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Additional Materials

« Maximum Likelihood Estimate (MLE) & Maximum A Posteriori (MAP)
(for the last class)

https://drive.google.com/file/d/
1iRh9aBHeDSafrOhHnKsO6W9bOxtlzNNJ/view

» Optimization Basics + Linear Algebra

(for today!)

https://alex.smola.org/teaching/10-701-2015/slides/
5 Math_and _Optimization.pdf

« Probability
https://alex.smola.org/teaching/10-7/01-2015/slides/2_Statistics.pdf
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Of all the machine learning ideas I've been
exposed to over the years, | think SVMs were
by far the most boring; followed closely by
PAC learning.
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| will always have a soft spot in my heart for
SVM'’s because one of the first data science
problems | worked on | struggled with for
months and then ran it through an SVM and
solved it within a half hour.
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Help | Advance
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[Submitted on 31 Aug 2023 (v1), last revised 7 Sep 2023 (this version, v2)]
Transformers as Support Vector Machines

Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, Samet Oymak

Since its inception in "Attention Is All You Need", transformer architecture has led to revolutionary advancements in NLP. The attention layer within the transformer admits a sequence of input tokens X and
makes them interact through pairwise similarities computed as softmax(XQK "X "), where (K, Q) are the trainable key-query parameters. In this work, we establish a formal equivalence between the
optimization geometry of self-attention and a hard-margin SVM problem that separates optimal input tokens from non-optimal tokens using linear constraints on the outer-products of token pairs. This
formalism allows us to characterize the implicit bias of 1-layer transformers optimized with gradient descent: (1) Optimizing the attention layer with vanishing regularization, parameterized by (K, Q),
converges in direction to an SVM solution minimizing the nuclear norm of the combined parameter W = KQ" . Instead, directly parameterizing by W minimizes a Frobenius norm objective. We characterize
this convergence, highlighting that it can occur toward locally-optimal directions rather than global ones. (2) Complementing this, we prove the local/global directional convergence of gradient descent under
suitable geometric conditions. Importantly, we show that over-parameterization catalyzes global convergence by ensuring the feasibility of the SVM problem and by guaranteeing a benign optimization
landscape devoid of stationary points. (3) While our theory applies primarily to linear prediction heads, we propose a more general SVM equivalence that predicts the implicit bias with nonlinear heads. Our
findings are applicable to arbitrary datasets and their validity is verified via experiments. We also introduce several open problems and research directions. We believe these findings inspire the interpretation
of transformers as a hierarchy of SVMs that separates and selects optimal tokens.
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Max Margin Classifiers &
Hard SVM



Linearly Separable Data




Linear Separators




Large Margin Classifier




Large Margin Classifier
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Max Margin Classifier

« We solve the problem:

1

maximize,, , e subject to  y(w'x. + b) > 1
7 lw

(we areusingy; € {—1, + 1}, instead of {0,1})



Solving the Optimization: Dual Problem

. Slightly re-phrased, we are solving

2
po— (]
= min

subject to  y(w'x; + b) > 1
wW.b 2

« Difficult to solve, due to the constraint.

» Solution. We consider the Lagrangian dual.

2
Iwll” <

LW, b, 0) =——+ Y (1= y(w'x; + b))
=1




Solving the Optimization: Dual Problem

2 N
W H +Za 1 —y(w Xl-+b))

L(W,b,) =

« We know that

£* = min maxZ(w, b, a)
w,b o>

- Wait, but why?



~Iwl)?
Primal: 7* = min
wW.b 2

subjectto  y(w X;+b) > 1

2 n
Ll + Z (1 = y(w'x; + b))
=1

Dual: ¢* = min max
w.b oa>0 2

. Adversary will gauge the quantity 1 — y(w'x; + b)

- If >0 - a— infeasible for primal, oo for dual
- If <0 - ;=0 primal = dual
. If =0 --- anyconstant... primal = dual

— Find the saddle point!



Minimax Problems

Find the saddle point!

(which is the critical point)




Solving the Optimization: Dual Problem

n n
Vod =W — Z A YiXi Vypd = — Z A
i=1 i=1
« We need these be zero at saddle point, i.e.,

n n
— —
we = Z a;yiX; 0= Z a;Yi

- Plugging w* back into Lagrangian, we get:

1 n
=1

l,]



Solving the Optimization: Dual Problem

« Summing up, we are solving:

1 n
T
=1

a ..
l,]

subject to Z ay, =0

a. > 0

l



Solving the Optimization: Dual Problem

- Neat form as a quadratic program over a convex polytope.

|
max (—EaTZa + lTa)

subjectto a'y =0

a> 0

» Solution @ critical point or extreme point



Solving the Optimization: Dual Problem

n
7 J— oK
W= ) @y
=1

Nonzero, only for .
points on margin
(support vectors)

Quiz. How to find b*?



Soft(-margin) SVM



Linear Separators

' ’ No Linear Separator Exists
’ Worse, finding a minimum error

T - separating hyperplane is NP-hard.
wx+b=0 (Minsky & Papert, 1969)



Solution: Add Slack Variables

We can then minimize
the “slack” &



Formulation

- We are solving

subjectto  y(w'x.+b)>1-&, &>0

- We know that the problem is always feasible

» Letw=0,6=0,¢ = 1.



Dual Formulation

« As a dual, we solve

min max ( HWHZ + CZ fi — Z OCi(Yi(XlTW + b) + é — 1) — Z 771'51')

Wabaé aaﬂ 2

» The optimal (w, b, &) is at the saddle point with (a, 1)

. Derivatives for (w, b, £) need to vanish!



Derivatives
VoL =W — Z ayX, =0
V,Z = Z a;y; = 0

- Doing the similar thing, we get the Lagrangian

3 BTt B Yai+ € Y- Yo
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Solving the Optimization: Dual Problem

« Summing up, we are solving:

1 n
T
=1

a ..
l,]

subject to Z ay, =0

O0<a<C
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Solving the Optimization

1 n
T
=1

a ..
l,]

subjectto ) ay; =0 0<a<C

. |f the problem is small-scale (thousands of variables),
we can use off-the-shelf solvers (cvxopt, cplex, oogp, logo)

 For large-scale problems, use the fact that only SVs matter
and solve in blocks



« Next up. Kernel Tricks.



