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- Generative Modeling.

Using unlabeled trai

ning data Xy, .

approximate the da

pH(X) ~ pdata(X)

Recap

ces Xy Y pdata(X)'
‘[a-generating distribution such that

- Classic Example. Gaussian mixture models
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- Helps you evaluate how likely each data is:

- Anomaly detection, novelty detection
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Generative Modeling

- In modern contexts, generative modeling has extended boundaries.

- Modern example. Suppose that we have learned a good model on the joint distribution

pé’(Xa y) ~ pdata(Xa )’)

from the image-text pairs {(X,y) }'_; crawled from web (treat z = (X, y) as an unlabeled data)

shakeshack & -« Follow

shakeshack £ We're proud to show
our true colors. Z*Our last #Pride
Month feature spotlights Kevin Rabell,
Recruiting Manager at the Shack Home
Office, and is all about authenticity.
Check it out on our Story + stay tuned
as our team hits the streets for the NYC
Pride March! E&S#shakeshack
#shackpride




OpenAl “CLIP”

Generative Modeling

- With a good generative model, we can do the following things:

- (Generative) Classification. Use the Bayes rule to do

P Q(Xa Y )
Po(X)

Py |X) =

Food101
guacamole (90.1%) Ranked 1out of 101 labels

v aphoto of guacamole, a type of food.

X a photo of ceviche, a type of food.

X a photo of edamame, a type of food.

X a photo of tuna tartare, a type of food.

X a photo of hummus, a type of food.




Generative Modeling

- Text-conditional Generation. Input
Use the Bayes rule the other way—

An astronaut riding a horse in photorealistic style.

Generate an image that corresponad
to an arbitrary text

Output

P Q(Xa Y )
Po(y)

pPo(X|y) =




Generative Modeling

- Image inpainting. Generate some part of the image that correspond to other parts:

Do | X1y ey X 15 Xjpgs o ves Xg)

R AR,




Generative Modeling

- Text generation. Generate the next text word that correspond to the given text

PoVps1 | V15 y,)

@ You

To study Al, where should | go? Please give a detailed answer.

ChatGPT

To study Al, there are several excellent institutions and universities around the world that offer
comprehensive programs and research opportunities. POSTECH is one of them, but there are
many others as well. The choice of where to study Al depends on various factors such as your

academic interests, location preferences, budget, and career goals.

Here are some top institutions known for their Al programs and research:



Today

- Focusing on the generative modeling for images
- Will cover multimodal cases later
e vs. Language.

- Need to generate many pixels for high-resolution images
(Challenging to generate “realistic” ones)

- More locality involved, with 2D/3D geometry



Autoencoders



Basic autoencoders

- An approach that has been used for representation learning, initially

- |ldea. Train a neural network that can do PCA

- Replace the linear model with neural networks

. Use SGD to solve min E_ ||x — f(g(x))||*
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Basic autoencoders

» Note. A trivial solution f( - ) = g( - ) = Identity can happen

. Avoidable with the hourglass structure
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Denoising autoencoders

. A regularization technigque to avoid learning trivial solutions.
. Idea. Add noise to the input image, an train to recover a clean image
- Never solved by identity functions
- Requires understanding how real images look like:
. Tell apart from the random noise

- Other examples. Sparse autoencoders ...

Encoder Decoder

Original Image Noisy Input Code Output



Variational autoencoders

- Takes a similar structure, but guite different from the typical autoencoders

« Goal. Train a decoder and a distribution such that:

- Input. We send in a distribution p,(z)

. Output. We get a data-generating distribution pg(X) & pPaea(X)

= | Decoder|™

Po(Z) Po(X) X Piara(X)



Variational autoencoders

- Training. Optimize the log probability

max Z log py(x;) < min D(p||py)
O ’

- Equivalent to minimizing some distance measure (called Kullback-Leibler divergence)

D(p || ¢) = E,log(p/q) between the p,y and the empirical distribution p

i1

Po(X) = p(X)



Variational autoencoders

- Problem. Computing the marginal distribution is intractible:

Po(X;) = [Pe(Xi | 2)py(z) dz

. ldea. We maximize some lower bound of py(X), not itself

- Called “evidence lower bound,” or simply ELBO



Evidence lower bound

- Tool. Jensen's inequality

. For concave function f( - ), we have E[ f(X)] < f(E[X])
. For convex function f( - ), we have E[ f(X)] > f(E[X])

Concave




Evidence lower bound

. For some arbitrary q¢(z), we can proceed as:

log py(x) = log J Po(Z)py(X|z) dz

(Z)
= log JQ¢(Z) ZZ 2) py(X|2z) dz

Po(Z)
q4(Z)

> Jq¢<z>-log l p9<x\z>] dz

— = D(ng(Z)HPQ(Z)) + _z~q¢[10gp6’(x ‘ Z)]




Evidence lower bound

— D(q,(2)||py(2)) + og py(x|2z)]| sample from q4(2) and measure the loss
olds for any q¢(z) — takes the maximum lower bound!

. The optimal g,4(z) depends on X... thus write as g ,(Z | X)



Evidence lower bound

. In a nutshell, we are doing

mglx log py(x;) > mglx m;x (— D(q¢(z | X)||py(2)) + E g ¢(-\X,~)[10g Py(X: | Z)])




Evidence lower bound

» Question. How do we model g ,(z | x)?

. Answer. Jointly train a probabilistic encoder that expresses q¢(z | X)

e Question. How do we implement a probabilistic encoder?

]I l]l Gl

Latent ,‘
Input Encoder Space Decodel Output



Reparametrization Trick

» Idea (Reparametrization Trick). Model g,(z | X) as a conditional Gaussian (i, G)%)

. U,, O, are learned with a neural network, instead.

|deally they are identical.

X ~ x’

Probabilistic Encoder

q¢(z]x)

Mean

Std. dev

Z—=—Uu+0o®E
€

~ N(0

G

’ .

An compressed low dimensional

Sampled
latent vector

representation of the input.

Probabilistic

Decoder

po(x|z)

Reconstructed
input




Reparametrization Trick

« Now. ook at the optimization problem

mng Hl(/?X <— D(61¢(Z | x)||py(2)) + _q¢(-|xi)[10g Po(X; | Z)])

e | etuslookatthe 2nd term, and then the 1st term:

» If we use the model py(X;|z) = N (fy(2),n - 1), the 2nd term becomes

1 2
—Eg,01x) z—n\IX, — Jo(Z)|

« Thatis, simply use the squared loss!

+ const.




Reparametrization Trick

meaX m(/?X <— D(q,(z|x)||py(2)) + _q¢(-|xi)[10g Po(X; | Z)]>

e |f we use the Gaussian encoder

Q¢ — /V(//txi, Gxi ‘ Ik)
then this simply becomes the \ /
squared regularizers on p and o neural network neural network

encoder decoder

« Check by yourself! / \

e Thus, a squared loss and @
squared regularizer

loss = ||x-x]|P + KL N, 1)1 = || x-d(2) ||? + KL ,N(O, ) ]



Properties

« Pros. Known to enjoy nice disentanglement

data manifold for 2-d z
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Properties

« Pros. Known to enjoy nice disentanglement

—%+Ej=

woman

man
with glasses without glasses without glasses

woman with glasses



Properties

« Cons. Known to be less “sharp,” with much noises

« Clearly distinguishable from the real images
(Take these with a grain of salt, as technologies advance fast!)




Generative Aaversarial Nets



(Generative Adversarial Nets

. Idea. Train explicitly for “hard to distinguish” properties
- View generative process as a two-player game

« Generator. Tries to fool the discriminator

. Discriminator. Tries to distinguish the real / fake images

Y

Z®  Generator "% FakeData ~
Fake?
* . random code (latent vector) Discriminator — Real?
Real Data
1 .- 1f fake
O - ifreal




(Generative Adversarial Nets

- Training. Jointly train the generator and discriminator

« Objective. Minimax function

min max [_XNﬁ log Dy (x) + £,y [log(1 — Dy o Ggg(Z))]

0, 0,

Discriminator declares|Discriminator declares
real image to be real  |fake image to be fake

. Discriminator outputs the likelihood of being real Ded(X) e [0,1]

- This training objective is actually equivalent to the Jensen-Shannon divergence

P+ Dy RIVESZ
D<p9 2 )+D<” 2 )
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(Generative Adversarial Nets
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(Generative Adversarial Nets

. Architecture. Generator uses convolutional layers, of course.

4

100 z - @

Stride 2 16

Project and reshape CONV 1
CONV 2 — 64




Results

.+ Such training can give very sharp images
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- Generate realistic images under specific conditions

Conditional GAN

- ldea. Add class/text information to the latent code

True/False
D
Real Fake
G
Z
GAN

True/False

D

Real Fake

G

z (optional) C

Conditional GAN



Conditional GAN

Van Gogh Cezanne Ukiyo-¢

- '«1




Pittalls

 Training GANs is known to be a very unstable procedure
. |t the discriminator works too well, the generator gives up learning

- |f the generator works too well, the discriminator cannot find meaningful patterns
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Pittalls

- As a result, overfit to few good solutions

100k steps
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.« Called “mode collapse”



Next class

« Diffusion model



Cheers



