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Training neural networks



Recap
• Last week. What deep learning is, and how we train deep neural networks 

• Basic algorithm: Stochastic Gradient Descent (SGD) 

θ(t+1) = θ(t) − η ⋅ ∇̂θL(θ)



Recap
• Last week. What deep learning is, and how we train deep neural networks 

• Basic algorithm: Stochastic Gradient Descent (SGD) 

 

• Evaluating the gradients required backpropagation: 

• Forward: Compute intermediate activations and store them in memory 

 

• Backward: Combine modular gradients to compute the gradient via chain rule 

 

θ(t+1) = θ(t) − η ⋅ ∇̂θL(θ)

z = f1(x; W1), f(x) = f2(z; W2)

∂f
∂W1

=
∂f2
∂z

∂f1
∂W1



This week
• Neural net training is actually quite difficult; can lead to … 

• Fails to converge to a well-generalizing 

• Excessive time / computation for convergence 



Source: Meta AI, “OPT: Open Pre-trained Transformer Language Models,” 2022



https://github.com/google-research/tuning_playbook

https://github.com/google-research/tuning_playbook


This week
• Fortunately, people tend to agree on basic principles 

• Today. Setting up the training 

• Gradients and activation functions 

• Data preprocessing 

• Normalization layers 

• Parameter Initialization



This week
• Fortunately, people tend to agree on basic principles 

• Today. Setting up the training 

• Gradients and activation functions 

• Data preprocessing 

• Normalization 

• Parameter Initialization 

• Next class. Tuning the training process 

• Learning rates 

• Batch size 

• Regularizers 

• Optimizers 

• Hyperparameter tuning and troubleshooting



Activation functions



Fall of sigmoids
• Recall. Sigmoidal activations were popular in the past 

• Similar to , and serves as a good surrogate 

• Biological interpretation as a firing rate of a neuron 

• Easy to compute the gradient — 

1[ ⋅ ]

σ′￼(x) = σ(x) ⋅ (1 − σ(x))



Fall of sigmoids
• Recall. Sigmoidal activations were popular in the past 

• Similar to , and serves as a good surrogate 

• Biological interpretation as a firing rate of a neuron 

• Easy to compute the gradient —  

• Eventually. Became less popular, due to several reasons 

• Vanishing gradient problem 

• Not zero-centered 

• Not memory-/computation-efficient

1[ ⋅ ]

σ′￼(x) = σ(x) ⋅ (1 − σ(x))



1. Vanishing gradients
• Problem. If we make networks deeper, sigmoids make the gradient vanish for certain layers!



1. Vanishing gradients
• Problem. If we make networks deeper, sigmoids make the gradient vanish for certain layers! 

• 1-layer net. Suppose that we have a predictor  

• Gradient.  

• Max scale:          (mostly zero)

f(x) = σ(wx)

∇w f(x) = σ′￼(wx) ⋅ x

x/4



1. Vanishing gradients
• Problem. If we make networks deeper, sigmoids make the gradient vanish for certain layers! 

• 1-layer net. Suppose that we have a predictor  

• Gradient.  

• Max scale:  

• Deep net. Suppose that we have a predictor  

• 1st layer gradient.  

• Max scale:  

• Lth layer gradient. 

f(x) = σ(wx)

∇w f(x) = σ′￼(wx) ⋅ x

x/4

f(x) = σ(wL ⋅ σ(⋯σ(w1 ⋅ x)⋯)

∇w1
f(x) = σ′￼(wL ⋅ zL) ⋅ σ′￼(wL−1zL−1) ⋅ ⋯ ⋅ σ′￼(w1 ⋅ x) ⋅ x

x/4L

∇wL
f(x) = σ′￼(wL ⋅ zL) ⋅ zL



1. Vanishing gradients
• This results in a severe imbalance in layer-wise gradient 

• The parameters in the early layers will not be utilized well



2. Not zero-centered
• Problem. Gradients of sigmoidal net is either all-positive or all-negative!



2. Not zero-centered
• Problem. Gradients of sigmoidal net is either all-positive or all-negative! 

• Consider a sigmoidal neuron   

• Gradient for ith weight. 

f(x) = σ (w⊤x)
∇wi

f(x) = σ′￼(w⊤x) ⋅ xi

positive, if also sigmoid outputspositive



2. Not zero-centered
• Problem. Gradients of sigmoidal net is either all-positive or all-negative! 

• Consider a sigmoidal neuron   

• Gradient for ith weight.  

• If the loss derivative is positive —> all gradients are positive 

• If the loss derivative is negative —> all gradients are negative 

• Results in a suboptimal zig zag path 
(less problematic when we use multiple samples) 

• Can be mitigated if inputs  are zero-centered

f(x) = σ (w⊤x)
∇wi

f(x) = σ′￼(w⊤x) ⋅ xi

{xi}



3. Efficiency
• Inference. Need to compute the function  

• Complicated to implement with hardwares… 

• Speedup by utilizing look-up tables

σ(t) = 1/(1 + exp(−t))



3. Efficiency
• Inference. Need to compute the function  

• Complicated to implement with hardwares… 

• Speedup by utilizing look-up tables 

• Training. Need to compute the gradient  

• Requires storing the  computed during the forward phase 

• Requires floating point multiplications

σ(t) = 1/(1 + exp(−t))

σ′￼(t) = σ(t)(1 − σ(t))

σ(t)



Better activations
• Noticing this problem, alternative activations have been used. 

• Tanh. Zero-centered V 
            Non-vanishing gradient X 
            Computational efficiency X



Better activations
• Noticing this problem, alternative activations have been used. 

• Tanh. Zero-centered V 
            Non-vanishing gradient X 
            Computational efficiency X 

• ReLU. Zero-centered X/V 
            Non-vanishing gradient ? 
            Computational efficiency V 

• Converges faster in practice (e.g., 6x) 

• Can be made zero-centered via normalization (later)  

• Requires careful initialization to avoid vanishing gradients (later) 

• Sadly, experiences dead neuron



Dying ReLU
• Problem. Some neurons never activate! 

• Suppose that we have a ReLU neuron  

• Gradient for th connection.  

• Zero if  for most  
(e.g., most weights are negative and  is a ReLU output)

σ(w⊤x + b)

i 1[w⊤x + b ≥ 0] ⋅ xi

w⊤x < − b x
x



Dying ReLU
• Problem. Some neurons never activate! 

• Suppose that we have a ReLU neuron  

• Gradient for th connection.  

• Zero if  for most  
(e.g., most weights are negative and  is a ReLU output) 

• Solution. 

• Initialize the bias as a small-but-positive value. 

• Use “leaky” ReLU / ELU / …

σ(w⊤x + b)

i 1[w⊤x + b ≥ 0] ⋅ xi

w⊤x < − b x
x



Modern choices
• Practitioners training giant models love GeLU / Swish / … 

• Quantization people love ReLU6 

• Recommendation. Try ReLU as a default, and try these for squeezing out max performance.



Data preprocessing



Data preprocessing
• Recall that zig zag path happened when the neuron input is all-positive 

• Gradient for ith weight. ∇wi
f(x) = σ′￼(w⊤x) ⋅ xi

positive, if also sigmoid outputspositive



Data preprocessing
• Recall that zig zag path happened when the neuron input is all-positive 

• Gradient for ith weight.  

• Idea. Force data to have different signs. 

• Centering. Makes the data to have a zero-mean.

∇wi
f(x) = σ′￼(w⊤x) ⋅ xi



Data preprocessing
• Also common. For classic ML, it is typical to do: 

• Decorrelation. Make the axes have no correlation 
                           (not an idea that works for all data, e.g., image)



Data preprocessing
• Also common. For classic ML, it is typical to do: 

• Decorrelation. Make the axes have no correlation 
                           (not an idea that works for all data, e.g., image) 

• Whitening. Make each dim. have unit variance or range; avoids being biased by data scale 
                    (advanced: provably better convergence of GD)



Remarks
• In some cases, we also perform dimensionality reduction (e.g., PCA) 

• Not a good idea in general for DL



Remarks
• In some cases, we also perform dimensionality reduction (e.g., PCA) 

• Not a good idea in general for DL 

• In many practical cases (e.g., images), we only perform the centering operation 

• For CIFAR-10 data: 

• AlexNet: Subtract the mean image ([32,32,3] tensor) 

• VGG: Subtract the mean along RGB channels (i.e., 3-dimensional value)



Remarks
• In some cases, we also perform dimensionality reduction (e.g., PCA) 

• Not a good idea in general for DL 

• In many practical cases (e.g., images), we only perform the centering operation 

• For CIFAR-10 data: 

• AlexNet: Subtract the mean image ([32,32,3] tensor) 

• VGG: Subtract the mean along RGB channels (i.e., 3-dimensional value) 

• It is common to perform centering & whitening occationally in hidden layers 

• Many different ways to do it; Batch / Layer



Normalization layers



Normalization layers
• Idea. Perform centering + scaling in intermediate layers

unit variancezero-mean



Normalization layers
• Idea. Perform centering + scaling in intermediate layers 

• Batch Norm. Consider a batch of activations at some layer  

• Here,  is the batch size 

• Each activation has  channels. 

• For each dimension, apply 

 

• This is a differentiable function, so we can have it as a module in neural network

z1, …, zB

B

d

̂z( j) =
̂z( j) − 𝔼[z( j)]

Var(z( j))



Considerations
• Where to add? Mostly placed at… 

• After each linear operations, e.g., linear / convolution 

• Before activation function



Considerations
• Mostly placed at… 

• After each linear operations, e.g., linear / convolution 

• Before activation function 

• Problem. It may be harmful to place BN at all layers 

• Normalizing pre-sigmoids puts it in a linear region



Considerations
• Mostly placed at… 

• After each linear operations, e.g., linear / convolution 

• Before activation function 

• Caution. It may be harmful to place BN at all layers 

• Normalizing pre-sigmoids puts it in a linear region 

• Solution. Add a trainable linear layer: 

 

• Allows us to scale back to negate the batch norm, whenever needed.

ŷ( j) = γ( j)x̂( j) + β( j), j ∈ [d]



Considerations
• Problem. At the test time (i.e., inference phase), we don’t take data as a batch! 

• Solution. Take a running average of the mean & variance during training. 
                 Use these values at the test time! 

• These can be merged into linear layers for a speedup.



Considerations
• Problem. At the test time (i.e., inference phase), we don’t take data as a batch! 

• Solution. Take a running average of the mean & variance during training. 
                 Use these values at the test time! 

• These can be merged into linear layers for a speedup. 

• Problem. Often, there are undesired side effects 

• e.g., training instability, sensitive to distribution shift & batch size… 

• Solution. Many variants



Advantages
• In most cases, the pros outweigh the cons 

• Improves the gradient flow during training 

• Allows higher learning rate 

• Reduces the initialization sensitivity…



Parameter initializations



Initializing the weight parameters
• SGD-based optimization of NN parameters is also sensitive to initializations. 

(similar to most iterative optimizations) 

• Question. What happens if all weights are initialized as the same constant?



Random initialization
• Idea. Randomly initialize all weights, with  

• Works reasonably well for shallow nets.

w ∼ N(0,a2)



Random initialization
• Idea. Randomly initialize all weights, with  

• Works reasonably well for shallow nets. 

• Problem. For deep nets, very sensitive to the scale  

• Small . The activation  becomes very small for deep layers. 

• Thus, gradient become small in deeper layers: 

w ∼ N(0,σ2)

a

a σ(w⊤x)

∇wσ(w⊤x) = σ′￼(w⊤x) ⋅ x



Random initialization
• Large . Depends on the choice of activation functions 

• Tanh: Gradients become very small. 

• Function output          

• Gradients                    

a

σ(a ⋅ w⊤x) → {±1}

∇wσ(w⊤x) = σ′￼(w⊤x) ⋅ x

small if  is largea



Random initialization
• Large . Depends on the choice of activation functions 

• Tanh: Gradients become very small. 

• Function output          

• Gradients                     

• ReLU: Exploding gradients as the layer gets deeper 

• Function output         

• Gradients                   

a

σ(a ⋅ w⊤x) → {±1}

∇wσ(w⊤x) = σ′￼(w⊤x) ⋅ x

σ(a ⋅ w⊤x) = a ⋅ σ(w⊤x)

∇wσ(w⊤x) = σ′￼(w⊤x) ⋅ x

accumulates the scaling factor a



Weight-scaled initialization
• Idea. Choose  so that the activation variance remains constant over the layers 

• Xavier initialization (2010). Use the scaling factor 

 

• He initialization (2015). Use the scaling factor 

 

• Question. Why ?

a

a =
2

(input dim) + (output dim)

a =
2

(input dim)

1/ neurons



Weight scales
• Suppose that we have a layer with  input & output neurons. 

• The input activation is  

• The weight that connects th input neuron to th output neuron is  

• Drawn independently from  

• Goal. Make the activation scale similar: 

d

x = (x1, …, xd)

i j wij

wij ∼ N(0,a2)

∥x∥2 ≈ 𝔼∥Wx∥2



Weight scales
• Suppose that we have a layer with  input & output neurons. 

• The input activation is  

• The weight that connects th input neuron to th output neuron is  

• Drawn independently from  

• Goal. Make the activation scale similar:  

• Inspecting the weights connected to th output neuron, we have 

 

• Then, we have 

d

x = (x1, …, xd)

i j wij

wij ∼ N(0,a2)

∥x∥2 ≈ 𝔼∥Wx∥2

j

w⊤
j x ∼ N (0, a2∥x∥2)

𝔼∥Wx∥2 =
d

∑
j=1

𝔼(w⊤
j x)2 = d ⋅ a2 ⋅ ∥x∥2

should be 1, thus we have what we want



Remarks
• There are many research on how to initialize 

• Has been mostly okay with BNs, but BNs are getting faded away… 

• Many unmentioned works: 

• Orthogonal initialization 

• Identity initialization 

• Zero initialization



Cheers


