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Recap: Supervised Learning

. What we have. A labeled dataset D = {(X;, ;) }"_,

- Want to do. Learn f( - ) such that f(X) = y.
« Example. ERAS5 dataset __ERAS Jauary 2016, Maan Sprend n Tomporanr
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» X: time & location Sl G SR \

« y: temperature.

— Train a model for
temperature prediction




Unsupervised Learning




Unsupervised Learning

- What we have. An unlabeled dataset D = {X;}._,

- No labeling cost—typically very large!

- Example. Common Craw| — petabytes of web-crawled sentences.
= Most Language Models trained on these!

g Crawl



Unsupervised Learning

- Want to do. Get insights from data, by discovering underlying
structure, cause, or statistical relation

» Learned structure can be used for supervised learning tasks.
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What can unsupervised learning do?

- 1957. People were clustering many data points.
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What can unsupervised learning do?

« 2012. Youtube videos (w/o labels) can be used to discover useful
patterns for classification.

Q. V. Le “Building High-Level Features Using Large Scale Unsupervised Learning,” ICASSP 2013



What can unsupervised learning do?

» 2014. People used face images to generate realistic(?) new faces.

Goodfellow et al., “Generative Adversarial Nets” NeurlPS 2014



What can unsupervised learning do?

» 2023. People are training awesome chatbots.

+! GPT-4

can you write a python script for performing principal component analysis?

Sure, | can provide a basic example of performing Principal Component Analysis (PCA) using

Python. This script will make use of the “pandas " library for handling data and “scikit-

learn” library for PCA.

In this example, | will use the Iris dataset which is built into scikit-learn for demonstration.

[7) Copy code

Lmport pandas as pd
rt numpy as np
‘rom sklearn.decomposition import PCA
“rom sklearn.preprocessing import StandardScaler

‘rom sklearn.datasets import load_iris




K-means clustering




Clustering

 Partitioning a set of unlabeled data points into pre-specified #groups
« K-means, Gaussian mixture models, Hierarchical, Spectral, ...

« Implicitly assumes some notion of “similarity”
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https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster comparison.html



MiniBatch Affinity Spectral Agglomerative Gaussian
KMeans Propagation MeanShift Clustering Ward Clustering DBSCAN HDBSCAN OPTICS BIRCH Mixture
..a"m\ fw"*\.\ w"v\ f“’*\,\‘ w‘“\% f“"x a*""x ,,m\ w"\’ w“m«,\ wm@\
{0? &0: {0,,‘ 1.0? {0: 2.0: {0: {'0: {'Of {\05 {0:
Pt || Miger | Bt || gt | B’ || Mot | Mgt | gt || g | gt || gt
.00s .18s .08s .15s .03s .03s .00s .01s .31s .01s .00s

SIY03s
8
R A

.03s

"I 00s

.0l1s
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K-Means

» Assign each data point to one of K clusters.
» Each cluster is represented by a single point, called centroid.

» The loss is measured by the distance(data,centroid).

Unlabelled Data Labelled Clusters

K-means

X = Centroid



K-Means

. Suppose that we have a dataset D = {X;}'_;, X; E R4
+ We make two decisions:

. We make K clusters.

. We decide the corresponding centroids iy, ..., it € R

- We assign each data to clusters.

K
 We decide the assignment r; € (0,1}, Z Iy =
k=1



K-Means

. We want to choose nice {4, } and {r; } so that we can minimize the

mean squared distance from data point to the centroid, i.e.,
n

. : 2
min min E rl‘kHXi_//tkHQ
{/’tk} {rlk} =1

« How do we solve this optimization problem?



Principle #1: Centroid -> Assighnment

“Always assign to a cluster with the closest centroid”

» Given the centroids, the optimal assignment is obvious:
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o {1 <o k= argming||x; — 13
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0O .- otherwise



Principle #2: Assignment -> Centroid

“Select the average of assigned points as a centroid”

» Given the assignments, the optimal centroid is obvious:

1D I X ;) are the data assigned to k-th cluster,

M
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Hi = argmmﬂeuqadz 1 — X5
i=1

] &
= Z (i)
M2y



The Famous K-Means Algorithm

« The optimal solution should satisfy both principles:
- P1: Data points are assigned to nearest centroids.

» P2: Centroids should be the average of assigned points.

« Question. How do we find a solution that satisfies P1 and P2?



The Famous K-Means Algorithm

- A working way. Apply P1, Apply P2, Apply P1, ..., until convergence.
. Assignment Step: Given {y, }, find {r; }.

. Update Step: Given {r;.}, find {4, }.

Algorithm 1 k-means algorithm

. Opecity the number k of clusters to assign.
. Randomly initialize k centroids.
repeat
expectation: Assign each point to its closest centroid.
maximization: Compute the new centroid (mean) of each cluster.
until The centroid positions do not change.
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Original image

Data Point = Each Pixel’s RGB



Properties of K-Means

« Local optimum is found.
» Sensitive to initialization—use K-means++ for better results
» Convergence within finite number of iterations is guaranteed.

« Computational Complexity.
. Assignment. O(d - k - n)
. Update. O(n)



» Quite sensitive to outliers
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Limitations

- May not work for certain datasets
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Different cluster analysis results on "mouse" data set:

Original Data

k-Means Clustering

EM Clustering
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Soft K-Means



Soft Clustering

» Clustering, but the assignment is soft. s eron

- Hard. A point 100% belongs to a speoific cluster

lke{OI} Z Fik =

» Soft. A point may 90% belong to one, and 10% to another, ...
K

k=1




The Soft K-Means Algorithm

. Assignment. The larger “responsibility” for closer point, with some /.

~exp(—plIx; — wll3)
Tk = O ol alle 1N
ZJ- exp(—p|1x; — uill5)



The Soft K-Means Algorithm

- Update. A weighted average of data, where the weight comes from
the responsibility.
B Z,- FigXi

Hi =
ZJ r:]'k







Hierarchical Clustering

Clustered Iris data set
(the labels give the true flower species)

e Clusters inside clusters 3 vignea
« Discovers hierarchical structures
» Relax strict assumptions (e.g., distributions)

» Leverage faster heuristic algorithms

. Waive strict decision of K. ® @2 /® ®\ /® 9
« [wo ways to construct— o

 Divisive: Top-Down ﬁf@/

. Agglomerative: Bottom-up. Cabese)




Spectral Clustering

- Data lies on graph—similarity by distance on graph.

 Solve via graph algorithms, e.g., min-cut
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« Next up. Mixture models



