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Recap

- GMM. We fit a Gaussian mixture density function to the training data

K
p(x|0) = Z’Tk - N (X | g 20)
k=1



ne optimization can be done by

ternating two steps

.« Special version of EM

Recap

e

. Initialize p, , 3y, 7.

2. E-step: Evaluate responsibilities 7, for every data point x,, using cur-
rent parameters my, fb;., 23:

WkN(mn | M Zk)
> N (@n | gy Bj)

3. M-step: Reestimate parameters 7, pt,, 23, using the current responsi-
bilities r,,;, (from E-step):

1
= = g, 11.5
. N, n:17“ kL ( 4)
| N
3 = A E Poie(T — ) (T — 1), (11.55)
k n=1
N,
T = — (11.56)



- Today. We take a look at EM in a more
general sense

- Description

- Convergence

Recap

el

. Initialize p, , 3y, 7.

2. E-step: Evaluate responsibilities 7, for every data point x,, using cur-
rent parameters my, fb;., 23:

WkN(mn | M, Zk)
> N (@n | gy Bj)

3. M-step: Reestimate parameters 7, pt,, 23, using the current responsi-
bilities r,,;, (from E-step):

1
= — S rua,, 11.54
. N, n:17° kL ( )
| N
3 = FE Poie(T — ) (T — 1), (11.55)
k n=1
N,
T = — (11.56)



Prerequisite: Convexity



Convex function

« Before we begin, we briefly familiarize ourselves with the notion of convexity.

Definition (narrow). A differentiable function f(x) : R — R is convex whenever f"(x) > 0

Convex / . Non-convex




Convex function

Definition (general). A set & is a convex set whenever forany x,y € &, we have

(1 -A)x+ Ay €8, Vi e |0,1]

Non-convex set

Convex set




Convex function

A functionf: & — R is aconvex function whenever

J((1 =A)x+4y) < (1 = D)f(x) + AH(y)




Convex function

f(x)

Epigraph Epigraph

X X
A convex function Not a convex function

A function is convex it and only it its epigraph is a convex set



Jensen’s inequality

« For convex functions, we have a convenient property called Jensen's inequality.

Theorem. Let f : R — R be a convex function, and let X be a random variable. Then, we have

=[AXO)] 2 AELX])



Jensen'’s inequality

« Proof idea. Expectation = weighted sum = linear combination

f(a)

E[f(X)]

f(b)
f(EX)




« Remark. The inequality

Jensen'’s inequality

—[S(X)] = A

-[ X']) holds with equality if X =

- [ X'| with probability 1.



rxXpectation-Maximization



Setup

. Suppose that we have a training set {xy, ..., X, } consisting of n independent samples.

« These samples have some latent variable {zy, ..., g, } jointly distributed with each sample.

(For simplicity, let z be discrete)

. Example. x: image of a digit R*5%#5
z:digititself  {0,1,...,9}
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3
>
3
L.
3
2

rprELoOPLOL



Setup

« Goal. Want to fit a (parametrized) density function

p(x; 0)

« Can be obtained by marginalizing over latent variables

p(x;0) = Z px,z;0)



Setup

« More specifically, we maximize the log-likelihood of the data:

max Z2(0) = log p(x:; 6
ax  £(0) 2} g p(x;; 6)

e Interms of the latent variables, we can write as

£(0) = Z log )" p(x;z;: 6)
=1 Z;



« Often, importantly, i

(e.g.

oy admitting ¢

7 we

Setup

‘e observed then the MLE would have been much easier

osed-

‘orm solutions)

£(0) = ) log p(x;,z; 0)
=1



Strategy

« |ldea. Repeat the following:
. Construct some lower bound on Z(8) < £(6)

. Maximize the lower bound Z(6)



Strategy

« Simplification. For simple notation, make it a problem with respect to a single sample

£(0) = log p(x; 0) = log ) p(x,z: 0)



Strategy

« Simplification. For simple notation, make it a problem with respect to a single sample

£(0) = log p(x; 0) = log ) p(x,z: 0)

« Observation. If we select any distribution Q(z), Jensen’s inequality gives

p(x,z;0)
0(2)

p(x,z;0
Q(z)

log Z p(x,z;0) = log Z 0(2) ) > Z Q(2)log



Strategy

e By letting

p(x, z;0)

£ o(0) = Z Q(2)log e

we know that we have a lower bound
£0) > 2(0)

« Question. How do we select the tightest lower bound?



Strategy

« Answer. We desire that the random quantity is actually constant (equal to “expectation”), i.e.,

px,z;0) _
0(z)

C < Q@ xpz0)



Strategy

« That is, we select O(z) to be the posterior distribution

_ px,z;0) |
0(z) = o 0) = p(z]x; 0)

« We call these lower bounds, the ELBO (evidence lower bound)

p(x,z;0)
0(2)

ELBO(x; 0.6) = ), O(2)log = 2(0) < £(0)

« Remark. Constructing such Q requires some estimate of 6.




Strategy

« We construct such posterior for each sample, i.e.,

Q4z) = p(z;| x;, 0)



Strategy

« Thus, our algorithm is repeating:

. Expectation. Construct some Q:(z) = p(z|x;; 6.,,) based on the current estimate 6.,

 Maximization. Find 6., that maximizes

B P(X;> 23 Opeyy)
£ Grew) = Z Z O@log = =




Convergence

« To prove convergence, we show that our iteration always improves £(0), i.e.,

£Ounr) < £(6,

ur €W)

« In fact, for the distribution Q constructed based on 6., we have

£(0.,.) = ELBO(x; 0,0...)

ur

< ELBO(x; Q,0,..)

< 7(0,

ew)



Next lecture

- Dimensionality reduction



Cheers



