Dimensionality Reduction EECE454 Intro. to Machine Learning Systems

- - K-Means Clustering
 - Gaussian Mixture Models
 - Dimensionality Reduction <-- This week ullet
 - Neural-net-based
 - Autoencoders
 - GANs
 - Diffusion models
 - Language Models

Recap

• Unsupervised learning. Discovering useful stuctures of the data, using the unlabeled dataset

Dealing with high-dimensional data

- Many datasets are extremely high-dimensional in its raw form
- Suppose that you are an **ML engineer** at Google
 - Then, you'd need to learn from these datasets:

YouTube Shorts 1920 x 1080 x 3 colors x 60 fps x 60 seconds = 22.4 billion pixels (per video)

Dealing with high-dimensional data

- Many datasets are extremely high-dimensional in its raw form
- Suppose that you are an **ML engineer** at Google
 - Then, you'd need to learn from these datasets:

YouTube Shorts 1920 x 1080 x 3 colors x 60 fps x 60 seconds = 22.4 billion pixels (per video)

Gmail 1000s of words x sender info x receiver info x (images...) = millions~billions real numbers (per mail)

Curse of dimensionality

- Higher-dimensional data are nasty to do ML on
 - More computation
 - Higher chance of noise
 - Difficult to visualize (for human insight) •
 - Difficult to find meaningful patterns

- But do we really need all dimensions?
 - Example. Handwritten digit recognition (MNIST, 28x28 image)

only looks like this

• Thus, we may not need to fully utilize $\mathbb{R}^{28 \times 28} = \mathbb{R}^{784}$

... and not like this

• Hypothesis.

There exists some low-dim subspace (or submanifold) in the high-dimensional feature space, where the real data lies in

- Hypothesis.
 There exists some low-dim subspace (or submanifold) in the high-dimensional feature space, where the real data lies in
- Dimensionality reduction
 Use unlabeled data to find the right mapping
 from a high-dimensional to low-dimensional space
- <u>Caveat</u>. There could be some noises in each datum, which can make things tricky

- Hypothesis.
 There exists some low-dim subspace (or submanifold) in the high-dimensional feature space, where the real data lies in
- **Dimensionality reduction** Use unlabeled data to find the right mapping from a high-dimensional to low-dimensional space
- <u>Caveat</u>. There could be some noises in each datum, which can make things tricky
- Today. Look at a linear case, called PCA.

Principal component analysis

Overview

- Dimensionality reduction, using an **affine subspace** of the original space
 - Invented by Karl Pearson (1909)
 - Many aliases, e.g., Karhunen-Loève Transform

- Suppose that we are given a 2D dataset.
- Goal. Find a nice 1D subspace and a mapping, s. t. the mapped data has nice properties

- Suppose that we are given a 2D dataset.
- Goal. Find a nice 1D subspace and a mapping, s. t. the mapped data has nice properties
 - Confine the mapping to be an orthogonal projection —> Only about determining subspaces

- Suppose that we are given a 2D dataset.
- Goal. Find a nice 1D subspace and a mapping, s. t. the mapped data has nice properties
 - Confine the mapping to be an orthogonal projection —> Only about determining subspaces
- Goal (restated). Find a nice 1D subspace that the projected data has nice properties

- Idea. Suppose that we want to preserve some information as much as possible
 - <u>Question</u>. Which projection contains more information?

- Idea. Suppose that we want to preserve some information as much as possible
 - <u>Question</u>. Which projection contains more information?
 - Answer. Left, for two reasons. ullet
 - (A) Projected points are <u>more spread</u>, thus not ignoring the differences between points • (B) Original points (\bullet) are <u>closer</u> to their projections (\bullet)

- Idea. Suppose that we want to preserve some information as much as possible
 - <u>Question</u>. Which projection contains more information?
 - Answer. Left, for two reasons.
 - (A) Projected points are <u>more spread</u>, thus not ignoring the differences between points (B) Original points (
) are <u>closer</u> to their projections (
)
 - - Note. We will see later that (A) is equivalent to (B)!

Principal Component Analysis

- Let us be a little more formal:
 - Suppose that we have a dataset $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$
 - <u>Goal</u>. Find a k-dimensional subspace ${\sf U}$ of ${\Bbb R}^d$ such that:
 - (A) The projection has the **maximum variance**:

 $\max_{\mathsf{U}} \operatorname{Var}(\pi_{\mathsf{U}}(\mathsf{x}_1), \dots, \pi_{\mathsf{U}}(\mathsf{x}_n))$

Principal Component Analysis

- Let us be a little more formal:
 - Suppose that we have a dataset $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$
 - <u>Goal</u>. Find a k-dimensional subspace U of \mathbb{R}^d such that:
 - (A) The projection has the maximum variance:

 $\max_{\mathbf{U}} \operatorname{Var}(\pi_{\mathbf{U}}(\mathbf{x}_{1}), \dots, \pi_{\mathbf{U}}(\mathbf{x}_{n}))$

• (B) The **distortion** from projection is **minimized**:

$$\min_{\mathbf{U}} \sum_{i=1}^{n} \|\mathbf{x}_i - \pi_{\mathbf{U}}(\mathbf{x}_i)\|_2^2$$

PCA: Formalisms

- A k-dimensional affine subspace $U \subset \mathbb{R}^d$ can be characterized by:
 - its orthonormal bases $\mathbf{u}_1, \dots, \mathbf{u}_k \in \mathbb{R}^d$
 - an orthogonal bias $\mathbf{b} \in \mathbb{R}^d$
 - $\mathbf{U} = \{a_1\mathbf{u}_1 + \dots + a_k\mathbf{u}_k + \mathbf{b} : a_i \in \mathbb{R}\}$

- A k-dimensional affine subspace $U \subset \mathbb{R}^d$ can be characterized by:
 - its orthonormal bases $\mathbf{u}_1, \ldots, \mathbf{u}_k \in \mathbb{R}^d$
 - an orthogonal bias $\mathbf{b} \in \mathbb{R}^d$
 - $\mathbf{U} = \{a_1\mathbf{u}_1 + \cdots + a_k\mathbf{u}_k + \mathbf{b} : a_i \in \mathbb{R}\}$
- Any element can be represented as:
 - a *d*-dimensional vector $\mathbf{u} \in \mathbf{U}$
 - a k-dimensional quantity

$$(a_1, a_2, ..., a_k)$$

- A **projection** of a vector $\mathbf{x} \in \mathbb{R}^d$ to the affine subspace \mathbf{U} is
 - $\pi_{\cup}(\mathbf{x}) = \sum_{i=1}^{n}$
 - d-dimensional, with an alternative representation $\mathbf{a} = (\mathbf{u}_1^\mathsf{T}\mathbf{x}, \dots, \mathbf{u}_k^\mathsf{T}\mathbf{x}) \in \mathbb{R}^k$

$$\sum_{i=1}^{k} (\mathbf{u}_{i}^{\mathsf{T}}\mathbf{x}) \cdot \mathbf{u}_{i} + \mathbf{b}$$

• A projection of a vector $\mathbf{x} \in \mathbb{R}^d$ to the affine subspace U is

- d-dimensional, with an alternative representation $\mathbf{a} = (\mathbf{u}_1^{\mathsf{T}} \mathbf{x}, \dots, \mathbf{u}_k^{\mathsf{T}} \mathbf{x}) \in \mathbb{R}^k$
- The projection admits a matrix form:

The projection matrix \mathbf{U} satisfies (1) $\mathbf{U}^{ op} = \mathbf{U}$ lacksquare(2) $\mathbf{U}^{\mathsf{T}}\mathbf{U} = \mathbf{U}$

 $\pi_{\mathsf{U}}(\mathbf{x}) = \sum_{i=1}^{n} (\mathbf{u}_{i}^{\mathsf{T}}\mathbf{x}) \cdot \mathbf{u}_{i} + \mathbf{b}$ i=1

- In a sense, projection consists of two operations
 - <u>Compression</u> (or encoding, $\mathbb{R}^d \to \mathbb{R}^k$)
 - <u>Reconstruction</u> (or decoding, $\mathbb{R}^k \to \mathbb{R}^d$)

$$\hat{\mathbf{x}} = \mathbf{U}_{dec}\mathbf{z} + \mathbf{b},$$

X

b, where
$$\mathbf{U}_{dec} = \mathbf{U}_{enc}^{\mathsf{T}} \in \mathbb{R}^{d \times k}$$

U_{enc} **z U**_{dec} $\hat{\mathbf{x}}$

PCA: Variance maximization

• For PCA, we want to find a nice ${f U}$ such that

 $\max_{\mathbf{U}} \operatorname{Var} \left(\mathbf{U} \mathbf{x}_1 + \mathbf{b}, \dots, \mathbf{U} \mathbf{x}_n + \mathbf{b} \right)$

• For PCA, we want to find a nice **U** such that

 $\max_{\mathbf{U}} \operatorname{Var} \left(\mathbf{U} \mathbf{x}_1 + \mathbf{b}, \dots, \mathbf{U} \mathbf{x}_n + \mathbf{b} \right)$

• As the constant term does not affect variance, this is equal to

 $\max_{\mathbf{U}} \operatorname{Var}(\mathbf{U}\mathbf{x}_1, \dots, \mathbf{U}\mathbf{x}_n)$

- For PCA, we want to find a nice **U** such that $\max_{\mathbf{U}} \operatorname{Var}(\mathbf{Ux}_1 + \mathbf{b}, \dots, \mathbf{Ux}_n + \mathbf{b})$
- As the constant term does not affect variance, this is equal to $\max_{\mathbf{U}} \operatorname{Var}(\mathbf{U}\mathbf{x}_1, \dots, \mathbf{U}\mathbf{x}_n)$
- Let $\mathbf{\bar{x}}$ be the mean of $\{\mathbf{x}_i\}_{i=1}^n$. Then, the variance can be written as: $\operatorname{Var}(\mathbf{U}\mathbf{x}_1, \dots, \mathbf{U}\mathbf{x}_n) = \frac{1}{n} \sum_{i=1}^n \|\mathbf{U}(\mathbf{x}_i - \mathbf{\bar{x}})\|_2^2 = \frac{1}{n} \sum_{i=1}^n (\mathbf{x}_i - \mathbf{\bar{x}})^\top \mathbf{U}^\top$

$$= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}})^{\mathsf{T}} \mathbf{U}^{\mathsf{T}} \mathbf{U}(\mathbf{x}_{i} - \bar{\mathbf{x}})$$
$$= \frac{1}{n} \sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}})^{\mathsf{T}} \mathbf{U}(\mathbf{x}_{i} - \bar{\mathbf{x}})$$

• By the definition of \mathbf{U} , we can re-write the above as

$$(\mathbf{x}_i - \bar{\mathbf{x}})^{\mathsf{T}} \mathbf{U} (\mathbf{x}_i - \bar{\mathbf{x}})$$

$$(\mathbf{x}_i - \bar{\mathbf{x}})^{\mathsf{T}} \mathbf{u}_j \mathbf{u}_j^{\mathsf{T}} (\mathbf{x}_i - \bar{\mathbf{x}})$$

$$\sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}}) (\mathbf{x}_{i} - \bar{\mathbf{x}})^{\mathsf{T}} \mathbf{u}_{j}$$

= sample covariance matrix S (positive-semidefinite)

• By the definition of \mathbf{U} , we can re-write the above as

Thus, PCA is about solving the constrained quadratic optimization

$$\max_{\mathbf{u}_{1},\ldots,\mathbf{u}_{k}} \sum_{j=1}^{k} \mathbf{u}_{j}^{\mathsf{T}} \mathbf{S} \mathbf{u}_{j}, \qquad \text{subjection}$$

$$\sum_{i=1}^{n} (\mathbf{x}_{i} - \bar{\mathbf{x}})(\mathbf{x}_{i} - \bar{\mathbf{x}})^{\mathsf{T}} \mathbf{u}_{j}$$

ect to
$$\mathbf{u}_i^{\mathsf{T}} \mathbf{u}_j = \begin{cases} 1 & \cdots & i = j \\ 0 & \cdots & i \neq j \end{cases}$$

Solving the quadratic problem $\max_{\mathbf{u}_1,\ldots,\mathbf{u}_k} \sum_{j=1}^k \mathbf{u}_j^{\mathsf{T}} \mathbf{S} \mathbf{u}_j, \qquad \text{subject to} \quad \mathbf{u}_i^{\mathsf{T}} \mathbf{u}_j = \mathbf{1} \{i = j\}$

• How do we solve this problem?

- How do we solve this problem?
- Strategy. Perform greedy optimization
 - Select a nice \mathbf{u}_1 that maximizes $\mathbf{u}_1^\mathsf{T} \mathbf{S} \mathbf{u}_1$, subject to $\mathbf{u}_1^\mathsf{T} \mathbf{u}_1 = 1$
 - Select a nice \mathbf{u}_2 that maximizes $\mathbf{u}_2^\mathsf{T} \mathbf{S} \mathbf{u}_2$, subject to $\mathbf{u}_2^\mathsf{T} \mathbf{u}_2 = 1$ and $\mathbf{u}_2^\mathsf{T} \mathbf{u}_1 = 0$

• Let us take a look at the first step: determining \mathbf{u}_1

U

max $\mathbf{u}^{\mathsf{T}}\mathbf{S}\mathbf{u}$, subject to $\mathbf{u}^{\mathsf{T}}\mathbf{u} = 1$

• Let us take a look at the first step: determining \mathbf{u}_1

• To solve this, consider the Lagrangian relaxation

 $\max \mathbf{u}^{\mathsf{T}} \mathbf{S} \mathbf{u} + \alpha (1 - \mathbf{u}^{\mathsf{T}} \mathbf{u})$ U

• The critical point is where $\mathbf{Su} = \alpha \mathbf{u}$ holds, i.e., eigenvectors.

max $\mathbf{u}^{\mathsf{T}}\mathbf{S}\mathbf{u}$, subject to $\mathbf{u}^{\mathsf{T}}\mathbf{u} = 1$

• Let us take a look at the first step: determining \mathbf{u}_1

• To solve this, consider the Lagrangian relaxation

U

- The critical point is where $\mathbf{Su} = \alpha \mathbf{u}$ holds, i.e., eigenvectors.
- Choosing the principal component (eigenvector with the largest eigenvalue) maximizes the value of $\mathbf{u}^{\mathsf{T}}\mathbf{S}\mathbf{u}$

max $\mathbf{u}^{\mathsf{T}}\mathbf{S}\mathbf{u}$, subject to $\mathbf{u}^{\mathsf{T}}\mathbf{u} = 1$

 $\max \mathbf{u}^{\mathsf{T}} \mathbf{S} \mathbf{u} + \alpha (1 - \mathbf{u}^{\mathsf{T}} \mathbf{u})$

• Next, try to determine \mathbf{u}_2

U

max $\mathbf{u}^{\mathsf{T}}\mathbf{S}\mathbf{u}$, subject to $\mathbf{u}^{\mathsf{T}}\mathbf{u} = 1$, $\mathbf{u}^{\mathsf{T}}\mathbf{u}_1 = 0$

- Next, try to determine **u**₂
 - u
 - The Lagrangian becomes
- The critical point condition is

max $\mathbf{u}^{\mathsf{T}}\mathbf{S}\mathbf{u}$, subject to $\mathbf{u}^{\mathsf{T}}\mathbf{u} = 1$, $\mathbf{u}^{\mathsf{T}}\mathbf{u}_1 = 0$

 $\mathbf{u}^{\mathsf{T}}\mathbf{S}\mathbf{u} + \alpha(1 - \mathbf{u}^{\mathsf{T}}\mathbf{u}) - \beta(\mathbf{u}^{\mathsf{T}}\mathbf{u}_{1})$

 $\mathbf{S}\mathbf{u} = \alpha \mathbf{u} + \frac{\beta}{2}\mathbf{u}_1$

- Next, try to determine **u**₂
 - U
 - The Lagrangian becomes
- The critical point condition is

• Multiplying $\mathbf{u}_1^{\mathsf{T}}$ on both sides, we get

• and thus we get $\beta = 0$

max $\mathbf{u}^{\mathsf{T}}\mathbf{S}\mathbf{u}$, subject to $\mathbf{u}^{\mathsf{T}}\mathbf{u} = 1$, $\mathbf{u}^{\mathsf{T}}\mathbf{u}_{1} = 0$

 $\mathbf{u}^{\mathsf{T}}\mathbf{S}\mathbf{u} + \alpha(1 - \mathbf{u}^{\mathsf{T}}\mathbf{u}) - \beta(\mathbf{u}^{\mathsf{T}}\mathbf{u}_{1})$

 $\mathbf{S}\mathbf{u} = \alpha \mathbf{u} + \frac{\beta}{2} \mathbf{u}_1$

 $\mathbf{u}_1^\mathsf{T}\mathbf{S}\mathbf{u} = \alpha \mathbf{u}_1\mathbf{u} + \frac{p}{2}$

• Using $\beta = 0$, our Lagrangian becomes

with the critical point condition

• Thus, our solution should be selecting the eigenvector with 2nd largest eigenvalue

 $\mathbf{u}^{\mathsf{T}}\mathbf{S}\mathbf{u} + \alpha(1 - \mathbf{u}^{\mathsf{T}}\mathbf{u})$

$Su = \alpha u$

• Using $\beta = 0$, our Lagrangian becomes

with the critical point condition

- Thus, our solution should be selecting the eigenvector with 2nd largest eigenvalue
- Repeat this procedure, and get top-k principal components of the sample covariance matrix as our bases $\mathbf{u}_1, \ldots, \mathbf{u}_{k}$
 - Can be done by performing SVD on the data matrix ullet
 - $\mathbf{X} = [\mathbf{x}_1 \bar{\mathbf{x}} | \cdots | \mathbf{x}_n \bar{\mathbf{x}}] = \mathbf{U} \Sigma \mathbf{V}^{\top}$

and selecting the columns of \mathbf{U} for top-k singular values.

 $\mathbf{u}^{\mathsf{T}}\mathbf{S}\mathbf{u} + \alpha(1 - \mathbf{u}^{\mathsf{T}}\mathbf{u})$

 $Su = \alpha u$

Wrapping up

• Today

- Dimensionality reduction
- Principal component analysis
 - Basic maths on projection
 - PCA as Variance maximization
 - Solved in a greedy manner
- Next class.
 - PCA continued
 - PCA as distortion minimization
 - Applications and Limitations
 - Modern versions

Cheers