
Fall 2024

EECE454 Intro. to Machine Learning Systems

Vision:
Generative Modeling - 1

Recap
• Generative Modeling.

Using unlabeled training data ,
approximate the data-generating distribution such that

• Classic Example. Gaussian mixture models

• The cluster information may help performing the
downstream classification

• Helps you evaluate how likely each data is:

• Anomaly detection, novelty detection

x1, …, xn ∼ pdata(x)

pθ(x) ≈ pdata(x)

Generative Modeling
• In modern contexts, generative modeling has extended boundaries.

• Modern example. Suppose that we have learned a good model on the joint distribution

 from the image-text pairs crawled from web (treat as an unlabeled data)

pθ(x, y) ≈ pdata(x, y)

{(x, y)}n
i=1 z = (x, y)

Generative Modeling
• With a good generative model, we can do the following things:

• (Generative) Classification. Use the Bayes rule to do

 pθ(y |x) =
pθ(x, y)
pθ(x)

OpenAI “CLIP”

Generative Modeling
• Text-conditional Generation.

Use the Bayes rule the other way—

Generate an image that correspond
to an arbitrary text

 pθ(x |y) =
pθ(x, y)
pθ(y)

Generative Modeling
• Image inpainting. Generate some part of the image that correspond to other parts:

pθ(xi |x1, …, xi−1, xi+1, …, xd)

Generative Modeling
• Text generation. Generate the next text word that correspond to the given text

pθ(yn+1 |y1, …, yn)

Today
• Focusing on the generative modeling for images

• Will cover multimodal cases later

• vs. Language.

• Need to generate many pixels for high-resolution images
(Challenging to generate “realistic” ones)

• More locality involved, with 2D/3D geometry

Autoencoders

Basic autoencoders
• An approach that has been used for representation learning, initially

• Idea. Train a neural network that can do PCA

• Replace the linear model with neural networks

• Use SGD to solve min
f,g

𝔼x∥x − f(g(x))∥2

x z x̂Uenc Udec

Representation g(x) Output f(g(x))

f(⋅)g(⋅)

Input x

Representation g(x) Output f(g(x))

f(⋅)g(⋅)

Input x

Basic autoencoders
• An approach that has been used for representation learning, initially

• Idea. Train a neural network that can do PCA

• Replace the linear model with neural networks

• Use SGD to solve

• Note. A trivial solution can happen

• Avoidable with the hourglass structure (or other regularizations)

min
f,g

𝔼x∥x − f(g(x))∥2

f(⋅) = g(⋅) = Identity

Denoising autoencoders
• A regularization technique to avoid learning trivial solutions.

• Idea. Add noise to the input image, an train to recover a clean image

• Never solved by identity functions

• Requires understanding how real images look like:

• Tell apart from the random noise

• Other examples. Sparse autoencoders …

Variational autoencoders
• Takes a similar structure, but quite different from the typical autoencoders

• Goal. Train a decoder and a distribution such that:

• Input. We send in a distribution

• Output. We get a data-generating distribution

pθ(z)

pθ(x) ≈ pdata(x)

pθ(z) pθ(x) ≈ pdata(x)

pθ(x |z)

Variational autoencoders
• Training. Optimize the log probability

• Equivalent to minimizing some distance measure (called Kullback-Leibler divergence)
 between the and the empirical distribution

max
θ

n

∑
i=1

log pθ(xi) ⇔ min
θ

D(̂p∥pθ)

D(p ∥ q) = 𝔼p log(p/q) pθ ̂p

pθ(x) ≈ ̂p(x)

Variational autoencoders
• Training. Optimize the log probability

• Equivalent to minimizing some distance measure (called Kullback-Leibler divergence)
 between the and the empirical distribution

• Problem. Computing the marginal distribution is intractible:

• Idea. We maximize some lower bound of , not itself

• Called “evidence lower bound,” or simply ELBO

max
θ

n

∑
i=1

log pθ(xi) ⇔ min
θ

D(̂p∥pθ)

D(p ∥ q) = 𝔼p log(p/q) pθ ̂p

pθ(xi) = ∫ pθ(xi |z)pθ(z) dz

pθ(x)

Evidence lower bound
• Tool. Jensen’s inequality

• For concave function , we have

• For convex function , we have

f(⋅) 𝔼[f(X)] ≤ f(𝔼[X])

f(⋅) 𝔼[f(X)] ≥ f(𝔼[X])

Evidence lower bound
• For some arbitrary , we can proceed as:

qϕ(z)

log pθ(x) = log∫ pθ(z)pθ(x |z) dz

= log∫ qϕ(z)
pθ(z)
qϕ(z)

pθ(x |z) dz

≥ ∫ qϕ(z) ⋅ log [pθ(z)
qϕ(z)

pθ(x |z)] dz

= − D(qϕ(z)∥pθ(z)) + 𝔼z∼qϕ
[log pθ(x |z)]

Evidence lower bound
• For some arbitrary , we can proceed as:

• Holds for any — takes the maximum lower bound!

• The optimal depends on … thus write as

qϕ(z)

log pθ(x) = log∫ pθ(z)pθ(x |z) dz

= log∫ qϕ(z)
pθ(z)
qϕ(z)

pθ(x |z) dz

≥ ∫ qϕ(z) ⋅ log [pθ(z)
qϕ(z)

pθ(x |z)] dz

= − D(qϕ(z)∥pθ(z)) + 𝔼z∼qϕ
[log pθ(x |z)]

qϕ(z)

qϕ(z) x qϕ(z |x)

Sample from and measure the lossqϕ(z)

Evidence lower bound
• In a nutshell, we are doing

max
θ

log pθ(xi) ≥ max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

Evidence lower bound
• In a nutshell, we are doing

• Question. How do we model ?

• Answer. Jointly train a probabilistic encoder that expresses

• Question. How do we implement a probabilistic encoder?

max
θ

log pθ(xi) ≥ max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

qϕ(z |x)

qϕ(z |x)

Reparametrization Trick
• Idea (Reparametrization Trick). Model as a conditional Gaussian

• are learned with a neural network, instead.

qϕ(z |x) 𝒩(μx, σ2
x)

μx, σx

Reparametrization Trick
• Idea (Reparametrization Trick). Model as a conditional Gaussian

• are learned with a neural network, instead

• Now. look at the optimization problem

• Let us look at the 2nd term, and then the 1st term:

• If we use the model , the 2nd term becomes

• That is, simply use the squared loss!
(a bit more complicated if variances are also trained for each dimension)

qϕ(z |x) 𝒩(μx, σ2
x)

μx, σx

max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

pθ(xi |z) = 𝒩(fθ(z), η ⋅ Id)

−𝔼qϕ(⋅|xi) [1
2η

∥xi − fθ(zi)∥2] + const .

Reparametrization Trick

• If we use the Gaussian encoder

then this simply becomes the
squared regularizers on and

• Check by yourself!

• Thus, a squared loss and a
squared regularizer

max
θ

max
ϕ (− D(qϕ(z |xi)∥pθ(z)) + 𝔼qϕ(⋅|xi)[log pθ(xi |z)])

qϕ = 𝒩(μxi
, σxi

⋅ Ik)

μ σ

Properties
• Pros. Known to enjoy nice disentanglement

Properties
• Pros. Known to enjoy nice disentanglement

Properties
• Pros. Known to enjoy nice disentanglement

• Cons. Known to be less “sharp,” with much noises

• Clearly distinguishable from the real images
(Take these with a grain of salt, as technologies advance fast!)

Generative Adversarial Nets

Generative Adversarial Nets
• Idea. Train explicitly for “hard to distinguish” properties

• View generative process as a two-player game

• Generator. Tries to fool the discriminator

• Discriminator. Tries to distinguish the real / fake images

Dθ(x) = {1 ⋯ if fake
0 ⋯ if real

Generative Adversarial Nets
• Training. Jointly train the generator and discriminator

• Objective. Minimax function

• Discriminator outputs the likelihood of being real

• This training objective is actually equivalent to the Jensen-Shannon divergence

min
θg

max
θd

[𝔼x∼ ̂p log Dθd
(x) + 𝔼z∼p(z) log(1 − Dθd

∘ Gθg
(z))]

Dθd
(x) ∈ [0,1]

D (pθ
̂p + pθ

2) + D (̂p
̂p + pθ

2)

Discriminator declares
real image to be real

Discriminator declares
fake image to be fake

Generative Adversarial Nets

Generative Adversarial Nets
• Architecture. Generator uses convolutional layers, of course.

• Such training can give very sharp images

Results

• Idea. Add class/text information to the latent code

• Generate realistic images under specific conditions

Conditional GAN

Conditional GAN

• Training GANs is known to be a very unstable procedure

• If the discriminator works too well, the generator gives up learning

• If the generator works too well, the discriminator cannot find meaningful patterns

Pitfalls

• As a result, overfit to few good solutions

• Called “mode collapse”

Pitfalls

Next class
• Diffusion model

Cheers

