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Dimensionality Reduction (2)



Recap
• PCA. Projecting data to an affine subspace spanned by principal components 

                                                                                                       (top-k eigenvectors of data covariance matrix) 

• Projection can be done by  

• Derived as a solution of variance maximization: 

x ↦ Ux + b
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Recap
• PCA. Projecting data to an affine subspace spanned by principal components 

                                                                                                       (top-k eigenvectors of data covariance matrix) 

• Projection can be done by  

• Derived as a solution of variance maximization: 

 

• Today. Variance maximization = Distortion minimization 

• Gives us a natural way to determine  

• Explains why “projection” should be considered as our mapping to the subspace

x ↦ Ux + b

max
𝖴

Var({π𝖴(xi)}n
i=1)

b



PCA: Distortion minimization



Distortion minimization
• Here’s the perspective: 

“If the projected point is close to the original point, 
maybe it did not loose too much original information”
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Distortion minimization
• Here’s the perspective: 

“If the projected point is close to the original point, 
maybe it did not loose too much original information” 

• In fact, this is quite natural— 

• Suppose that we use some predictor  on the projected data 

• Then, we have  

 

(here,  is the “Lipschitz constant”)

f( ⋅ )

f(x) − f(π𝖴(x)) ≤ Lip( f ) ⋅ ∥x − π𝖴(x)∥

Lip( f ) = sup
x≠y

| f(x) − f(y) | /∥x − y∥

𝖴

xi



Formally…
• Formally, we try to find an affine subspace 

 

such that the mean squared distortion of data, 
incurred by projection, is minimized: 

 

𝖴 = {a1u1 + ⋯ + akuk + b : ai ∈ ℝ}
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Formally…
• Formally, we try to find an affine subspace 

 

such that the mean squared distortion of data, 
incurred by projection, is minimized: 

 

• Using the definition of projection, this is: 

𝖴 = {a1u1 + ⋯ + akuk + b : ai ∈ ℝ}

min
𝖴

1
n

n

∑
i=1

∥xi − π𝖴(xi)∥2

min
U,b
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Formally…
• Then, we can proceed as 

 

                                        

• Separating out irrelevant terms, we get 
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∥xi − π𝖴(xi)∥2 =
1
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Formally…
  

• Minimizing with respect to , we get 
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Formally…
  

• Minimizing with respect to , we get  

• Plugging in, we get: 

1
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Formally…
  

• Minimizing with respect to , we get  

• Plugging in, we get: 

 

• Rephrasing, we arrive at: 

1
n
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∑
i=1

∥xi∥2+ min
U,b (∥b∥2 −

1
n ∑ x⊤
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b b* = x̄ − Ux̄
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U (

k

∑
j=1

ujSuj)
exactly what we solved for 

variance maximization problem



Applications of PCA



Face recognition
• Goal. Identify specific person, based on facial image 

• Robust to glasses, lighting, … 

• Using 256 x 256 pixels is difficult!



Face recognition
• Goal. Identify specific person, based on facial image 

• Robust to glasses, lighting, … 
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• Idea. Build one PCA database for the whole dataset (eigenface) 

• Classify based on weights  

• Advantages. Rapid recognition, tracking, reconstruction …
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Face recognition
• Goal. Identify specific person, based on facial image 

• Robust to glasses, lighting, … 

• Using 256 x 256 pixels is difficult! 

• Idea. Build one PCA database for the whole dataset (eigenface) 

• Classify based on weights  

• Advantages. Rapid recognition, tracking, reconstruction … 

• Shortcomings. Requires same size 
                            Sensitive to angles 
                            Needs “centering” of the face …

(u⊤
1 x, …, u⊤

k x)



Image Compression
• Goal. Represent an image using less dimensions 

• Idea. Do the following 

• Divide each image into  patches 

• Perform PCA and select top-k directions 

• Save the codes  for each patch             (requires saving the “codebook” )

12 × 12

(u⊤
1 x, …, u⊤

k x) u1, …, uk

144-dimension 
(full)

60-dimension 6-dimension 1-dimension



Image Compression
• Represent an image using less dimensions 

• Idea. Do the following 

• Divide each image into  patches 

• Perform PCA and select top-k directions 

• Save the codes  for each patch 

• Note. 

• Interestingly, the eigenvectors look similar to 
discrete cosine transforms (DCTs), used in JPEG 

• Has some noise filtering effect

12 × 12

(u⊤
1 x, …, u⊤

k x)
Eigenvectors

DCT bases



Limitations of PCA



Failure modes
• Difficult to capture nonlinear datasets



Failure modes
• Difficult to capture nonlinear datasets 

• Does not account for class labels



Advanced methods



Kernel PCA
• Idea. Perform PCA for , not  

• Requires careful hyperparameter tuning & validation

Φ(x) x

Spherical Data No Kernel Gaussian Kernel ( )σ = 20



Isomap
• Goal. Embed each data to low-dimensional space, so that 

distance on the manifold  = distance on the embedded space



Isomap
• Goal. Embed each data to low-dimensional space, so that 

distance on the manifold  = distance on the embedded space 

• Idea. Build a graph of points, by connecting each point to -nearest neighbors 

• Measure pairwise distance as the graph distance (use, e.g., Dijkstra’s algorithm)
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Isomap
• Goal. Embed each data to low-dimensional space, so that 

distance on the manifold  = distance on the embedded space 

• Idea. Build a graph of points, by connecting each point to -nearest neighbors 

• Measure pairwise distance as the graph distance (use, e.g., Dijkstra’s algorithm) 

• Then, use MDS (multi-dimensional scaling) to construct low-dimensional embedding 

• Rough idea. Translate pairwise distances  into something that 
                       looks like a sample covariance, via 

,            where                 (called double centering) 

                                        Then, perform PCA with it.

k

D ∈ ℝn×n

−
1
2

HDH⊤ H = In −
1
n

11⊤



t-SNE
• Similar to Isomap, we preserve some distance 

• Idea. Encode neighbor information as a probability distribution 

 

Then, find a low-dimensional embedding such that 

pi( j) =
exp( −∥xi − xj∥2/2σ2)

∑k≠i exp( −∥xi − xk∥2/2σ2)

dist(pi, pj) ≈ dist(zi, zj)



MNIST embeddings of t-SNE 

(requires computing pairwise 
distances of 60,000 samples)





UMAP
• An elaborate and faster version of Isomap 

• Useful material: https://pair-code.github.io/understanding-umap/

https://pair-code.github.io/understanding-umap/


Wrapping up
• This week 

• Dimensionality reduction 

• Principal component analysis 

• Basic maths on projection 

• PCA as variance maximization 

• PCA as distortion minimization 

• Applications and limitations 

• Modern versions



Cheers


