Expectation-Maximization EECE454 Intro. to Machine Learning Systems

Recap

• **GMM.** We fit a Gaussian mixture density function to the training data

 $p(\mathbf{x} | \theta) = \sum_{k=1}^{K} \pi_{k} \cdot \mathcal{N}(\mathbf{x} | \mu_{k}, \Sigma_{k})$ k=1

Recap

• **GMM.** We fit a Gaussian mixture density function to the training data

- The optimization can be done by alternating two steps
 - Special version of EM

$$p(\mathbf{x} | \theta) = \sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)$$

- 1. Initialize $\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \pi_k$.
- 2. *E-step:* Evaluate responsibilities r_{nk} for every data point \boldsymbol{x}_n using current parameters π_k, μ_k, Σ_k :

$$r_{nk} = rac{\pi_k \mathcal{N}(\boldsymbol{x}_n \,|\, \boldsymbol{\mu}_k, \, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\boldsymbol{x}_n \,|\, \boldsymbol{\mu}_j, \, \boldsymbol{\Sigma}_j)} \,.$$
 (11)

3. *M-step:* Reestimate parameters π_k, μ_k, Σ_k using the current responsibilities r_{nk} (from E-step):

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^N r_{nk} \boldsymbol{x}_n \,, \tag{11}$$

$$\boldsymbol{\Sigma}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} r_{nk} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})^{\top}, \qquad (11)$$

$$\pi_k = \frac{N_k}{N} \,. \tag{11}$$

Recap

• **GMM.** We fit a Gaussian mixture density function to the training data

- The optimization can be done by alternating two steps
 - Special version of EM
- **Today.** We take a look at EM in a more general sense
 - Description
 - Convergence

$$p(\mathbf{x} | \theta) = \sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)$$

- 1. Initialize $\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \pi_k$.
- 2. *E-step:* Evaluate responsibilities r_{nk} for every data point \boldsymbol{x}_n using current parameters π_k, μ_k, Σ_k :

$$r_{nk} = rac{\pi_k \mathcal{N}(\boldsymbol{x}_n \,|\, \boldsymbol{\mu}_k, \, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\boldsymbol{x}_n \,|\, \boldsymbol{\mu}_j, \, \boldsymbol{\Sigma}_j)} \,.$$
 (11)

3. *M-step:* Reestimate parameters π_k, μ_k, Σ_k using the current responsibilities r_{nk} (from E-step):

$$\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^N r_{nk} \boldsymbol{x}_n \,, \tag{11}$$

$$\boldsymbol{\Sigma}_{k} = \frac{1}{N_{k}} \sum_{n=1}^{N} r_{nk} (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k}) (\boldsymbol{x}_{n} - \boldsymbol{\mu}_{k})^{\top}, \qquad (11)$$

$$\pi_k = \frac{N_k}{N} \,. \tag{11}$$

Prerequisite: Convexity

- Before we begin, we briefly familiarize ourselves with the notion of convexity.
- **Definition (narrow).** A differentiable function $f(x) : \mathbb{R} \to \mathbb{R}$ is convex whenever $f''(x) \ge 0$

- Before we begin, we briefly familiarize ourselves with the notion of convexity.
- **Definition (narrow).** A differentiable function $f(x) : \mathbb{R} \to \mathbb{R}$ is convex whenever $f'(x) \ge 0$
- **Definition (general).** A set \mathcal{S} is a convex set whenever for any $x, y \in \mathcal{S}$, we have

$$(1 - \lambda)x + \lambda y$$

$\in \mathcal{S},$ $\forall \lambda \in [0,1]$

- Before we begin, we briefly familiarize ourselves with the notion of convexity.
- **Definition (narrow).** A differentiable function $f(x) : \mathbb{R} \to \mathbb{R}$ is convex whenever $f'(x) \ge 0$
- **Definition (general).** A set \mathcal{S} is a convex set whenever for any $x, y \in \mathcal{S}$, we have

 - A function $f: \mathcal{S} \to \mathbb{R}$ is a convex function whenever

 $(1 - \lambda)x + \lambda y \in \mathcal{S}, \quad \forall \lambda \in [0, 1]$

 $f((1 - \lambda)x + \lambda y) \le (1 - \lambda)f(x) + \lambda f(y)$

Before we begin, we briefly familiarize ourselves with the notion of convexity.

A function is convex if and only if its epigraph is a convex set

Jensen's inequality

• For convex functions, we have a convenient property called Jensen's inequality.

Theorem. Let $f: \mathbb{R} \to \mathbb{R}$ be a convex function, and let X be a random variable. Then, we have

 $\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$

Jensen's inequality

- For convex functions, we have a convenient property called Jensen's inequality.
- **Theorem.** Let $f: \mathbb{R} \to \mathbb{R}$ be a convex function, and let X be a random variable. Then, we have $\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$
- <u>Proof idea</u>. Expectation = weighted sum = linear combination

Jensen's inequality

- For convex functions, we have a convenient property called Jensen's inequality.
- **Theorem.** Let $f: \mathbb{R} \to \mathbb{R}$ be a convex function, and let X be a random variable. Then, we have $\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$
- <u>Proof idea</u>. Expectation = weighted sum = linear combination
- <u>Remark</u>. The inequality $\mathbb{E}[f(X)] \ge f(\mathbb{E}[X])$ holds with equality if $X = \mathbb{E}[X]$ with probability 1.

Expectation-Maximization

- Suppose that we have a training set $\{x_1, \ldots, x_n\}$ consisting of n independent samples.
 - (For simplicity, let z be discrete)
 - Example. *x*: image of a digit $\mathbb{R}^{28 \times 28}$ *z*: digit itself $\{0, 1, ..., 9\}$

Setup

• These samples have some latent variable $\{z_1, \ldots, z_n\}$ jointly distributed with each sample.

- Suppose that we have a training set $\{x_1, \ldots, x_n\}$ consisting of *n* independent samples.
 - (For simplicity, let z be discrete)
 - Example. x: image of a digit $\mathbb{R}^{28 \times 28}$ *z*: digit itself $\{0, 1, ..., 9\}$
- **Goal.** Want to fit a (parametrized) density function

Can be obtained by marginalizing over latent variables ullet

Setup

• These samples have some latent variable $\{z_1, \ldots, z_n\}$ jointly distributed with each sample.

 $p(x;\theta)$

 $p(x;\theta) = \sum p(x,z;\theta)$

• More specifically, we maximize the log-likelihood of the data:

• In terms of the latent variables, we can write as

Setup

 $\max_{\theta} \quad \ell(\theta) := \sum_{i=1}^{n} \log p(x_i; \theta)$

 $\ell(\theta) = \sum_{i=1}^{n} \log \sum_{z_i} p(x_i, z_i; \theta)$

• More specifically, we maximize the log-likelihood of the data:

• In terms of the latent variables, we can write as

(e.g., by admitting closed-form solutions)

$$\ell(\theta) = \sum_{i=1}^{n} \log p(x_i, z_i; \theta)$$

Setup

 $\max_{\theta} \ell(\theta) := \sum_{i=1}^{n} \log p(x_i; \theta)$

 $\ell(\theta) = \sum_{i=1}^{n} \log \sum_{i=1}^{n} p(x_i, z_i; \theta)$ i=1 z_i

• Often, importantly, if z_i were observed then the MLE would have been much easier

- Idea. Repeat the following:
 - Construct some lower bound on $\tilde{\ell}(\theta) \leq \ell(\theta)$
 - Maximize the lower bound $\widetilde{\ell}(\theta)$

- Idea. Repeat the following:
 - Construct some lower bound on $\tilde{\ell}(\theta) \leq \ell(\theta)$
 - Maximize the lower bound $\tilde{\ell}(\theta)$
- **Simplification.** For simple notation, make it a problem with respect to a single sample

$\ell(\theta) = \log p(x;\theta) = \log \sum p(x,z;\theta)$ Z

- Idea. Repeat the following:
 - Construct some lower bound on $\tilde{\ell}(\theta) \leq \ell(\theta)$
 - Maximize the lower bound $\tilde{\ell}(\theta)$
- **Simplification.** For simple notation, make it a problem with respect to a single sample $\ell(\theta) = \log p(x;$

<u>Observation</u>. If we select any distribution Q(z), Jensen's inequality gives

$$\log \sum_{z} p(x, z; \theta) = \log \sum_{z} Q(z) \frac{p(x, z; \theta)}{Q(z)} \ge \sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)}$$

$$\theta) = \log \sum_{z} p(x, z; \theta)$$

• By letting

we know that we have a lower bound

• **Question.** How do we select the tightest lower bound?

Strategy

$\tilde{\ell}_{Q}(\theta) = \sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)}$

$\ell(\theta) \geq \tilde{\ell}_{O}(\theta)$

By letting

- **Question.** How do we select the tightest lower bound?
 - ullet

 $\frac{p(x,z;\theta)}{Q(z)} = C$

$\tilde{\ell}_{Q}(\theta) = \sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)}$

$\ell(\theta) \geq \tilde{\ell}_{O}(\theta)$

<u>Answer</u>. We desire that the random quantity is actually constant (equal to "expectation"), i.e.,

 $\Leftrightarrow \qquad Q(z) \propto p(x, z; \theta)$

- That is, we select Q(z) to be the posterior distribution
 - $Q(z) = \frac{p(x, z)}{p(x)}$
 - We call these lower bounds, the **ELBO (evidence lower bound)**

$$\text{ELBO}(x; Q, \theta) = \sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)} = \tilde{\ell}(\theta) \le \ell(\theta)$$

• <u>Remark</u>. Constructing such Q requires some estimate of θ .

$$\frac{p(z;\theta)}{x;\theta} = p(z \,|\, x;\theta)$$

- That is, we select Q(z) to be the posterior distribution

 - We call these lower bounds, the ELBO (evidence lower bound)

$$ELBO(x; Q, \theta) = \sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)} = \tilde{\ell}(\theta) \le \ell(\theta)$$

- <u>Remark</u>. Constructing such Q requires some estimate of θ .
- We construct such posterior for each sample, i.e.,

 $Q(z) = \frac{p(x, z; \theta)}{p(x; \theta)} = p(z | x; \theta)$

 $Q_i(z) = p(z_i | x_i, \theta)$

- Thus, our algorithm is repeating:

 - Maximization. Find $heta_{
 m new}$ that maximizes

 $\tilde{\ell}(\theta_{\text{new}}) = \sum_{i=1}^{n} \sum_{z} Q_i(z) \log \frac{p(x_i, z_i; \theta_{\text{new}})}{Q_i(z)}$

• Expectation. Construct some $Q_i(z) = p(z | x_i; \theta_{cur})$ based on the current estimate θ_{cur}

Convergence

- To prove convergence, we show that our iteration always improves $\ell(\theta)$, i.e.,
 - $\ell(\theta_{\rm cur}) \leq \ell(\theta_{\rm new})$
- In fact, for the distribution Q constructed based on $heta_{
 m cur'}$ we have

- $\leq \text{ELBO}(x; Q, \theta_{\text{new}})$
- $\leq \ell(\theta_{\rm new})$

 $\ell(\theta_{cur}) = \text{ELBO}(x; Q, \theta_{cur})$

• Dimensionality reduction

Next lecture

Cheers