
Fall 2024

EECE454 Intro. to Machine Learning Systems

Training neural networks

Recap
• Last week. What deep learning is, and how we train deep neural networks

• Basic algorithm: Stochastic Gradient Descent (SGD)

θ(t+1) = θ(t) − η ⋅ ∇̂θL(θ)

Recap
• Last week. What deep learning is, and how we train deep neural networks

• Basic algorithm: Stochastic Gradient Descent (SGD)

• Evaluating the gradients required backpropagation:

• Forward: Compute intermediate activations and store them in memory

• Backward: Combine modular gradients to compute the gradient via chain rule

θ(t+1) = θ(t) − η ⋅ ∇̂θL(θ)

z = f1(x; W1), f(x) = f2(z; W2)

∂f
∂W1

=
∂f2
∂z

∂f1
∂W1

This week
• Neural net training is actually quite difficult; can lead to …

• Fails to converge to a well-generalizing

• Excessive time / computation for convergence

Source: Meta AI, “OPT: Open Pre-trained Transformer Language Models,” 2022

https://github.com/google-research/tuning_playbook

https://github.com/google-research/tuning_playbook

This week
• Fortunately, people tend to agree on basic principles

• Today. Setting up the training

• Gradients and activation functions

• Data preprocessing

• Normalization layers

• Parameter Initialization

This week
• Fortunately, people tend to agree on basic principles

• Today. Setting up the training

• Gradients and activation functions

• Data preprocessing

• Normalization

• Parameter Initialization

• Next class. Tuning the training process

• Learning rates

• Batch size

• Regularizers

• Optimizers

• Hyperparameter tuning and troubleshooting

Activation functions

Fall of sigmoids
• Recall. Sigmoidal activations were popular in the past

• Similar to , and serves as a good surrogate

• Biological interpretation as a firing rate of a neuron

• Easy to compute the gradient —

1[⋅]

σ′ (x) = σ(x) ⋅ (1 − σ(x))

Fall of sigmoids
• Recall. Sigmoidal activations were popular in the past

• Similar to , and serves as a good surrogate

• Biological interpretation as a firing rate of a neuron

• Easy to compute the gradient —

• Eventually. Became less popular, due to several reasons

• Vanishing gradient problem

• Not zero-centered

• Not memory-/computation-efficient

1[⋅]

σ′ (x) = σ(x) ⋅ (1 − σ(x))

1. Vanishing gradients
• Problem. If we make networks deeper, sigmoids make the gradient vanish for certain layers!

1. Vanishing gradients
• Problem. If we make networks deeper, sigmoids make the gradient vanish for certain layers!

• 1-layer net. Suppose that we have a predictor

• Gradient.

• Max scale: (mostly zero)

f(x) = σ(wx)

∇w f(x) = σ′ (wx) ⋅ x

x/4

1. Vanishing gradients
• Problem. If we make networks deeper, sigmoids make the gradient vanish for certain layers!

• 1-layer net. Suppose that we have a predictor

• Gradient.

• Max scale:

• Deep net. Suppose that we have a predictor

• 1st layer gradient.

• Max scale:

• Lth layer gradient.

f(x) = σ(wx)

∇w f(x) = σ′ (wx) ⋅ x

x/4

f(x) = σ(wL ⋅ σ(⋯σ(w1 ⋅ x)⋯)

∇w1
f(x) = σ′ (wL ⋅ zL) ⋅ σ′ (wL−1zL−1) ⋅ ⋯ ⋅ σ′ (w1 ⋅ x) ⋅ x

x/4L

∇wL
f(x) = σ′ (wL ⋅ zL) ⋅ zL

1. Vanishing gradients
• This results in a severe imbalance in layer-wise gradient

• The parameters in the early layers will not be utilized well

2. Not zero-centered
• Problem. Gradients of sigmoidal net is either all-positive or all-negative!

2. Not zero-centered
• Problem. Gradients of sigmoidal net is either all-positive or all-negative!

• Consider a sigmoidal neuron

• Gradient for ith weight.

f(x) = σ (w⊤x)
∇wi

f(x) = σ′ (w⊤x) ⋅ xi

positive, if also sigmoid outputspositive

2. Not zero-centered
• Problem. Gradients of sigmoidal net is either all-positive or all-negative!

• Consider a sigmoidal neuron

• Gradient for ith weight.

• If the loss derivative is positive —> all gradients are positive

• If the loss derivative is negative —> all gradients are negative

• Results in a suboptimal zig zag path
(less problematic when we use multiple samples)

• Can be mitigated if inputs are zero-centered

f(x) = σ (w⊤x)
∇wi

f(x) = σ′ (w⊤x) ⋅ xi

{xi}

3. Efficiency
• Inference. Need to compute the function

• Complicated to implement with hardwares…

• Speedup by utilizing look-up tables

σ(t) = 1/(1 + exp(−t))

3. Efficiency
• Inference. Need to compute the function

• Complicated to implement with hardwares…

• Speedup by utilizing look-up tables

• Training. Need to compute the gradient

• Requires storing the computed during the forward phase

• Requires floating point multiplications

σ(t) = 1/(1 + exp(−t))

σ′ (t) = σ(t)(1 − σ(t))

σ(t)

Better activations
• Noticing this problem, alternative activations have been used.

• Tanh. Zero-centered V
 Non-vanishing gradient X
 Computational efficiency X

Better activations
• Noticing this problem, alternative activations have been used.

• Tanh. Zero-centered V
 Non-vanishing gradient X
 Computational efficiency X

• ReLU. Zero-centered X/V
 Non-vanishing gradient ?
 Computational efficiency V

• Converges faster in practice (e.g., 6x)

• Can be made zero-centered via normalization (later)

• Requires careful initialization to avoid vanishing gradients (later)

• Sadly, experiences dead neuron

Dying ReLU
• Problem. Some neurons never activate!

• Suppose that we have a ReLU neuron

• Gradient for th connection.

• Zero if for most
(e.g., most weights are negative and is a ReLU output)

σ(w⊤x + b)

i 1[w⊤x + b ≥ 0] ⋅ xi

w⊤x < − b x
x

Dying ReLU
• Problem. Some neurons never activate!

• Suppose that we have a ReLU neuron

• Gradient for th connection.

• Zero if for most
(e.g., most weights are negative and is a ReLU output)

• Solution.

• Initialize the bias as a small-but-positive value.

• Use “leaky” ReLU / ELU / …

σ(w⊤x + b)

i 1[w⊤x + b ≥ 0] ⋅ xi

w⊤x < − b x
x

Modern choices
• Practitioners training giant models love GeLU / Swish / …

• Quantization people love ReLU6

• Recommendation. Try ReLU as a default, and try these for squeezing out max performance.

Data preprocessing

Data preprocessing
• Recall that zig zag path happened when the neuron input is all-positive

• Gradient for ith weight. ∇wi
f(x) = σ′ (w⊤x) ⋅ xi

positive, if also sigmoid outputspositive

Data preprocessing
• Recall that zig zag path happened when the neuron input is all-positive

• Gradient for ith weight.

• Idea. Force data to have different signs.

• Centering. Makes the data to have a zero-mean.

∇wi
f(x) = σ′ (w⊤x) ⋅ xi

Data preprocessing
• Also common. For classic ML, it is typical to do:

• Decorrelation. Make the axes have no correlation
 (not an idea that works for all data, e.g., image)

Data preprocessing
• Also common. For classic ML, it is typical to do:

• Decorrelation. Make the axes have no correlation
 (not an idea that works for all data, e.g., image)

• Whitening. Make each dim. have unit variance or range; avoids being biased by data scale
 (advanced: provably better convergence of GD)

Remarks
• In some cases, we also perform dimensionality reduction (e.g., PCA)

• Not a good idea in general for DL

Remarks
• In some cases, we also perform dimensionality reduction (e.g., PCA)

• Not a good idea in general for DL

• In many practical cases (e.g., images), we only perform the centering operation

• For CIFAR-10 data:

• AlexNet: Subtract the mean image ([32,32,3] tensor)

• VGG: Subtract the mean along RGB channels (i.e., 3-dimensional value)

Remarks
• In some cases, we also perform dimensionality reduction (e.g., PCA)

• Not a good idea in general for DL

• In many practical cases (e.g., images), we only perform the centering operation

• For CIFAR-10 data:

• AlexNet: Subtract the mean image ([32,32,3] tensor)

• VGG: Subtract the mean along RGB channels (i.e., 3-dimensional value)

• It is common to perform centering & whitening occationally in hidden layers

• Many different ways to do it; Batch / Layer

Normalization layers

Normalization layers
• Idea. Perform centering + scaling in intermediate layers

unit variancezero-mean

Normalization layers
• Idea. Perform centering + scaling in intermediate layers

• Batch Norm. Consider a batch of activations at some layer

• Here, is the batch size

• Each activation has channels.

• For each dimension, apply

• This is a differentiable function, so we can have it as a module in neural network

z1, …, zB

B

d

̂z(j) =
̂z(j) − 𝔼[z(j)]

Var(z(j))

Considerations
• Where to add? Mostly placed at…

• After each linear operations, e.g., linear / convolution

• Before activation function

Considerations
• Mostly placed at…

• After each linear operations, e.g., linear / convolution

• Before activation function

• Problem. It may be harmful to place BN at all layers

• Normalizing pre-sigmoids puts it in a linear region

Considerations
• Mostly placed at…

• After each linear operations, e.g., linear / convolution

• Before activation function

• Caution. It may be harmful to place BN at all layers

• Normalizing pre-sigmoids puts it in a linear region

• Solution. Add a trainable linear layer:

• Allows us to scale back to negate the batch norm, whenever needed.

ŷ(j) = γ(j)x̂(j) + β(j), j ∈ [d]

Considerations
• Problem. At the test time (i.e., inference phase), we don’t take data as a batch!

• Solution. Take a running average of the mean & variance during training.
 Use these values at the test time!

• These can be merged into linear layers for a speedup.

Considerations
• Problem. At the test time (i.e., inference phase), we don’t take data as a batch!

• Solution. Take a running average of the mean & variance during training.
 Use these values at the test time!

• These can be merged into linear layers for a speedup.

• Problem. Often, there are undesired side effects

• e.g., training instability, sensitive to distribution shift & batch size…

• Solution. Many variants

Advantages
• In most cases, the pros outweigh the cons

• Improves the gradient flow during training

• Allows higher learning rate

• Reduces the initialization sensitivity…

Parameter initializations

Initializing the weight parameters
• SGD-based optimization of NN parameters is also sensitive to initializations.

(similar to most iterative optimizations)

• Question. What happens if all weights are initialized as the same constant?

Random initialization
• Idea. Randomly initialize all weights, with

• Works reasonably well for shallow nets.

w ∼ N(0,a2)

Random initialization
• Idea. Randomly initialize all weights, with

• Works reasonably well for shallow nets.

• Problem. For deep nets, very sensitive to the scale

• Small . The activation becomes very small for deep layers.

• Thus, gradient become small in deeper layers:

w ∼ N(0,σ2)

a

a σ(w⊤x)

∇wσ(w⊤x) = σ′ (w⊤x) ⋅ x

Random initialization
• Large . Depends on the choice of activation functions

• Tanh: Gradients become very small.

• Function output

• Gradients

a

σ(a ⋅ w⊤x) → {±1}

∇wσ(w⊤x) = σ′ (w⊤x) ⋅ x

small if is largea

Random initialization
• Large . Depends on the choice of activation functions

• Tanh: Gradients become very small.

• Function output

• Gradients

• ReLU: Exploding gradients as the layer gets deeper

• Function output

• Gradients

a

σ(a ⋅ w⊤x) → {±1}

∇wσ(w⊤x) = σ′ (w⊤x) ⋅ x

σ(a ⋅ w⊤x) = a ⋅ σ(w⊤x)

∇wσ(w⊤x) = σ′ (w⊤x) ⋅ x

accumulates the scaling factor a

Weight-scaled initialization
• Idea. Choose so that the activation variance remains constant over the layers

• Xavier initialization (2010). Use the scaling factor

• He initialization (2015). Use the scaling factor

• Question. Why ?

a

a =
2

(input dim) + (output dim)

a =
2

(input dim)

1/ neurons

Weight scales
• Suppose that we have a layer with input & output neurons.

• The input activation is

• The weight that connects th input neuron to th output neuron is

• Drawn independently from

• Goal. Make the activation scale similar:

d

x = (x1, …, xd)

i j wij

wij ∼ N(0,a2)

∥x∥2 ≈ 𝔼∥Wx∥2

Weight scales
• Suppose that we have a layer with input & output neurons.

• The input activation is

• The weight that connects th input neuron to th output neuron is

• Drawn independently from

• Goal. Make the activation scale similar:

• Inspecting the weights connected to th output neuron, we have

• Then, we have

d

x = (x1, …, xd)

i j wij

wij ∼ N(0,a2)

∥x∥2 ≈ 𝔼∥Wx∥2

j

w⊤
j x ∼ N (0, a2∥x∥2)

𝔼∥Wx∥2 =
d

∑
j=1

𝔼(w⊤
j x)2 = d ⋅ a2 ⋅ ∥x∥2

should be 1, thus we have what we want

Remarks
• There are many research on how to initialize

• Has been mostly okay with BNs, but BNs are getting faded away…

• Many unmentioned works:

• Orthogonal initialization

• Identity initialization

• Zero initialization

Cheers

