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Recap

- Unsupervised learning. Discovering useful stuctures of the data, using the unlabeled dataset
- K-Means Clustering
« Gaussian Mixture Models

- Dimensionality Reduction <— This week

- Neural-net-based

. Autoencoders

« GANS

« Diffusion models

- Language Models



Dealing with high-dimensional data

- Many datasets are extremely high-dimensional in its raw form
- Suppose that you are an ML engineer at Google

- Then, youd need to learn from these datasets:

YouTube Shorts
1920 x 1080 x 3 colors x 60 fps x 60 seconds
=224 billion pixels (per video)



Dealing with high-dimensional data

Gmail
1000s of words x sender info x receiver info x (images...)
= millions~billions real numbers (per mail)




Curse of dimensionality

- Higher-dimensional data are nasty to do ML on
- More computation

- Higher chance of noise

- Difficult to visualize (for human insight)

. Difficult to find meaningful patterns




Dimensionality: Nominal vs. True

- But do we really need all dimensions?

- Example. Handwritten digit recognition (MNIST, 28x28 image)

only looks like this ... and not like this

R28x28 _ 3784

- Thus, we may not need to fully utilize



Dimensionality: Nominal vs. True

-

- Hypothesis.
There exists some low-dim subspace (or submanifold) =

iNn the high-dimensional feature space,
where the real data lies in

______



Dimensionality: Nominal vs. True

- Dimensionality reduction
Use unlabeled data to find the right mapping
from a high-dimensional to low-dimensional space

« Caveat. There could be some noises in each datum,
which can make things tricky




Dimensionality: Nominal vs. True

-

- Today. Look at a linear case, called PCA.



Principal component analysis



Overview

« Dimensionality reduction, using an affine subspace of the original space

» Invented by Karl Pearson (1909)

« Many aliases, e.g., Karhunen-Loeve Transform

o




Motivational example

o Suppose that we are given a 2D dataset.

« Goal. Find a nice 1D subspace and a mapping, s. t. the mapped data has nice properties




Motivational example

- Confine the mapping to be an orthogonal projection —> Only about determining subspaces




Motivational example

- Goal (restated). Find a nice 1D subspace that the projected data has nice properties




Motivational example

. ldea. Suppose that we want to preserve some information as much as possible

- Question. Which projection contains more information?




Motivational example

« Answer. Left for two reasons.

. (A) Projected points are more spread, thus not ignoring the differences between points

. (B) Original points (@) are closer to their projections (@)




Motivational example

- Note. We will see later that (A) is equivalent to (B)!




Principal Component Analysis

« Let us be a little more formal:

. Suppose that we have a dataset Xy, ..., X, € R4

. Godal. Find a k-dimensional subspace U of R4 such that:

« (A) The projection has the maximum variance:

max Var(z(X,), ..., 7,(X))
U




Principal Component Analysis

. (B) The distortion from projection is minimized:

n
min ) [Ix; = 73113
~




PCA: Formalisms



Formalism

« A k-dimensional affine subspace U C R4 can be characterized oy:
» its orthonormal basesuy, ..., 0, € R4
. an orthogonal bias b € R

U={agu +--+agu+b : g R}




Formalism

« Any element can be represented as:
« 0 d-dimensional vectoru € U

« 0 k-dimensional quantity

(a, a, ...,a;)



Formalism

. A projection of a vector X € R4 to the affine subspace U is
k

mx) =) (x)-u+b

=1

. d-dimensional, with an alternative representation a = (ulTX, ens u,IX) el



Formalism

« The projection admits a matrix form:

k
7, (X) = ( 2 uu;
i=1

=: Ux+Db

Xx+Db
a d X d matrix with the rank k

« The projection matrix U satisfies (1) U'=U
2U'U=U



« Compression (or encoding, |

z=U

GHCX’

d

Formalism

« INn O sense, projection consists of two operations

— |

Y

where U, .= e R

« Reconstruction (or decoding, Rk - IRd)

ﬁ — UdeCZ + b,

where U, . =U! € R

cnc

X

U
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A\

z U;. X



PCA: Variance maximization



Variance Maximization

. For PCA we want to find a nice U such that

max Val‘(le +b,...,Ux + b)
U



Variance Maximization

- As the constant term does not affect variance, this is equal to

max Var(le, . an)
U



Variance Maximization

. Let X be the mean of {X;}'_;. Then, the variance can be written as:

] & ] &
Var(Ux, ..., Ux,) = ~ D U — %13 = — D (x,—%)"UTU(x, - %)

| ) )
= — Z (x; — X)TU(Xi — X)
L



Variance Maximization

1 n
max—Z(xi—X) U(x; — X)
U n=

. By the definition of U, we can re-write the above as

1n k
_T T —
max — X:-—X) UU. (X:—X
ax 2 3 3 -9,

i=1 j=1
k

1 « _ _
InélX Z ujT (; lzzl (X; — X)(X; — X)T) u,

j=1

= sample covariance matrix S
(positive-semidefinite)



Variance Maximization

« Thus, PCA is about solving the constrained quadratic optimization

k . .
1 coe l =]
T - T
max u. Su,, subjectto u. u; = o
upm,uk; j DN J Ay {() o Q]



Solving the quadratic problem

k
max Z ujTSuj, subject to ul.Tuj = 1{i =}

u,...,u; .
1 k]=1

- How do we solve this problem?



Solving the quadratic problem

k
max Z ujTSuj, subject to ul.Tuj = 1{i =}
Up,...,u,
J=1

. Strategy. Perform greedy optimization

. Select a nice uy that maximizes ulTSul, subject to ulTul = 1

. Select a nice u, that maximizes ugSuz, subject to uguz = 1 and ugul =0



Solving the quadratic problem

- Let us take a look at the first step: determining u,

max u' Su, subjectto u'u=1
u



Solving the quadratic problem

. To solve this, consider the Lagrangian relaxation

maxu'Su + a(1 —u'u)
u

- The critical point is where Su = au holds, i.e., eigenvectors.



Solving the quadratic problem

- Choosing the principal component (eigenvector with the largest eigenvalue)
maximizes the value of u' Su



Solving the quadratic problem

- Next, try to determine u,

T

max u' Su, subjectto u'u =1, uTul = ()

u



Solving the quadratic problem

- The Lagrangian becomes
u'Su+a(l —u'u) - pu'u)

. The critical point condition is

Su = au + —u,
2



Solving the quadratic problem

. Multiplying ulT on both sides, we get

u;Su = aquu + =

2
=0 =0
.+ and thuswe get f =0



Solving the quadratic problem

. Using f# = 0, our Lagrangian becomes
u'Su+a(l —u'u)
with the critical point condition

Su = aqu

hus, our solution should be selecting the eigenvector with 2nd largest eigenvalue



Solving the quadratic problem

» Repeat this procedure, and get top-k principal components of the sample covariance matrix as our

pases Uy, ..., Uy

« Can be done by performing SVD on the data matrix
X=[x;—X| - | x —X]=UXV'

and selecting the columns of U for top-k singular values.



Wrapping up

- Today
- Dimensionality reduction
 Principal component analysis
- Basic maths on projection
- PCA as Variance maximization
- Solved in a greedy manner
» Next class.
» PCA continued
» PCA as distortion minimization
- Applications and Limitations

« Modern versions



Cheers



