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Naive Bayes



Task

« We consider classification—

. Predict anoutput Y € {1,..., K} (called “class”) given the input X.
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* Image source: HuggingFace



Terminology

. Suppose that there are two classes: O, 1

« Any classifier can be viewed as:

0 - x€RB,
o ={

1 - x€e AR, _.
for some decision region &£, £ f j
» These are separated by the 0,° '
.. O,
decision boundary. ®,

Class 1

() Class1



Linear Regression for Classification?

« One can use linear regression for classification
. ... but this is a bad choice.
- Reason. Very sensitive to outliers.

« Example. Tumor malignancy prediction.

(Yes) 1

Malignant ?

(No) O
Tumor Size



Naive Bayes

. Setting. We have {(X(i),y("))}?=1 ~ Pyy, xV e R4 yY e {0,1}

- Assumption. Entries of X are conditionally independent given y.
n
px|y) = | |p(x1y)
i=1

- Can be true for tabular data, but definitely wrong for images.

« From now on, we letd = 1 WLOG.



Hypothesis

- Based on some human knowledge, we manually design two things:

. likelihood models: p(x|y)

« priors: p(y)
« Example. Gaussian Likelihood has two parameters u,c € R

1 (x — )7
exp| ————
o, 27 20y2

for each y.

px|y) =



Hypothesis

 Then, our predictor is the MAP estimator which maximizes the
posterior probability

J(x) = argmax p(y | X)
Y

= argmax p(y)p(x|y)
Y

d
= arg max (P(Y)Hp(xi | Y))

Y i=1



Hypothesis Space

» The hypothesis space is constructed by selecting parameters for:

. likelihood model p(x|y)
. prior distribution p(y)

- Example. Gaussian Likelihood = select y, 141, 00,0, € |

Bernoulli prior = selectp € |0,1]



Fitting the parameters

 To fit the parameters, we maximize the joint probability:

TP =1

- Equivalent to solving ERM, with

n

= Iemen Z (— log py,(X;1y;) — log Pep(yi))
7P =1 T

So-called negative log-
likelihood (NLL) loss



Fitting the parameters

- Again, equivalent to solving two optimizations separately:
n

Z (_ log pef(xl. ‘ yl))<_ such 6, is the maximum

—1 likelihood estimate (MLE)
| —

n

min ) (—1og py )

Pi=1

min
Hf




Fitting the parameters

» ERM solutions are usually simple:
« Example. Gaussian Likelihood

» Use class-wise sample mean and classwise sample variance

2 2
for ﬂOa /’tla 6()9 01

« Example. Bernoulli Prior

. #1s 1n dataset
. Simply use the frequency p=—m——
n



Perceptron &
Logistic Regression



Perceptron
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Perceptron

- Mathematically, quite simple—

« We use the sign of linear models as our hypothesis space.

{fe(’) %0 = 1[0, + 6, > o]}
— {fe(-) ‘fe(x) =1|0'% > 0]}

. Problem. Taking derivatives w.r.t. 1| - | is nasty.



LOSS

« To optimize, we use the loss

£, fy(X) = (fy(x) =) - 07x
. Thatis, we haveloss |60'x|  when wrong.

0 when correct.

« Note. It is common to use loss functions different from the
performance criterion

These are called surrogate loss.

. Note. If @ = 0?



Optimization

» The original perceptron paper assumes that data comes one-by-one.

. The gradientis V2 (y,/4(X)) = (f)(X) — y)X

. If wrong for a sample withy = 1.

Ot = 9 4y . x

. If wrong for a sample withy =0
gD = g0 _ p .

. |f correct, no change.



Logistic Regression

 ldea. Solve the classification by regression.

- How? Approximate the quantity

log (p(y=—l\x)) ~ 0'x
p(y =0]x)

« Why not approximate p(y = 1 | x)?
. py=1|x)€[0,1], but O'X € (-0, + )



Logistic Regression

- This is equivalent to saying that

)=
PO = = o

. o(t) = 1/1 + exp(—1) is called logistic function.



Logistic Regression

» Given the data, we maximize the log likelihood—
1 n
max — Z logp(y; | x;)
A

« Or, minimize the NLL loss—

1 « 1
min— ) log| ——
0 n l=21 (P(Yi | Xi))



Logistic Regression

| « |
min— ) log| —
0 n ,:Z1 (P(Yi | Xi))

» Again, this is equivalent to the ERM, with:
. Hypothesis spaceis  {fy(X) = o(0'%))

. Loss is the cross-entropy £ (y,t) = CE(ly, (1,1 — 1])
= log($)™ + log(1 — ¢)’~!



Optimizing
- The training risk can be written more tediously as:

1 n
— ), (=3)log(a(07%)) + (3, = Dlog(l = o(07%))
=1

« Convex, but no general closed-form solution.

- The gradient descent can be written as:

1 n
0" = 0+1-— ) (3= o(0%)X,
& =1




Nearest Neighbors
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Visual Recognition = Nearest Neighbor :
Recognition is the perception of similarity )

between two forms—i.e., of the form sight e
perceives at the moment of recognition e
and the form of that visible object, or its like, : S

that it has perceived one or more times before.” Peg, S
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* Image source: HuggingFace




K-Nearest Neighbors

» A nonlinear, nonparametric algorithm.

e Algorithm.
. Dataset. We have a dataset D = {(X;,y;) }'_,
e Training. N/A
e Testing. When a new sample X comes in:
. Find k samples Xy, ..., Xy in D that has smallest ||Xx — X, |.

« Predict with the majority vote (classification)
or averaging (regression).



k-NN with k = 3



X,

Small £ = More flexibility



Computational Complexity

» K-nearest neighbor is difficult to be scaled to large size.

» Good. Does not take training time.

- Bad. For testing, we need to compute n comparisons.

. |.e., inference time < # data



Parametric vs. Nonparametric

- Parametric. Uses a fixed number of parameters.

 Linear Regression, Logistic Regression, Neural network, ...

- Nonparametric. Uses flexible number or infinitely many parameters.

» K-NN, Boosting Trees, Random Forest.



« Next up. SVM



