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EECE454 Intro. to Machine Learning Systems

Dimensionality Reduction



Recap
• Unsupervised learning. Discovering useful stuctures of the data, using the unlabeled dataset 

• K-Means Clustering 

• Gaussian Mixture Models 

• Dimensionality Reduction <— This week 

• Neural-net-based 

• Autoencoders 

• GANs 

• Diffusion models 

• Language Models



Dealing with high-dimensional data
• Many datasets are extremely high-dimensional in its raw form 

• Suppose that you are an ML engineer at Google 

• Then, you’d need to learn from these datasets:

YouTube Shorts 
1920 x 1080 x 3 colors x 60 fps x 60 seconds 
= 22.4 billion pixels (per video)



Dealing with high-dimensional data
• Many datasets are extremely high-dimensional in its raw form 

• Suppose that you are an ML engineer at Google 

• Then, you’d need to learn from these datasets:

YouTube Shorts 
1920 x 1080 x 3 colors x 60 fps x 60 seconds 
= 22.4 billion pixels (per video)

Gmail 
1000s of words x sender info x receiver info x (images…) 
= millions~billions real numbers (per mail)



Curse of dimensionality
• Higher-dimensional data are nasty to do ML on 

• More computation 

• Higher chance of noise 

• Difficult to visualize (for human insight) 

• Difficult to find meaningful patterns



Dimensionality: Nominal vs. True
• But do we really need all dimensions? 

• Example. Handwritten digit recognition (MNIST, 28x28 image) 

• Thus, we may not need to fully utilize ℝ28×28 = ℝ784

only looks like this … and not like this
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Dimensionality: Nominal vs. True
• Hypothesis. 

There exists some low-dim subspace (or submanifold) 
in the high-dimensional feature space, 
where the real data lies in 

• Dimensionality reduction 
Use unlabeled data to find the right mapping 
from a high-dimensional to low-dimensional space 

• Caveat. There could be some noises in each datum, 
                which can make things tricky 

• Today. Look at a linear case, called PCA. 



Principal component analysis



Overview
• Dimensionality reduction, using an affine subspace of the original space 

• Invented by Karl Pearson (1909) 

• Many aliases, e.g., Karhunen-Loève Transform
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• Goal. Find a nice 1D subspace and a mapping, s. t. the mapped data has nice properties
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Motivational example
• Suppose that we are given a 2D dataset. 

• Goal. Find a nice 1D subspace and a mapping, s. t. the mapped data has nice properties 

• Confine the mapping to be an orthogonal projection —> Only about determining subspaces 

• Goal (restated). Find a nice 1D subspace that the projected data has nice properties
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Motivational example
• Idea. Suppose that we want to preserve some information as much as possible 

• Question. Which projection contains more information? 

• Answer. Left, for two reasons. 

• (A) Projected points are more spread, thus not ignoring the differences between points 

• (B) Original points (   ) are closer to their projections (   ) 

• Note. We will see later that (A) is equivalent to (B)!



Principal Component Analysis
• Let us be a little more formal: 

• Suppose that we have a dataset  

• Goal. Find a -dimensional subspace  of  such that: 

• (A) The projection has the maximum variance: 

x1, …, xn ∈ ℝd

k 𝖴 ℝd

max
𝖴

Var(π𝖴(𝗑1), …, π𝖴(xn))
𝖴

xi



Principal Component Analysis
• Let us be a little more formal: 

• Suppose that we have a dataset  

• Goal. Find a -dimensional subspace  of  such that: 

• (A) The projection has the maximum variance: 

 

• (B) The distortion from projection is minimized: 

x1, …, xn ∈ ℝd

k 𝖴 ℝd

max
𝖴

Var(π𝖴(𝗑1), …, π𝖴(xn))

min
𝖴

n

∑
i=1

∥xi − π𝖴(xi)∥2
2

𝖴

xi



PCA: Formalisms



Formalism
• A -dimensional affine subspace  can be characterized by: 

• its orthonormal bases   

• an orthogonal bias  

            

k 𝖴 ⊂ ℝd

u1, …, uk ∈ ℝd

b ∈ ℝd

𝖴 = {a1u1 + ⋯ + akuk + b : ai ∈ ℝ}
u1

u2

b



Formalism
• A -dimensional affine subspace  can be characterized by: 

• its orthonormal bases   

• an orthogonal bias  

             

• Any element can be represented as: 

• a -dimensional vector  

• a -dimensional quantity 

k 𝖴 ⊂ ℝd

u1, …, uk ∈ ℝd

b ∈ ℝd

𝖴 = {a1u1 + ⋯ + akuk + b : ai ∈ ℝ}

d u ∈ 𝖴

k

(a1, a2, …, ak)

u1
u2

b



Formalism
• A projection of a vector  to the affine subspace  is 

 

• -dimensional, with an alternative representation 

x ∈ ℝd 𝖴

π𝖴(x) =
k

∑
i=1

(u⊤
i x) ⋅ ui + b

d a = (u⊤
1 x, …, u⊤

k x) ∈ ℝk

b
u

x

(u⊤x) ⋅ u

πU(x)



Formalism
• A projection of a vector  to the affine subspace  is 

 

• -dimensional, with an alternative representation  

• The projection admits a matrix form: 

 

                                                  

• The projection matrix  satisfies (1)  
                                                            (2) 

x ∈ ℝd 𝖴

π𝖴(x) =
k

∑
i=1

(u⊤
i x) ⋅ ui + b

d a = (u⊤
1 x, …, u⊤

k x) ∈ ℝk

π𝖴(x) = (
k

∑
i=1

uiu⊤
i ) x + b

=: Ux + b

U U⊤ = U
U⊤U = U

a  matrix with the rank d × d k



Formalism
• In a sense, projection consists of two operations 

• Compression (or encoding, ) 

 

• Reconstruction (or decoding, ) 

ℝd → ℝk

z = Uencx, where Uenc =
← u⊤

1 →
⋯

← u⊤
k →

∈ ℝk×d

ℝk → ℝd

x̂ = Udecz + b, where Udec = U⊤
enc ∈ ℝd×k

x z x̂Uenc Udec



PCA: Variance maximization



Variance Maximization
• For PCA, we want to find a nice  such that 

 

U

max
U

Var(Ux1 + b, …, Uxn + b)
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• For PCA, we want to find a nice  such that 

 

• As the constant term does not affect variance, this is equal to 

 

U

max
U

Var(Ux1 + b, …, Uxn + b)

max
U

Var(Ux1, …, Uxn)



Variance Maximization
• For PCA, we want to find a nice  such that 

 

• As the constant term does not affect variance, this is equal to 

 

• Let  be the mean of . Then, the variance can be written as: 

 

                                                         

U

max
U

Var(Ux1 + b, …, Uxn + b)

max
U

Var(Ux1, …, Uxn)
x̄ {xi}n

i=1

Var(Ux1, …, Uxn) =
1
n

n

∑
i=1

∥U(xi − x̄)∥2
2 =

1
n

n

∑
i=1

(xi − x̄)⊤U⊤U(xi − x̄)

=
1
n

n

∑
i=1

(xi − x̄)⊤U(xi − x̄)



Variance Maximization
 

• By the definition of , we can re-write the above as 

 

max
U

1
n

n

∑
i=1

(xi − x̄)⊤U(xi − x̄)

U

max
U

1
n

n

∑
i=1

k

∑
j=1

(xi − x̄)⊤uju⊤
j (xi − x̄)

= max
U

k

∑
j=1

u⊤
j ( 1

n

n

∑
i=1

(xi − x̄)(xi − x̄)⊤) uj

= sample covariance matrix  
(positive-semidefinite)

S



Variance Maximization
 

• By the definition of , we can re-write the above as 

 

 

• Thus, PCA is about solving the constrained quadratic optimization 

max
U

1
n

n

∑
i=1

(xi − x̄)⊤U(xi − x̄)

U

max
U

1
n

n

∑
i=1

k

∑
j=1

(xi − x̄)⊤uju⊤
j (xi − x̄)

= max
U

k

∑
j=1

u⊤
j ( 1

n

n

∑
i=1

(xi − x̄)(xi − x̄)⊤) uj

max
u1,…,uk

k

∑
j=1

u⊤
j Suj, subject to u⊤

i uj = {1 ⋯ i = j
0 ⋯ i ≠ j



Solving the quadratic problem
 

• How do we solve this problem? 
                                                       

max
u1,…,uk

k

∑
j=1

u⊤
j Suj, subject to u⊤

i uj = 1{i = j}



Solving the quadratic problem
 

• How do we solve this problem? 

• Strategy. Perform greedy optimization 

• Select a nice  that maximizes , subject to  

• Select a nice  that maximizes  , subject to  and  

• …

max
u1,…,uk

k

∑
j=1

u⊤
j Suj, subject to u⊤

i uj = 1{i = j}

u1 u⊤
1 Su1 u⊤

1 u1 = 1

u2 u⊤
2 Su2 u⊤

2 u2 = 1 u⊤
2 u1 = 0



Solving the quadratic problem
• Let us take a look at the first step: determining  u1

max
u

u⊤Su, subject to u⊤u = 1



Solving the quadratic problem
• Let us take a look at the first step: determining  

 

• To solve this, consider the Lagrangian relaxation 

 

• The critical point is where  holds, i.e., eigenvectors.

u1

max
u

u⊤Su, subject to u⊤u = 1

max
u

u⊤Su + α(1 − u⊤u)

Su = αu



Solving the quadratic problem
• Let us take a look at the first step: determining  

 

• To solve this, consider the Lagrangian relaxation 

 

• The critical point is where  holds, i.e., eigenvectors. 

• Choosing the principal component (eigenvector with the largest eigenvalue) 
maximizes the value of 

u1

max
u

u⊤Su, subject to u⊤u = 1

max
u

u⊤Su + α(1 − u⊤u)

Su = αu

u⊤Su



Solving the quadratic problem
• Next, try to determine  u2

max
u

u⊤Su, subject to u⊤u = 1, u⊤u1 = 0



Solving the quadratic problem
• Next, try to determine  

 

• The Lagrangian becomes 

 

• The critical point condition is 

u2

max
u

u⊤Su, subject to u⊤u = 1, u⊤u1 = 0

u⊤Su + α(1 − u⊤u) − β(u⊤u1)

Su = αu +
β
2

u1



Solving the quadratic problem
• Next, try to determine  

 

• The Lagrangian becomes 

 

• The critical point condition is 

 

• Multiplying  on both sides, we get 

 

• and thus we get 

u2

max
u

u⊤Su, subject to u⊤u = 1, u⊤u1 = 0

u⊤Su + α(1 − u⊤u) − β(u⊤u1)

Su = αu +
β
2

u1

u⊤
1

u⊤
1 Su = αu1u +

β
2

β = 0
= 0 = 0



Solving the quadratic problem
• Using , our Lagrangian becomes 

 

    with the critical point condition 

 

• Thus, our solution should be selecting the eigenvector with 2nd largest eigenvalue

β = 0

u⊤Su + α(1 − u⊤u)

Su = αu



Solving the quadratic problem
• Using , our Lagrangian becomes 

 

    with the critical point condition 

 

• Thus, our solution should be selecting the eigenvector with 2nd largest eigenvalue 

• Repeat this procedure, and get top-k principal components of the sample covariance matrix as our 
bases . 

• Can be done by performing SVD on the data matrix 

 

and selecting the columns of  for top-k singular values.

β = 0

u⊤Su + α(1 − u⊤u)

Su = αu

u1, …, uk

X = [x1 − x̄ | ⋯ | xn − x̄] = UΣV⊤

U



Wrapping up
• Today 

• Dimensionality reduction 

• Principal component analysis 

• Basic maths on projection 

• PCA as Variance maximization 

• Solved in a greedy manner 

• Next class. 

• PCA continued 

• PCA as distortion minimization 

• Applications and Limitations 

• Modern versions



Cheers


