Dimensionality Reduction (2) EECE454 Intro. to Machine Learning Systems

• **PCA.** Projecting data to an affine subspace spanned by principal components

- Projection can be done by $\mathbf{x} \mapsto \mathbf{U}\mathbf{x} + \mathbf{b}$
- Derived as a solution of <u>variance maximization</u>: ullet

Recap

(top-k eigenvectors of data covariance matrix)

 $\max_{\mathbf{U}} \operatorname{Var}\left(\{\pi_{\mathbf{U}}(\mathbf{x}_{i})\}_{i=1}^{n}\right)$

projection of \mathbf{x}_i on the affine subspace \mathbf{U}

PCA. Projecting data to an affine subspace spanned by principal components

- Projection can be done by $\mathbf{x} \mapsto \mathbf{U}\mathbf{x} + \mathbf{b}$
- Derived as a solution of <u>variance maximization</u>:

 $\max_{\mathbf{U}} \operatorname{Var}\left(\{\pi_{\mathbf{U}}(\mathbf{x}_{i})\}_{i=1}^{n}\right)$

- **Today.** Variance maximization = Distortion minimization
 - Gives us a natural way to determine **b** •
 - Explains why "projection" should be considered as our mapping to the subspace

Recap

(top-k eigenvectors of data covariance matrix)

PCA: Distortion minimization

• Here's the perspective:

"If the projected point is close to the original point, maybe it did not loose too much original information"

Distortion minimization

• Here's the perspective:

"If the projected point is close to the original point, maybe it did not loose too much original information"

- In fact, this is quite natural—
 - Suppose that we use some predictor $f(\cdot)$ on the projected data
 - Then, we have

$f(\mathbf{x}) - f(\pi_{\mathsf{U}}(\mathbf{x})) \le \operatorname{Lip}(f) \cdot \|\mathbf{x} - \pi_{\mathsf{U}}(\mathbf{x})\|$

(here, $\operatorname{Lip}(f) = \sup |f(\mathbf{x}) - f(\mathbf{y})| / ||\mathbf{x} - \mathbf{y}||$ is the "Lipschitz constant") $x \neq y$

Formally...

• Formally, we try to find an **affine subspace**

$$\mathbf{U} = \{a_1\mathbf{u}_1 + \cdots + a_k\mathbf{u}_k + \mathbf{b} : a_i \in a_i\}$$

such that the **mean squared distortion** of data, incurred by projection, is minimized:

$$\min_{\mathbf{U}} \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - \pi_{\mathbf{U}}(\mathbf{x}_i)\|^2$$

 $\in \mathbb{R}$

• Formally, we try to find an **affine subspace**

$$\mathbf{J} = \{a_1\mathbf{u}_1 + \cdots + a_k\mathbf{u}_k + \mathbf{b} : a_i \in a_i\}$$

such that the **mean squared distortion** of data, incurred by projection, is minimized:

$$\min_{\mathbf{U}} \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \pi_{\mathbf{U}}(\mathbf{x}_{i})\|^{2}$$

• Using the definition of projection, this is:

• Then, we can proceed as

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_{i} - \pi_{U}(\mathbf{x}_{i})\|^{2} = \frac{1}{n} \sum_{i=1}^{n} (\|\mathbf{x}_{i}\|^{2} + \|\mathbf{b}\|^{2})$$
$$= \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_{i}\|^{2} + \|\mathbf{b}\|^{2}$$

• Separating out irrelevant terms, we get

$$\frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} + \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \sum_{i=1}^{n} ||\mathbf{x}_{$$

Formally...

$\mathbf{y} \|^2 - \mathbf{x}_i^{\mathsf{T}} \mathbf{U} \mathbf{x}_i - 2 \mathbf{b}^{\mathsf{T}} \mathbf{x}_i + 2 \mathbf{b}^{\mathsf{T}} \mathbf{U} \mathbf{x}_i$

 $\mathbf{b}\|^2 - \frac{1}{n} \sum_{i=1}^n \mathbf{x}_i^{\mathsf{T}} \mathbf{U} \mathbf{x}_i - 2\mathbf{b}^{\mathsf{T}} \mathbf{\bar{x}} + 2\mathbf{b}^{\mathsf{T}} \mathbf{U} \mathbf{\bar{x}}$

 $-\frac{1}{n}\sum \mathbf{x}_i^{\mathsf{T}}\mathbf{U}\mathbf{x}_i - 2\mathbf{b}^{\mathsf{T}}\bar{\mathbf{x}} + 2\mathbf{b}^{\mathsf{T}}\mathbf{U}\bar{\mathbf{x}}\right)$

$$\frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} - \mathbf{u}_{i}|^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} - \mathbf{u}_{i}|^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} - \mathbf{u}_{i}|^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} - \mathbf{u}_{i}|^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} - \mathbf{u}_{i}|^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} - \mathbf{u}_{i}|^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} - \mathbf{u}_{i}|^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} - \mathbf{u}_{i}|^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} - \mathbf{u}_{i}|^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} - \mathbf{u}_{i}|^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} - \mathbf{u}_{i}|^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} - \mathbf{u}_{i}|^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} \right) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{u}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} \left(||\mathbf{b}||^{2} \right) = \frac{$$

• Minimizing with respect to **b**, we get $\mathbf{b}^* = \bar{\mathbf{x}} - \mathbf{U}\bar{\mathbf{x}}$

Formally...

 $-\frac{1}{n}\sum \mathbf{x}_i^{\mathsf{T}}\mathbf{U}\mathbf{x}_i - 2\mathbf{b}^{\mathsf{T}}\bar{\mathbf{x}} + 2\mathbf{b}^{\mathsf{T}}\mathbf{U}\bar{\mathbf{x}}\right)$

Formally...

$$\frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n}$$

- Minimizing with respect to **b**, we get $\mathbf{b}^* = \bar{\mathbf{x}} \mathbf{U}\bar{\mathbf{x}}$
 - Plugging in, we get:

$$\left(\frac{1}{n}\sum \|\mathbf{x}_i\|^2 - \bar{\mathbf{x}}^\top \bar{\mathbf{x}}\right) - \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i\|^2 - \frac{1}{n} \sum_{i=1}^{n$$

 $= \operatorname{Var}(\{\mathbf{x}_i\}_{i=1}^n)$

+ min $\left(\bar{\mathbf{x}}^{\mathsf{T}} \mathbf{U} \bar{\mathbf{x}} - \frac{1}{n} \sum \mathbf{x}_{i}^{\mathsf{T}} \mathbf{U} \mathbf{x}_{i} \right)$ $= -\sum_{j=1}^{k} \mathbf{u}_{j}^{\mathsf{T}} \mathbf{S} \mathbf{u}_{j}$

Formally...

$$\frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n} ||\mathbf{x}_{i}||^{2} + \min_{\mathbf{U},\mathbf{b}} (||\mathbf{b}||^{2} - \mathbf{u}_{i}) = \frac{1}{n} \sum_{i=1}^{n}$$

- Minimizing with respect to **b**, we get $\mathbf{b}^* = \bar{\mathbf{x}} \mathbf{U}\bar{\mathbf{x}}$
 - Plugging in, we get:

$$\left(\frac{1}{n}\sum_{i}\|\mathbf{x}_{i}\|^{2}-\bar{\mathbf{x}}^{\mathsf{T}}\bar{\mathbf{x}}\right)-$$

• Rephrasing, we arrive at:

$$\min_{\mathbf{U}} \frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x}_i - \pi_{\mathbf{U}}(\mathbf{x}_i)\|^2 = \operatorname{Var}(\{\mathbf{x}_i\}) - \max_{\mathbf{U}} \left(\sum_{j=1}^{k} \mathbf{u}_j \mathbf{S} \mathbf{u}_j\right)$$

+ $\min_{\mathbf{T}} \left(\mathbf{\bar{x}}^{\mathsf{T}} \mathbf{U} \mathbf{\bar{x}} - \frac{1}{n} \sum_{n} \mathbf{x}_{i}^{\mathsf{T}} \mathbf{U} \mathbf{x}_{i} \right)$

exactly what we solved for variance maximization problem

Applications of PCA

Face recognition

- Goal. Identify specific person, based on facial image
 - Robust to glasses, lighting, ...
 - Using 256 x 256 pixels is difficult!

Face recognition

- Goal. Identify specific person, based on facial image
 - Robust to glasses, lighting, ...
 - Using 256 x 256 pixels is difficult!
- Idea. Build one PCA database for the whole dataset (eigenface)
 - Classify based on weights $(\mathbf{u}_1^{\mathsf{T}}\mathbf{x}, \dots, \mathbf{u}_k^{\mathsf{T}}\mathbf{x})$
 - Advantages. Rapid recognition, tracking, reconstruction ...

Face recognition

- **Goal.** Identify specific person, based on facial image
 - Robust to glasses, lighting, ...
 - Using 256 x 256 pixels is difficult!
- Idea. Build one PCA database for the whole dataset (eigenface)
 - Classify based on weights $(\mathbf{u}_1^{\mathsf{T}}\mathbf{x}, \dots, \mathbf{u}_k^{\mathsf{T}}\mathbf{x})$
 - Advantages. Rapid recognition, tracking, reconstruction ...
 - <u>Shortcomings</u>. Requires same size Sensitive to angles Needs "centering" of the face ...

Image Compression

- Goal. Represent an image using less dimensions
- **Idea.** Do the following
 - Divide each image into 12×12 patches •
 - Perform PCA and select top-k directions
 - Save the codes $(\mathbf{u}_1^{\mathsf{T}}\mathbf{x}, \dots, \mathbf{u}_k^{\mathsf{T}}\mathbf{x})$ for each patch

60-dimension

144-dimension (full)

(requires saving the "codebook" $\mathbf{u}_1, \ldots, \mathbf{u}_k$)

6-dimension

1-dimension

Image Compression

- Represent an image using less dimensions
- **Idea.** Do the following
 - Divide each image into 12×12 patches
 - Perform PCA and select top-k directions
 - Save the codes $(\mathbf{u}_1^\mathsf{T}\mathbf{x}, \dots, \mathbf{u}_k^\mathsf{T}\mathbf{x})$ for each patch
- <u>Note</u>.
 - Interestingly, the eigenvectors look similar to ulletdiscrete cosine transforms (DCTs), used in JPEG
 - Has some noise filtering effect

Eigenvectors

DCT bases

Limitations of PCA

Failure modes

• Difficult to capture nonlinear datasets

Failure modes

- Difficult to capture nonlinear datasets
- Does not account for class labels

Advanced methods

Kernel PCA

- Idea. Perform PCA for $\Phi(\mathbf{x})$, not \mathbf{x}
 - Requires careful hyperparameter tuning & validation

Gaussian Kernel ($\sigma = 20$)

Isomap

• Goal. Embed each data to low-dimensional space, so that

Α 1.4

distance on the manifold = distance on the embedded space

Isomap

- **Goal.** Embed each data to low-dimensional space, so that distance on the manifold = distance on the embedded space
- Idea. Build a graph of points, by connecting each point to k-nearest neighbors
 - Measure pairwise distance as the graph distance (use, e.g., Dijkstra's algorithm)

Isomap

- Goal. Embed each data to low-dimensional space, so that distance on the manifold = distance on the embedded space
- Idea. Build a graph of points, by connecting each point to k-nearest neighbors
 - Measure pairwise distance as the graph distance (use, e.g., Dijkstra's algorithm)
 - Then, use MDS (multi-dimensional scaling) to construct low-dimensional embedding
 - <u>Rough idea</u>. Translate pairwise distances $D \in \mathbb{R}^{n \times n}$ into something that looks like a sample covariance, via

$$-\frac{1}{2}HDH^{\mathsf{T}}$$
, where $H = I_n - \frac{1}{n}\mathbf{1}\mathbf{1}^{\mathsf{T}}$

Then, perform PCA with it.

(called double centering)

- Similar to Isomap, we preserve some distance
- Idea. Encode neighbor information as a probability distribution

t-SNE

$$\frac{||\mathbf{x}_i - \mathbf{x}_j||^2 / 2\sigma^2}{|\mathbf{x}_i - \mathbf{x}_k||^2 / 2\sigma^2}$$

Then, find a low-dimensional embedding such that $dist(p_i, p_j) \approx dist(\mathbf{z}_i, \mathbf{z}_j)$

ICLR 2017-2024 submissions (n=24,347)

Coloured by year 2024 2017

Dmitry Kobak, @hippopedoid

- An elaborate and faster version of Isomap
 - Useful material: <u>https://pair-code.github.io/understanding-umap/</u>

2D t-SNE projection

UMAP

2D UMAP projection

Wrapping up

This week

- Dimensionality reduction
- Principal component analysis
 - Basic maths on projection
 - PCA as variance maximization
 - PCA as distortion minimization
 - Applications and limitations
- Modern versions

Cheers