Training neural networks

-ECE454 Intro. to Machine Learning systems

Fall 2024

Recap

- Last week. What deep learning is, and how we train deep neural networks

. Basic algorithm: Stochastic Gradient Descent (SGD)

o) = 90 — . V,L(6)

Recap

- Evaluating the gradients required backpropagation:

- Forward: Compute intermediate activations and store them in memory

2= W), fx) =z W)
- Backward: Combine modular gradients to compute the gradient via chain rule

of o o
OWI 0z awl

This week

- Neural net training is actually quite difficult; can lead to ...
. Fails to converge to a well-generalizing

- Excessive time / computation for convergence

05~ Single Model 0oy Sh.apshfotEn»s.embIe S

04 Standard LR Schedule /}\\ ~~ ~ ~ o04] Cyclic LR Schedule : [/}
S 0 L AV) PO ST T N I AN

Source: Meta Al, “OPT: Open Pre-trained Transformer Language Models,” 2022

2.5 Training Processes

Here we describe significant training process ad-
justments that arose during OPT-175B pre-training.

Hardware Failures We faced a significant num-

ber of hardware failures in our compute cluster

while training OPT-175B. In total, hardware fail-
ures contributed to at least 35 manual restarts and
the cycling of over 100 hosts over the course of 2
months. During manual restarts, the training run
was paused, and a series of diagnostics tests were
conducted to detect problematic nodes. Flagged
nodes were then cordoned off and training was re-
sumed from the last saved checkpoint. Given the
difference between the number of hosts cycled out
and the number of manual restarts, we estimate 70+
automatic restarts due to hardware failures.

Loss Divergences Loss divergences were also an
i1ssue in our training run. When the loss diverged,
we found that lowering the learning rate and restart-
ing from an earlier checkpoint allowed for the job
to recover and continue training. We noticed a cor-
relation between loss divergence, our dynamic loss

scalar crashing to 0, and the /*-norm of the activa-
tions of the final layer spiking. These observations
led us to pick restart points for which our dynamic
loss scalar was still in a “healthy” state (> 1.0),
and after which our activation norms would trend
downward instead of growing unboundedly. Our
empirical LR schedule 1s shown in Figure 1. Early
in training, we also noticed that lowering gradient
clipping from 1.0 to 0.3 helped with stability; see
our released logbook for exact details. Figure 2
shows our validation loss with respect to training
iterations.

Other Mid-flight Changes We conducted a
number of other experimental mid-flight changes
to handle loss divergences. These included: switch-
ing to vanilla SGD (optimization plateaued quickly,
and we reverted back to AdamW); resetting the dy-
namic loss scalar (this helped recover some but not
all divergences); and switching to a newer version
of Megatron (this reduced pressure on activation
norms and improved throughput).

https://github.com/google-research/tuning_playbook

[0 README [License

Deep Learning Tuning Playbook

This is not an officially supported Google product.
Varun Godbole”, George E. Dahl’, Justin Gilmer', Christopher J. Shallue®, Zachary Nado"
T Google Research, Brain Team

* Harvard University

Table of Contents

e Who is this document for?

e Why a tuning playbook?

e Guide for starting a new project

o Choosing the model architecture

o Choosing the optimizer

https://github.com/google-research/tuning_playbook

This week

- Fortunately, people tend to agree on basic principles
- Today. Setting up the training
 Gradients and activation functions
 Data preprocessing
- Normalization layers

. Parameter |nitialization

This week

- Next class. Tuning the training process
- Learning rates
+ Batch size
- Regularizers
- Optimizers

- Hyperparameter tuning and troubleshooting

Activation functions

Fall of sigmoids

- Recall. Sigmoidal activations were popular in the past

. Similar to 1] -], and serves as a good surrogate a(m) 1

. Biological interpretation as a firing rate of a neuron

. Easy to compute the gradient — o'(x) = o(x) - (1 — o(x))

Fall of sigmoids

- Eventually. Became less popular, due to several reasons
- Vanishing gradient problem
- Not zero-centered

- Not memory-/computation-efficient

1. Vanishing gradients

- Problem. It we make networks deeper, sigmoids make the gradient vanish for certain layers!

1. Vanishing gradients

- 1-layer net. Suppose that we have a predictor f(x) = o(wx)

. Cradient. V., f(x) = oc'(wx) - x

— 10 -
. Max scale: x/4 e

0.8 -

0.6 -

0.2 -

0.0 -

1. Vanishing gradients

. Deep net. Suppose that we have a predictor f(x) = o(w; - o(---o(W; - X)-+*)

. Istlaver gradient. V,, fix) =oc'(w; - z;) - o' (w;_1z;) - ==+ -0’ (W) - X) - x

. Max scale: x/4*

. Lthlayer gradient. V,, fix) = o'(w, - 2;) - 7,

1. Vanishing gradients

. This results in a severe imbalance in layer-wise gradient

- The parameters in the early layers will not be utilized well

Gradient

Input Layer1 Layer2 Layer3 Output

Layer

2. Not zero-centered

- Problem. Gradients of sigmoidal net is either all-positive or all-negative!

2. Not zero-centered

. Consider a sigmoidal neuron f(x) = o (WTX)

. Gradient for ith weight. Vwif(x) =|o'(W'x) - X

positive positive, if also sigmoid outputs

2. Not zero-centered

. |f the loss derivative is positive —> all gradients are positive

. |If the loss derivative is negative —> all gradients are negative

- Results in a suboptimal zig zag path

. Can be mitigated if inputs {x;} are zero-centered

allowed
gradient

update
directions

zig zag path
allowed
gradient

update
directions

hypothetical

optimal w
vector

3. Efficiency

. Inference. Need to compute the function () = 1/(1 + exp(—1))
- Complicated to implement with hardwares...

- Speedup by utilizing look-up tables

3. Efficiency

. Training. Need to compute the gradient 6'(t) = o(t)(1 — o(t))

. Requires storing the o(f) computed during the forward phase

- Requires floating point multiplications

Better activations

- Noticing this problem, alternative activations have been used.

« Tanh. Zero-centered V
Non-vanishing gradient X
Computational efficiency X

- tanh
- derivative

—1.0%

Better activations

RelLU activation function Derivative

« RelLU. Zero-centered X/V

Non-vanishing gradient

Computational efficiency V g S — | | g |
- Converges faster in practice (e.g., 6x)
- Can be made zero-centered via normalization

- Requires careful initialization to avoid vanishing gradients

- Sadly, experiences dead neuron

Dying ReLU
- Problem. Some neurons never activate!

. Suppose that we have a RelLU neuron 6(w ' X + b)

. Gradient for ith connection. 1{lw'x + b > 0] + X;

. Zeroif w'x < — b for most X

Dying ReLU

« Solution.
. Initialize the bias as a small-but-positive value.

- Use “leaky” RelLU / ELU / ... Leaky ReLU: y=0.01x
e

Modern choices

. Practitioners training giant models love GelLU / Swish / ...
- Quantization people love RelLU6

- Recommendation. Try RelLU as a default, and try these for squeezing out max performance.

Nonlinearities
RelLU®6()

—— RelU
—— GELU

Data preprocessing

Data preprocessing

- Recall that zig zag path happened when the neuron input is all-positive

. Gradient for ith weight. Vwif(x) =|o'(W'x) © X

positive positive, if also sigmoid outputs
W
allowed
gradient
update

directions

zig zag path

allowed

gradient

update

directions
hypothetical
optimal w

vector

Data preprocessing

- Idea. Force data to have different signs.

- Centering. Makes the data to have a zero-mean.

Original Data !
Centered Data :;Fi
al

uy 8 .: is
; of N\
+ A AN

Centering \

yd

‘#¢++ o A -

Data preprocessing

Also common. For classic ML, it is typical to do:

« Decorrelation. Make the axes have no correlation
(not an idea that works for all data, e.g., image)

Centered Data
Red:Eigen Vectors

Decorrelated Data

.,_‘\\

N
V4
/
/
/
/
/
/
P 4
rd
/
/
V

Data preprocessing

- Whitening. Make each dim. have unit variance or range; avoids being biased by data scale

(advanced: provably better convergence of GD)

Decorrelated Data
<
sy
% X%

Remarks

. |In some cases, we also perform dimensionality reduction (e.g., PCA)

- Not a good idea in general for DL

Remarks

. In many practical cases (e.g., images), we only perform the centering operation
- For CIFAR-10 data:
.« AlexNet: Subtract the mean image ([32,32,3] tensor)

- VGG: Subtract the mean along RGB channels (i.e., 3-dimensional value)

airplane automobile bird cat deer

A - -
LN |
dog 0g orse

Remarks

. |t is common to perform centering & whitening occationally in hidden layers

- Many different ways to do it; Batch / Layer

Normalization layers

- |ldea. Perform

Normalization layers

centering +lscaling in intermediate layers

zero-mean |unit variance

Hidden Hidden
Hidden

/

syndino ay) azijewIoN

X

(‘1
X

S d
P\ 2752
N\ AL
LKL
AV
I
KR
Rt
RN

\

syndino ay) azijewlIoN

%

“syndino o] azneu.uol\]
5

Normalization layers

- Batch Norm. Consider a batch of activations at some layer Zy, ..., Zz

. Here B isthe batch size

. Each activation has d channels.

- For each dimension, apply

20) — E[z0))
\/ Var(z\))

7)) —

« Thisis a differentiable function, so we can have it as a module in neural network

Considerations

- Where to add? Mostly placed at...
. After each linear operations, e.g., linear / convolution

« Before activation function

tanh

FC

BN

tanh

Considerations

» Problem. It may be harmful to place BN at all layers

- Normalizing pre-sigmoids puts it in a linear region

Considerations

. Solution. Add a trainable linear layer:

y(j) — },(j)ﬁ(j) n ’g(j), jed]

. Allows us to scale back to negate the batch norm, whenever needed.

Considerations

- Problem. At the test time (i.e., inference phase), we don't take data as a batch!

. Solution. Take a running average of the mean & variance during training.
Use these values at the test timel

- These can be merged into linear layers for a speedup.

Considerations

« Problem. Often, there are undesired side effects

. e.g., training instability, sensitive to distribution shift & batch size...

Batch Norm Layer Norm Instance Norm Group Norm

. Solution. Many variants

H, W

VA AT

() LR

N
NN

TR

NIRRTy
LA R
N R
VR T T

Advantages

 In Most cases, the pros outweigh the cons
- Improves the gradient flow during training
. Allows higher learning rate

- Reduces the initialization sensitivity...

Parameter initializations

Initializing the weight parameters

. SGD-based optimization of NN parameters is also sensitive to initializations.

- Question. What happens it all weights are initialized as the same constant?

Random initialization

. Idea. Randomly initialize all weights, with w ~ N(0,a?)

- Works reasonably well for shallow nets.

Random initialization

- Problem. For deep nets, very sensitive to the scale a

- Smalla. The activation G(WTX) becomes very small for deep layers.

. Thus, gradient become small in deeper layers: VWG(WTX) =o' (W'x) - X

Ty Ty R A A BAAA AN B A RN M A MRS -

Random initialization

. Large a. Depends on the choice of activation functions

- Tanh: Gradients become very small.

- Function output o(a - WTX) — {£1}

. Gradients VWG(WTX) =lo'(W'X) - x

-1.00 -

small if a is large

" A .

Random initialization

- RelLU: Exploding gradients as the layer gets deeper

.+ Functionoutput o(a-w X) =a - o(W'X)

. Gradients VWG(WTX) = o'(W'x) /|x

accumulates the scaling factor a

Weight-scaled initialization

- ldea. Choose a so that the activation varionce remains constant over the layers

. Xavier initialization (2010). Use the scaling factor

2
0 =
\ (input dim) + (output dim)

- He initialization (2015). Use the scaling factor

Input Layer Hidden Layers Qutput Layer
g N

2
a =
\ (input dim)

. Question. Why 1/\/neurons?

Weight scales

. Suppose that we have a layer with d input & output neurons.
. The input activationis X = (xy, ..., X,)

+ The weight that connects ith input neuron to jth output neuron is wy;

. Drawn independently from Wii ~ N(O,az)

. Goal. Make the activation scale similar: ||x]||? & E||Wx]|?

Weight scales

. Inspecting the weights connected to jth output neuron, we have

« Then, we have

T 2 2
d
C|Wx||> =) E(wx)? =|d - a®- ||x|)?
J=1 should be 1, thus we have what we want

Remarks

- There are many research on how to initialize
- Has been mostly okay with BNs, but BNs are getting faded away...
- Many unmentioned works:

- Orthogonal initialization

. |dentity initialization

. Zero initialization

Cheers

