

EECE454 Intro. to Machine Learning Systems Expectation-Maximization

Recap

• GMM. We fit a Gaussian mixture density function to the training data

k=1 $\pi_k \cdot \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)$

Recap

 $p(\mathbf{x}|\theta) =$

• GMM. We fit a Gaussian mixture density function to the training data

- The optimization can be done by alternating two steps
	- Special version of EM

$$
\sum_{k=1}^K \pi_k \cdot \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)
$$

- 1. Initialize $\boldsymbol{\mu}_k$, $\boldsymbol{\Sigma}_k$, π_k .
- 2. *E-step*: Evaluate responsibilities r_{nk} for every data point x_n using current parameters π_k, μ_k, Σ_k :

$$
r_{nk} = \frac{\pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.
$$
(11)

3. *M-step*: Reestimate parameters π_k , μ_k , Σ_k using the current responsibilities r_{nk} (from E-step):

$$
\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^N r_{nk} \boldsymbol{x}_n ,
$$
 (11)

$$
\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N r_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^\top, \qquad (11)
$$

$$
\pi_k = \frac{N_k}{N} \,. \tag{11}
$$

Recap

 $p(\mathbf{x}|\theta) =$

• GMM. We fit a Gaussian mixture density function to the training data

- The optimization can be done by alternating two steps
	- Special version of EM
- Today. We take a look at EM in a more general sense
	- **Description**
	- Convergence

$$
\sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k)
$$

- 1. Initialize $\boldsymbol{\mu}_k$, $\boldsymbol{\Sigma}_k$, π_k .
- 2. *E-step*: Evaluate responsibilities r_{nk} for every data point x_n using current parameters π_k, μ_k, Σ_k :

$$
r_{nk} = \frac{\pi_k \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\boldsymbol{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.
$$
(11)

3. *M-step*: Reestimate parameters π_k , μ_k , Σ_k using the current responsibilities r_{nk} (from E-step):

$$
\boldsymbol{\mu}_k = \frac{1}{N_k} \sum_{n=1}^N r_{nk} \boldsymbol{x}_n ,
$$
 (11)

$$
\Sigma_k = \frac{1}{N_k} \sum_{n=1}^N r_{nk} (\boldsymbol{x}_n - \boldsymbol{\mu}_k) (\boldsymbol{x}_n - \boldsymbol{\mu}_k)^\top, \qquad (11)
$$

$$
\pi_k = \frac{N_k}{N} \,. \tag{11}
$$

Prerequisite: Convexity

- Before we begin, we briefly familiarize ourselves with the notion of convexity.
- **Definition (narrow).** A differentiable function $f(x): \mathbb{R} \to \mathbb{R}$ is convex whenever $f''(x) \geq 0$

- Before we begin, we briefly familiarize ourselves with the notion of convexity.
- **Definition (narrow).** A differentiable function $f(x)$: ℝ → ℝ is convex whenever $f''(x) \ge 0$
- **Definition (general).** A set $\mathcal S$ is a convex set whenever for any $x, y \in \mathcal S$, we have

$$
(1-\lambda)x+\lambda y
$$

\in *δ*, $\forall \lambda \in [0,1]$

- Before we begin, we briefly familiarize ourselves with the notion of convexity.
- **Definition (narrow).** A differentiable function $f(x)$: ℝ → ℝ is convex whenever $f''(x) \ge 0$
- **Definition (general).** A set $\mathcal S$ is a convex set whenever for any $x, y \in \mathcal S$, we have
	-
- A function $f\colon \mathcal{S}\to \mathbb{R}$ is a convex function whenever
	-

 $(1 - \lambda)x + \lambda y \in S$, $\forall \lambda \in [0,1]$

 $f((1 - \lambda)x + \lambda y) \leq (1 - \lambda)f(x) + \lambda f(y)$

• Before we begin, we briefly familiarize ourselves with the notion of convexity.

A function is convex if and only if its epigraph is a convex set

Jensen's inequality

• For convex functions, we have a convenient property called Jensen's inequality.

Theorem. Let $f: \mathbb{R} \to \mathbb{R}$ be a convex function, and let X be a random variable. Then, we have

 $E[f(X)] \geq f(E[X])$

Jensen's inequality

- For convex functions, we have a convenient property called Jensen's inequality.
- **Theorem.** Let $f: \mathbb{R} \to \mathbb{R}$ be a convex function, and let X be a random variable. Then, we have $f: \mathbb{R} \to \mathbb{R}$ $E[f(X)] \geq f(E[X])$
- Proof idea. Expectation = weighted sum = linear combination

Jensen's inequality

- For convex functions, we have a convenient property called Jensen's inequality.
- **Theorem.** Let $f: \mathbb{R} \to \mathbb{R}$ be a convex function, and let X be a random variable. Then, we have $f: \mathbb{R} \to \mathbb{R}$ $E[f(X)] \geq f(E[X])$
- Proof idea. Expectation = weighted sum = linear combination
- <u>Remark</u>. The inequality $\mathbb{E}[f(X)] \geq f(\mathbb{E}[X])$ holds with equality if $X = \mathbb{E}[X]$ with probability 1.

Expectation-Maximization

- Suppose that we have a training set $\{x_1, ..., x_n\}$ consisting of n independent samples.
	- \bullet These samples have some latent variable $\{z_1,...,z_n\}$ jointly distributed with each sample. (For simplicity, let z be discrete)
		- Example. x: image of a digit $\mathbb{R}^{28\times 28}$ *z*: digit itself $\{0,1,...,9\}$

Setup

- Suppose that we have a training set $\{x_1, ..., x_n\}$ consisting of n independent samples.
	- These samples have some latent variable $\{z_1,...,z_n\}$ jointly distributed with each sample. (For simplicity, let z be discrete)
		- Example. x: image of a digit $\mathbb{R}^{28\times 28}$ *z*: digit itself $\{0,1,...,9\}$
- Goal. Want to fit a (parametrized) density function

Setup

 $p(x; \theta)$

 $p(x; \theta) = \sum p(x, z; \theta)$ *z*

• Can be obtained by marginalizing over latent variables

• More specifically, we maximize the log-likelihood of the data:

Setup

max *θ* $\ell'(\theta) :=$

n ∑ *i*=1 $log p(x_i; \theta)$

log∑ *zi* $p(x_i, z_i; \theta)$

• In terms of the latent variables, we can write as

$$
\ell(\theta) = \sum_{i=1}^n
$$

• More specifically, we maximize the log-likelihood of the data:

Setup

- In terms of the latent variables, we can write as $\ell(\theta) =$ *n*
	- (e.g., by admitting closed-form solutions)

n ∑ *i*=1 $\log p(x_i; \theta)$

 \sum log \sum $p(x_i, z_i; \theta)$ *i*=1 *zi*

 \bullet Often, importantly, if z_i were observed then the MLE would have been much easier

$$
\ell(\theta) = \sum_{i=1}^{n} \log p(x_i, z_i; \theta)
$$

- Idea. Repeat the following:
- Construct some lower bound on *ℓ* • Maximize the lower bound *ℓ* $\widetilde{\rho}$ (*θ*) ≤ *ℓ*(*θ*) $\widetilde{\rho}$ (*θ*)
	-

-
-
-
-
- - - -
-
-
- -
- - -
- -
-
-
-
-
-
-
- -
-
-
-
-
-
-
- -
	-
-
-
- -
	-
	-
	-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

- Idea. Repeat the following:
	- Construct some lower bound on *ℓ* ˜ (*θ*) ≤ *ℓ*(*θ*)
	- Maximize the lower bound *ℓ* ˜ (*θ*)
- **Simplification.** For simple notation, make it a problem with respect to a single sample

$\ell(\theta) = \log p(x; \theta) = \log \sum p(x, z; \theta)$ *z*

- Idea. Repeat the following:
	- Construct some lower bound on *ℓ* ˜ (*θ*) ≤ *ℓ*(*θ*)
	- Maximize the lower bound *ℓ* ˜ (*θ*)
- **Simplification.** For simple notation, make it a problem with respect to a single sample $\ell(\theta) = \log p(x;$

• <u>Observation</u>. If we select any distribution $Q(z)$, Jensen's inequality gives

$$
\theta) = \log \sum_{z} p(x, z; \theta)
$$

$$
\log \sum_{z} p(x, z; \theta) = \log \sum_{z} Q(z) \frac{p(x, z; \theta)}{Q(z)} \ge \sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)}
$$

• By letting

Strategy

we know that we have a lower bound

• **Question.** How do we select the tightest lower bound?

$Q(z)$ log $\frac{p(x, z; \theta)}{Q(z)}$ *Q*(*z*)

ℓ ⁽ θ) $\geq \ell$ ˜ *Q*(*θ*)

• By letting

- Question. How do we select the tightest lower bound?
	-

$\varrho^{(\theta)} = \sum$ $Q(z)$ log $\frac{p(x, z; \theta)}{Q(z)}$ *Q*(*z*)

ℓ ⁽ θ) \geq ℓ ˜ *^Q*(*θ*)

• Answer. We desire that the random quantity is actually constant (equal to "expectation"), i.e.,

 \Leftrightarrow $Q(z) \propto p(x, z; \theta)$

ℓ ˜

z

p(*x*,*z*; *θ*) *Q*(*z*)

- That is, we select $Q(z)$ to be the posterior distribution
	- $Q(z) =$
	- We call these lower bounds, the **ELBO (evidence lower bound)**

$$
\frac{p(x, z; \theta)}{p(x; \theta)} = p(z | x; \theta)
$$

ELBO(*x*; *Q*,
$$
\theta
$$
) = $\sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)} = \tilde{e}(\theta) \le \ell(\theta)$

• <u>Remark</u>. Constructing such Q requires some estimate of θ .

- That is, we select $Q(z)$ to be the posterior distribution
	- $Q(z) =$
	- We call these lower bounds, the ELBO (evidence lower bound)

p(*x*,*z*; *θ*) *p*(*x*; *θ*) $= p(z | x; \theta)$

 $Q_i(z) = p(z_i | x_i, \theta)$

ELBO(*x*; *Q*,
$$
\theta
$$
) = $\sum_{z} Q(z) \log \frac{p(x, z; \theta)}{Q(z)} = \tilde{e}(\theta) \le \ell(\theta)$

- <u>Remark</u>. Constructing such Q requires some estimate of θ .
- We construct such posterior for each sample, i.e.,

- Thus, our algorithm is repeating:
	-
	- <u>Maximization</u>. Find θ_{new} that maximizes

ℓ $\widetilde{\rho}$ (θ_{new}) = *n* ∑ *i*=1 ∑ *z* $Q_i(z) \log \frac{p(x_i, z_i; \theta_{\text{new}})}{Q(z)}$ $Q_i(z)$

• <u>Expectation</u>. Construct some $Q_i(z) = p(z \,|\, x_i; \theta_\text{cur})$ based on the current estimate θ_cur

Convergence

- To prove convergence, we show that our iteration always improves $\ell(\theta)$, i.e.,
	- $\ell(\theta_{\text{cur}}) \leq \ell(\theta_{\text{new}})$
- In fact, for the distribution \boldsymbol{Q} constructed based on $\theta_{\rm cur'}$ we have

- \leq ELBO(*x*; Q , θ_{new})
- $\leq \ell(\theta_{\text{new}})$

 $\ell(\theta_{\text{cur}}) = \text{ELBO}(x; Q, \theta_{\text{cur}})$

Next lecture

• Dimensionality reduction

Cheers