
Fall 2024

EECE454 Intro. to Machine Learning Systems

Dimensionality Reduction (2)

Recap
• PCA. Projecting data to an affine subspace spanned by principal components

 (top-k eigenvectors of data covariance matrix)

• Projection can be done by

• Derived as a solution of variance maximization:

x ↦ Ux + b

max
𝖴

Var({π𝖴(xi)}n
i=1)

projection of on the

affine subspace

xi
𝖴

Recap
• PCA. Projecting data to an affine subspace spanned by principal components

 (top-k eigenvectors of data covariance matrix)

• Projection can be done by

• Derived as a solution of variance maximization:

• Today. Variance maximization = Distortion minimization

• Gives us a natural way to determine

• Explains why “projection” should be considered as our mapping to the subspace

x ↦ Ux + b

max
𝖴

Var({π𝖴(xi)}n
i=1)

b

PCA: Distortion minimization

Distortion minimization
• Here’s the perspective:

“If the projected point is close to the original point,
maybe it did not loose too much original information”

𝖴

xi

Distortion minimization
• Here’s the perspective:

“If the projected point is close to the original point,
maybe it did not loose too much original information”

• In fact, this is quite natural—

• Suppose that we use some predictor on the projected data

• Then, we have

(here, is the “Lipschitz constant”)

f(⋅)

f(x) − f(π𝖴(x)) ≤ Lip(f) ⋅ ∥x − π𝖴(x)∥

Lip(f) = sup
x≠y

| f(x) − f(y) | /∥x − y∥

𝖴

xi

Formally…
• Formally, we try to find an affine subspace

such that the mean squared distortion of data,
incurred by projection, is minimized:

𝖴 = {a1u1 + ⋯ + akuk + b : ai ∈ ℝ}

min
𝖴

1
n

n

∑
i=1

∥xi − π𝖴(xi)∥2

𝖴

xi

Formally…
• Formally, we try to find an affine subspace

such that the mean squared distortion of data,
incurred by projection, is minimized:

• Using the definition of projection, this is:

𝖴 = {a1u1 + ⋯ + akuk + b : ai ∈ ℝ}

min
𝖴

1
n

n

∑
i=1

∥xi − π𝖴(xi)∥2

min
U,b

1
n

n

∑
i=1

∥xi − Uxi − b∥2

𝖴

xi

Formally…
• Then, we can proceed as

• Separating out irrelevant terms, we get

1
n

n

∑
i=1

∥xi − π𝖴(xi)∥2 =
1
n

n

∑
i=1

(∥xi∥2 + ∥b∥2 − x⊤
i Uxi − 2b⊤xi + 2b⊤Uxi)

=
1
n

n

∑
i=1

∥xi∥2 + ∥b∥2 −
1
n

n

∑
i=1

x⊤
i Uxi − 2b⊤x̄ + 2b⊤Ux̄

1
n

n

∑
i=1

∥xi∥2+ min
U,b (∥b∥2 −

1
n ∑ x⊤

i Uxi − 2b⊤x̄ + 2b⊤Ux̄)

Formally…

• Minimizing with respect to , we get

1
n

n

∑
i=1

∥xi∥2+ min
U,b (∥b∥2 −

1
n ∑ x⊤

i Uxi − 2b⊤x̄ + 2b⊤Ux̄)
b b* = x̄ − Ux̄

Formally…

• Minimizing with respect to , we get

• Plugging in, we get:

1
n

n

∑
i=1

∥xi∥2+ min
U,b (∥b∥2 −

1
n ∑ x⊤

i Uxi − 2b⊤x̄ + 2b⊤Ux̄)
b b* = x̄ − Ux̄

(1
n ∑ ∥xi∥2 − x̄⊤x̄) + min

U (x̄⊤Ux̄ −
1
n ∑ x⊤

i Uxi)

= −
k

∑
j=1

u⊤
j Suj= Var({xi}n

i=1)

Formally…

• Minimizing with respect to , we get

• Plugging in, we get:

• Rephrasing, we arrive at:

1
n

n

∑
i=1

∥xi∥2+ min
U,b (∥b∥2 −

1
n ∑ x⊤

i Uxi − 2b⊤x̄ + 2b⊤Ux̄)
b b* = x̄ − Ux̄

(1
n ∑ ∥xi∥2 − x̄⊤x̄) + min

U (x̄⊤Ux̄ −
1
n ∑ x⊤

i Uxi)

min
𝖴

1
n

n

∑
i=1

∥xi − π𝖴(xi)∥2 = Var({xi}) − max
U (

k

∑
j=1

ujSuj)
exactly what we solved for

variance maximization problem

Applications of PCA

Face recognition
• Goal. Identify specific person, based on facial image

• Robust to glasses, lighting, …

• Using 256 x 256 pixels is difficult!

Face recognition
• Goal. Identify specific person, based on facial image

• Robust to glasses, lighting, …

• Using 256 x 256 pixels is difficult!

• Idea. Build one PCA database for the whole dataset (eigenface)

• Classify based on weights

• Advantages. Rapid recognition, tracking, reconstruction …

(u⊤
1 x, …, u⊤

k x)

Face recognition
• Goal. Identify specific person, based on facial image

• Robust to glasses, lighting, …

• Using 256 x 256 pixels is difficult!

• Idea. Build one PCA database for the whole dataset (eigenface)

• Classify based on weights

• Advantages. Rapid recognition, tracking, reconstruction …

• Shortcomings. Requires same size
 Sensitive to angles
 Needs “centering” of the face …

(u⊤
1 x, …, u⊤

k x)

Image Compression
• Goal. Represent an image using less dimensions

• Idea. Do the following

• Divide each image into patches

• Perform PCA and select top-k directions

• Save the codes for each patch (requires saving the “codebook”)

12 × 12

(u⊤
1 x, …, u⊤

k x) u1, …, uk

144-dimension
(full)

60-dimension 6-dimension 1-dimension

Image Compression
• Represent an image using less dimensions

• Idea. Do the following

• Divide each image into patches

• Perform PCA and select top-k directions

• Save the codes for each patch

• Note.

• Interestingly, the eigenvectors look similar to
discrete cosine transforms (DCTs), used in JPEG

• Has some noise filtering effect

12 × 12

(u⊤
1 x, …, u⊤

k x)
Eigenvectors

DCT bases

Limitations of PCA

Failure modes
• Difficult to capture nonlinear datasets

Failure modes
• Difficult to capture nonlinear datasets

• Does not account for class labels

Advanced methods

Kernel PCA
• Idea. Perform PCA for , not

• Requires careful hyperparameter tuning & validation

Φ(x) x

Spherical Data No Kernel Gaussian Kernel ()σ = 20

Isomap
• Goal. Embed each data to low-dimensional space, so that

distance on the manifold = distance on the embedded space

Isomap
• Goal. Embed each data to low-dimensional space, so that

distance on the manifold = distance on the embedded space

• Idea. Build a graph of points, by connecting each point to -nearest neighbors

• Measure pairwise distance as the graph distance (use, e.g., Dijkstra’s algorithm)

k

Isomap
• Goal. Embed each data to low-dimensional space, so that

distance on the manifold = distance on the embedded space

• Idea. Build a graph of points, by connecting each point to -nearest neighbors

• Measure pairwise distance as the graph distance (use, e.g., Dijkstra’s algorithm)

• Then, use MDS (multi-dimensional scaling) to construct low-dimensional embedding

• Rough idea. Translate pairwise distances into something that
 looks like a sample covariance, via

, where (called double centering)

 Then, perform PCA with it.

k

D ∈ ℝn×n

−
1
2

HDH⊤ H = In −
1
n

11⊤

t-SNE
• Similar to Isomap, we preserve some distance

• Idea. Encode neighbor information as a probability distribution

Then, find a low-dimensional embedding such that

pi(j) =
exp(−∥xi − xj∥2/2σ2)

∑k≠i exp(−∥xi − xk∥2/2σ2)

dist(pi, pj) ≈ dist(zi, zj)

MNIST embeddings of t-SNE

(requires computing pairwise
distances of 60,000 samples)

UMAP
• An elaborate and faster version of Isomap

• Useful material: https://pair-code.github.io/understanding-umap/

https://pair-code.github.io/understanding-umap/

Wrapping up
• This week

• Dimensionality reduction

• Principal component analysis

• Basic maths on projection

• PCA as variance maximization

• PCA as distortion minimization

• Applications and limitations

• Modern versions

Cheers

