
• In modern contexts, generative modeling has extended boundaries. 

• Modern example. Suppose that we have learned a good model on the joint distribution 

 

    from the image-text pairs  crawled from web          (treat  as an unlabeled data)

pθ(x, y) ≈ pdata(x, y)

{(x, y)}n
i=1 z = (x, y)



Generative Modeling
• With a good generative model, we can do the following things: 

• (Generative) Classification. Use the Bayes rule to do 

 pθ(y |x) =
pθ(x, y)
pθ(x)

OpenAI “CLIP”



Generative Modeling
• Text-conditional Generation. 

Use the Bayes rule the other way— 

Generate an image that correspond 
to an arbitrary text 

                     pθ(x |y) =
pθ(x, y)
pθ(y)



Generative Modeling
• Image inpainting. Generate some part of the image that correspond to other parts: 

pθ(xi |x1, …, xi−1, xi+1, …, xd)



Generative Modeling
• Text generation. Generate the next text word that correspond to the given text 

pθ(yn+1 |y1, …, yn)



Today
• Focusing on the generative modeling for images 

• Will cover multimodal cases later 

• vs. Language. 

• Need to generate many pixels for high-resolution images 
(Challenging to generate “realistic” ones) 

• More locality involved, with 2D/3D geometry



Autoencoders



Basic autoencoders
• An approach that has been used for representation learning, initially 

• Idea. Train a neural network that can do PCA  

• Replace the linear model with neural networks 

• Use SGD to solve min
f,g

𝔼x∥x − f(g(x))∥2

x z x̂Uenc Udec

Representation g(x) Output f(g(x))

f( ⋅ )g( ⋅ )

Input x



Representation g(x) Output f(g(x))

f( ⋅ )g( ⋅ )

Input x

Basic autoencoders
• An approach that has been used for representation learning, initially 

• Idea. Train a neural network that can do PCA  

• Replace the linear model with neural networks 

• Use SGD to solve  

• Note. A trivial solution  can happen 

• Avoidable with the hourglass structure (or other regularizations)

min
f,g

𝔼x∥x − f(g(x))∥2

f( ⋅ ) = g( ⋅ ) = Identity



Denoising autoencoders
• A regularization technique to avoid learning trivial solutions. 

• Idea. Add noise to the input image, an train to recover a clean image 

• Never solved by identity functions 

• Requires understanding how real images look like: 

• Tell apart from the random noise 

• Other examples. Sparse autoencoders …



Variational autoencoders
• Takes a similar structure, but quite different from the typical autoencoders 

• Goal. Train a decoder and a distribution such that: 

• Input. We send in a distribution  

• Output. We get a data-generating distribution 

pθ(z)

pθ(x) ≈ pdata(x)

pθ(z) pθ(x) ≈ pdata(x)

pθ(x |z)



Variational autoencoders
• Training. Optimize the log probability 

 

• Equivalent to minimizing some distance measure (called Kullback-Leibler divergence) 
  between the  and the empirical distribution 

max
θ

n

∑
i=1

log pθ(xi) ⇔ min
θ

D( ̂p∥pθ)

D(p ∥ q) = 𝔼p log(p/q) pθ ̂p

pθ(x) ≈ ̂p(x)



Variational autoencoders
• Training. Optimize the log probability 

 

• Equivalent to minimizing some distance measure (called Kullback-Leibler divergence) 
  between the  and the empirical distribution  

• Problem. Computing the marginal distribution is intractible: 

 

• Idea. We maximize some lower bound of , not itself 

• Called “evidence lower bound,” or simply ELBO

max
θ

n

∑
i=1

log pθ(xi) ⇔ min
θ

D( ̂p∥pθ)

D(p ∥ q) = 𝔼p log(p/q) pθ ̂p

pθ(xi) = ∫ pθ(xi |z)pθ(z) dz

pθ(x)



Evidence lower bound
• Tool. Jensen’s inequality 

• For concave function , we have  

• For convex function , we have 

f( ⋅ ) 𝔼[ f(X)] ≤ f(𝔼[X])

f( ⋅ ) 𝔼[ f(X)] ≥ f(𝔼[X])



Evidence lower bound
• For some arbitrary , we can proceed as: 

 

   

   

  

qϕ(z)

log pθ(x) = log∫ pθ(z)pθ(x |z) dz

= log∫ qϕ(z)
pθ(z)
qϕ(z)

pθ(x |z) dz

≥ ∫ qϕ(z) ⋅ log [ pθ(z)
qϕ(z)

pθ(x |z)] dz

= − D(qϕ(z)∥pθ(z)) + 𝔼z∼qϕ
[log pθ(x |z)]



Evidence lower bound
• For some arbitrary , we can proceed as: 

 

   

   

   

• Holds for any  — takes the maximum lower bound! 

• The optimal  depends on … thus write as 

qϕ(z)

log pθ(x) = log∫ pθ(z)pθ(x |z) dz

= log∫ qϕ(z)
pθ(z)
qϕ(z)

pθ(x |z) dz

≥ ∫ qϕ(z) ⋅ log [ pθ(z)
qϕ(z)

pθ(x |z)] dz

= − D(qϕ(z)∥pθ(z)) + 𝔼z∼qϕ
[log pθ(x |z)]

qϕ(z)

qϕ(z) x qϕ(z |x)

Sample from  and measure the lossqϕ(z)



Evidence lower bound
• In a nutshell, we are doing 

max
θ

log pθ(xi) ≥ max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])



Evidence lower bound
• In a nutshell, we are doing 

 

• Question. How do we model ? 

• Answer. Jointly train a probabilistic encoder that expresses  

• Question. How do we implement a probabilistic encoder?

max
θ

log pθ(xi) ≥ max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

qϕ(z |x)

qϕ(z |x)



Reparametrization Trick
• Idea (Reparametrization Trick). Model  as a conditional Gaussian  

•  are learned with a neural network, instead.

qϕ(z |x) 𝒩(μx, σ2
x)

μx, σx



Reparametrization Trick
• Idea (Reparametrization Trick). Model  as a conditional Gaussian  

•  are learned with a neural network, instead 

• Now. look at the optimization problem 

 

• Let us look at the 2nd term, and then the 1st term: 

• If we use the model , the 2nd term becomes 

 

• That is, simply use the squared loss! 
(a bit more complicated if variances are also trained for each dimension)

qϕ(z |x) 𝒩(μx, σ2
x)

μx, σx

max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

pθ(xi |z) = 𝒩( fθ(z), η ⋅ Id)

−𝔼qϕ(⋅|xi) [ 1
2η

∥xi − fθ(zi)∥2] + const .



Reparametrization Trick
 

• If we use the Gaussian encoder  

              

then this simply becomes the 
squared regularizers on  and  

• Check by yourself! 

• Thus, a squared loss and a 
squared regularizer

max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

qϕ = 𝒩(μxi
, σxi

⋅ Ik)

μ σ



Properties
• Pros. Known to enjoy nice disentanglement



Properties
• Pros. Known to enjoy nice disentanglement



Properties
• Pros. Known to enjoy nice disentanglement 

• Cons. Known to be less “sharp,” with much noises 

• Clearly distinguishable from the real images 
(Take these with a grain of salt, as technologies advance fast!)



Generative Adversarial Nets



Generative Adversarial Nets
• Idea. Train explicitly for “hard to distinguish” properties 

• View generative process as a two-player game 

• Generator. Tries to fool the discriminator 

• Discriminator. Tries to distinguish the real / fake images

Dθ(x) = {1 ⋯ if fake
0 ⋯ if real



Generative Adversarial Nets
• Training. Jointly train the generator and discriminator 

• Objective. Minimax function  

 

• Discriminator outputs the likelihood of being real  

• This training objective is actually equivalent to the Jensen-Shannon divergence 

min
θg

max
θd

[𝔼x∼ ̂p log Dθd
(x) + 𝔼z∼p(z) log(1 − Dθd

∘ Gθg
(z))]

Dθd
(x) ∈ [0,1]

D (pθ
̂p + pθ

2 ) + D ( ̂p
̂p + pθ

2 )

Discriminator declares 
real image to be real

Discriminator declares 
fake image to be fake



Generative Adversarial Nets



Generative Adversarial Nets
• Architecture. Generator uses convolutional layers, of course.



• Such training can give very sharp images

Results



• Idea. Add class/text information to the latent code 

• Generate realistic images under specific conditions

Conditional GAN



Conditional GAN



• Training GANs is known to be a very unstable procedure 

• If the discriminator works too well, the generator gives up learning 

• If the generator works too well, the discriminator cannot find meaningful patterns

Pitfalls



• As a result, overfit to few good solutions 

• Called “mode collapse” 

Pitfalls



Next class
• Diffusion model



Cheers


