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Expectation-Maximization



Recap
• GMM. We fit a Gaussian mixture density function to the training data 

p(x |θ) =
K

∑
k=1

πk ⋅ 𝒩(x |μk, Σk)



Recap
• GMM. We fit a Gaussian mixture density function to the training data 

 

• The optimization can be done by 
alternating two steps 

• Special version of EM

p(x |θ) =
K

∑
k=1

πk ⋅ 𝒩(x |μk, Σk)



Recap
• GMM. We fit a Gaussian mixture density function to the training data 

 

• The optimization can be done by 
alternating two steps 

• Special version of EM 

• Today. We take a look at EM in a more 
              general sense 

• Description 

• Convergence

p(x |θ) =
K

∑
k=1

πk ⋅ 𝒩(x |μk, Σk)



Prerequisite: Convexity
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• Before we begin, we briefly familiarize ourselves with the notion of convexity. 

Definition (narrow). A differentiable function  is convex whenever f(x) : ℝ → ℝ f′￼′￼(x) ≥ 0
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Convex function
• Before we begin, we briefly familiarize ourselves with the notion of convexity. 

Definition (narrow). A differentiable function  is convex whenever  

Definition (general). A set  is a convex set whenever for any , we have 

 

                                       A function  is a convex function whenever 

 

                                       A function is convex if and only if its epigraph is a convex set

f(x) : ℝ → ℝ f′￼′￼(x) ≥ 0

𝒮 x, y ∈ 𝒮

(1 − λ)x + λy ∈ 𝒮, ∀λ ∈ [0,1]

f : 𝒮 → ℝ

f((1 − λ)x + λy) ≤ (1 − λ)f(x) + λf(y)



Jensen’s inequality
• For convex functions, we have a convenient property called Jensen’s inequality. 

Theorem. Let  be a convex function, and let  be a random variable. Then, we have f : ℝ → ℝ X

𝔼[ f(X)] ≥ f(𝔼[X])
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Jensen’s inequality
• For convex functions, we have a convenient property called Jensen’s inequality. 

Theorem. Let  be a convex function, and let  be a random variable. Then, we have 

 

• Proof idea. Expectation = weighted sum = linear combination 

• Remark. The inequality  holds with equality if  with probability 1.

f : ℝ → ℝ X

𝔼[ f(X)] ≥ f(𝔼[X])

𝔼[ f(X)] ≥ f(𝔼[X]) X = 𝔼[X]



Expectation-Maximization



Setup
• Suppose that we have a training set  consisting of  independent samples. 

• These samples have some latent variable  jointly distributed with each sample. 

(For simplicity, let  be discrete) 

• Example. : image of a digit   
                  : digit itself       
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Setup
• Suppose that we have a training set  consisting of  independent samples. 

• These samples have some latent variable  jointly distributed with each sample. 

(For simplicity, let  be discrete) 

• Example. : image of a digit   
                  : digit itself        

• Goal. Want to fit a (parametrized) density function 

 

• Can be obtained by marginalizing over latent variables 

{x1, …, xn} n

{z1, …, zn}
z

x ℝ28×28

z {0,1,…,9}

p(x; θ)

p(x; θ) = ∑
z

p(x, z; θ)



Setup
• More specifically, we maximize the log-likelihood of the data: 

 

• In terms of the latent variables, we can write as 

max
θ
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n

∑
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log p(xi; θ)
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n

∑
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log∑
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p(xi, zi; θ)



Setup
• More specifically, we maximize the log-likelihood of the data: 

 

• In terms of the latent variables, we can write as 

 

• Often, importantly, if  were observed then the MLE would have been much easier 
(e.g., by admitting closed-form solutions) 

max
θ

ℓ(θ) :=
n

∑
i=1

log p(xi; θ)

ℓ(θ) =
n

∑
i=1

log∑
zi

p(xi, zi; θ)

zi

ℓ(θ) =
n

∑
i=1

log p(xi, zi; θ)
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Strategy
• Idea. Repeat the following: 

• Construct some lower bound on  

• Maximize the lower bound  

• Simplification. For simple notation, make it a problem with respect to a single sample 

 

• Observation. If we select any distribution , Jensen’s inequality gives 

ℓ̃(θ) ≤ ℓ(θ)

ℓ̃(θ)

ℓ(θ) = log p(x; θ) = log∑
z

p(x, z; θ)

Q(z)

log∑
z

p(x, z; θ) = log∑
z

Q(z)
p(x, z; θ)

Q(z)
≥ ∑

z

Q(z)log
p(x, z; θ)

Q(z)



Strategy
• By letting 

 

we know that we have a lower bound 

 

• Question. How do we select the tightest lower bound?

ℓ̃Q(θ) = ∑
z

Q(z)log
p(x, z; θ)

Q(z)
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Strategy
• By letting 

 

we know that we have a lower bound 

 

• Question. How do we select the tightest lower bound? 

• Answer. We desire that the random quantity is actually constant (equal to “expectation”), i.e., 

ℓ̃Q(θ) = ∑
z

Q(z)log
p(x, z; θ)

Q(z)

ℓ(θ) ≥ ℓ̃Q(θ)

p(x, z; θ)
Q(z)

= C ⇔ Q(z) ∝ p(x, z; θ)



Strategy
• That is, we select  to be the posterior distribution 

 

• We call these lower bounds, the ELBO (evidence lower bound) 

 

• Remark. Constructing such  requires some estimate of .

Q(z)

Q(z) =
p(x, z; θ)
p(x; θ)

= p(z |x; θ)

ELBO(x; Q, θ) = ∑
z

Q(z)log
p(x, z; θ)

Q(z)
= ℓ̃(θ) ≤ ℓ(θ)

Q θ



Strategy
• That is, we select  to be the posterior distribution 

 

• We call these lower bounds, the ELBO (evidence lower bound) 

 

• Remark. Constructing such  requires some estimate of . 

• We construct such posterior for each sample, i.e., 

Q(z)

Q(z) =
p(x, z; θ)
p(x; θ)

= p(z |x; θ)

ELBO(x; Q, θ) = ∑
z

Q(z)log
p(x, z; θ)

Q(z)
= ℓ̃(θ) ≤ ℓ(θ)

Q θ

Qi(z) = p(zi |xi, θ)



Strategy
• Thus, our algorithm is repeating: 

• Expectation. Construct some  based on the current estimate  

• Maximization. Find  that maximizes 

Qi(z) = p(z |xi; θcur) θcur

θnew

ℓ̃(θnew) =
n

∑
i=1

∑
z

Qi(z)log
p(xi, zi; θnew)

Qi(z)



Convergence
• To prove convergence, we show that our iteration always improves , i.e., 

 

• In fact, for the distribution  constructed based on , we have 

 

               

                                                   

ℓ(θ)

ℓ(θcur) ≤ ℓ(θnew)

Q θcur

ℓ(θcur) = ELBO(x; Q, θcur)

≤ ELBO(x; Q, θnew)

≤ ℓ(θnew)



Next lecture
• Dimensionality reduction



Cheers


