Introduction EECE454 Intro. to Machine Learning Systems

What is machine learning?

- How do human learn?
 - Given some **examples**, human can **find a pattern**.

Human Learning

- How do human learn?
 - Given some examples, human can find a pattern.

- Machine Learning. Given some examples, a machine automatically:
 - discovers some pattern from the examples
 - builds some program that utilizes such discovered pattern.

Human Learning

- How do human learn?
 - Given some examples, human can find a pattern.

- Machine Learning. Given some examples, a machine automatically:
 - discovers some pattern from the examples

Human Learning

Example tasks

- Create a program that, given an image of a dog, returns the name of the dog specie
 - Human will need a lot of (image, species) pairs

Example tasks

- Create a program that, given a Netflix user and a movie, returns the expected user rating
 - Human will need a lot of (user, movie, rating) triplets

Example tasks

- Create a program that, given **a text input**, returns a **human-like response** (or better)
 - What data do we need?

ፊ 🖓 ChatGPT is a large language model that uses deep learning techniques to generate human-like text. It is based on the GPT (Generative Pre-trained Transformer) architecture, which uses a transformer neural network to process and generate text. The model is pretrained on a massive dataset of text, such as books, articles, and websites, so it can understand the patterns and structure of natural language. When given a prompt or a starting point, the model uses this pre-trained knowledge to generate text that continues

- Notice that there are **two programs in action**
 - (A) The program that utilizes the pattern
 - (B) The program that discovers patterns from data to build (A)

- Notice that there are **two programs in action**
 - (A) The program that utilizes the pattern
 - (B) The program that discovers patterns from data to build (A)

• The program (A) is called "model" (or "predictor" or "hypothesis") and what (A) does is called "prediction" (or "inference")

- Notice that there are **two programs in action**
 - (A) The program that utilizes the pattern
 - (B) The program that discovers patterns from data to build (A)

- The program (A) is called **"model"** (or "predictor" or "hypothesis") and what (A) does is called "prediction" (or "inference")
- The program (B) is called "learning algorithm" and what (B) does is called "training"

- Notice that there are **two programs in action**
 - (A) The program that utilizes the pattern
 - (B) The program that discovers patterns from data to build (A)

• The learning algorithm sees the **training data**, whereas the model will be used on a new, incoming data, called the **test data**.

(otherwise, we call it "data mining")

Why "machine" learning?

Why machines?

- We want machines to use the patterns (prediction), because...
 - Human attention is limited (e.g., self-driving cars)
 - Human are vulnerable (e.g., space mission)
 - Human are slow (e.g., high-frequency trading)
 - Human are expensive (e.g., chatbots)

Why machines?

- We want machines to find the patterns (training), because...
 - Human are dumb (e.g., AlphaGo)
 - Dataset is too big to handle (e.g., machine translation) ullet
 - Difficult to write a code that uses human knowledge (e.g., dog classification) ullet

What do "we" do for ML?

So what does human do?

- ML algorithm researchers develops the learning algorithm that
 - can train a model that solves a new task
 - requires very small computational cost
 - needs very small data to learn good models

So what does human do?

- **ML algorithm researchers** develops the learning algorithm that
 - can train a model that solves a new task
 - requires very small computational cost
 - needs very small data to learn good models
- ML theory researchers develop mathematical frameworks that can
 - give performance guarantees on ML algorithms and models
 - inspire new algorithms

So what does human do?

- **ML algorithm researchers** develops the learning algorithm that
 - can train a model that solves a new task
 - requires very small computational cost
 - needs very small data to learn good models
- ML theory researchers develop mathematical frameworks that can
 - give performance guarantees on ML algorithms and models
 - inspire new algorithms
- ML system researchers develop efficient systems for running ML algorithms and models

How do ML algorithms work?

How do ML algorithms work?

- Very difficult to give a simple answer
 - There are so many ML algorithms
 - They all work quite differently from each other
 - Some work well for this, some work well for that

How do ML algorithms work?

- Very difficult to give a simple answer
 - There are so many ML algorithms
 - They all work quite differently from each other
 - Some work well for this, some work well for that
- **Today.** Very briefly discuss two unifying perspectives.
 - "Cybernetics" paradigm
 - "Statistical Learning" paradigm
- There are competing paradigms, of course, e.g., Bayesian ML.

Cybernetics (1947)

- **Cybernetics.** The origin of "artificial intelligence"
 - Coined by a control theorist Norbert Wiener •

Cybernetics (1947)

- **Cybernetics.** The origin of "artificial intelligence"
 - Coined by a control theorist Norbert Wiener
- Wiener viewed intelligence as a "circular causal process, via feedback loop"
 - thus called "κυβερνήτης" (steering)
 - proposed a holistic study of communication, control, and feedback mechanisms.

Cybernetics (1947)

- Cybernetics provided all core concepts.
 - We have some **model** with **changeable internal states** (i.e., model parameters)
 - We find the **right internal state** (i.e., optimize) by repeating ●
 - Test the current program on training data
 - Get the feedback
 - Modify the state accordingly
- Exactly what modern ML or RL does!

Statistical Learning (1968)

- - Core ideas developed by Vladimir Vapnik and Alexey Chervonenkis

NEWS

Prestigious AI Series Wraps up with Lecture by the Father of Machine Learning

Vladimir Vapnik, a professor at Columbia University's Center for Computational Learning System and Professor Anna Choromanska

• Statistical Learning. Followed the cybernetics rush in Soviet union (Lyapunov, Kolmogorov, ...)

POSTED: MAY 14. 2018

Statistical Learning (1968)

- Statistical Learning. Followed the cybernetics rush in Soviet union (Lyapunov, Kolmogorov, ...)
 - Core ideas developed by Vladimir Vapnik and Alexey Chervonenkis
- An ML algorithm is defined by:
 - a **hypothesis space** (i.e., a bag of models)
 - a loss function
 - measures how bad a model is, when evaluated on a single example
 - a **search algorithm** to find the minimum loss model in this space
 - can be done by optimizing the internal parameters (can be NP-hard!)

Two perspectives

- Common to both paradigms, we assume
 - Access to some data Z_1, \ldots, Z_n (either sequentially or available as a batch)
 - Access to some hypothesis space

$$\mathcal{F} = \{f_1, f_2, \dots\}$$

• The ML algorithm solves an optimization problem to minimize the loss on the data

$$\min_{f \in \mathcal{F}} \ell(f, (Z_1, \dots, Z_n))$$

Two perspectives

- Different from usual optimization literature, ML is about generalization to new data
 - That is, we reduce the empirical error

 $\min t$ f∈ℱ

and yet, we want the solution \hat{f} to work well on new data, i.e., have a small

- This is the defining characteristic of ML frameworks.

$$\mathcal{O}(f,(Z_1,...,Z_n))$$

$$\mathbb{E}[\ell(\hat{f}, Z_{\text{new}})]$$

- This also makes the field highly empirical; we know very little about the distribution of Z.

What does this course do?

This course teaches ...

- This course consists of two parts:
 - Part 1. Introduce classic ML frameworks
 - Part 2. Familiarize you with basics of deep learning (+ hands-on experience)

This course teaches ...

- This course consists of two parts:
 - Part 1. Introduce classic ML frameworks
 - Part 2. Familiarize you with basics of deep learning (+ hands-on experience)
- Why learn classic frameworks?
 - Outperforms DL in many tasks (e.g., tabular, time-series) •
 - Have inspired or directly employed in many DL algorithms (e.g., VQ-VAE)
 - Neat to analyze; gives you strong understanding and intuition. •

This course teaches ...

- By the end of this course, I expect you to
 - be able to apply existing ML algorithms on real-world tasks
 - design your own ML frameworks and algorithms
 - conduct basic analysis on your algorithm and model

Administrivia

- Instructor. Jaeho Lee 이재호
 - Assistant Professor @ POSTECH EE (2022.03 ~) Research Scientist @ Google (2023.09 ~)
 - jaeho.lee@postech.ac.kr
 - Responsible for: Coursework-related, Anything else.
- **TA.** Minjae Park 박민재
 - Ph.D. track @ POSTECH EE (2024.03 ~)
 - miae.park@postech.ac.kr
 - Responsible for: Assignments, Grading, Attendance

Team

Location & Hours

- **Class.** Engineering Building #3, Classroom 115
 - Mondays / Wednesdays 9:30AM 11:00AM
- Office hours. Engineering Building #2, Office 323
 - Wednesdays 04:00PM 05:00PM (+ by appointment)
- Web. <u>https://jaeho-lee.github.io</u> <-- for lecture notes <-- for assignment submissions PLMS

Grading

- Attendance: 10%
- Assignments: 30%
- Mid-Term: 30%
- Final Project: 30%

- Graduate students will be graded separately
- QE sit-ins will be judged based on how UGs do.

Prerequisites

- Not 100% required, but I assume you know:
 - Calculus
 - Basic linear algebra
 - Basic probability & statistics
 - Signals & Systems
 - Programming & Python

Textbook

- Main
 - "Mathematics for Machine Learning" by Deisenroth, Faisal, and Ong
 - <u>https://mml-book.github.io</u>
 - "Understanding Deep Learning" by Simon Prince
 - <u>https://udlbook.githu.io/udlbook/</u>

Textbook

- Further Readings
 - "Patterns, Predictions, and Actions" by Hardt and Recht
 - <u>https://mlstory.org</u>
 - "Dive into Deep Learning" by Zhang, Lipton, Li, and Smola
 - <u>https://d2l.ai</u>
 - Very recommended for programming exercises

Honor Codes

- Simple principle: Cheating = F
 - Sharing solutions —> not okay
 - Copying solutions —> not okay
 - Discussion —> do this with me or TA?
 - ChatGPT —> please don't

Coming next

- We do some recap:
 - Linear Algebra
 - Optimization and Probability

Cheers