
4. Supervised Learning & 
Linear Regression

2023 Fall, Jaeho Lee

EECE454 Introduction to 
Machine Learning Systems

Notice
• Get ready for attendance checks & assignments!

Big Picture

• Linear Algebra. Vectors and Matrices formalize both Data and Model

• Matrix Calculus. Needed for optimization of models

• Probability. Formalizes uncertainty in data and optimization

• Today. Start formally studying ML!

ML 
(optimization)

Data 
(signal)

Model 
(system)

(optional) some feedback loop

Supervised Learning: 
The basic framework

• Goal. Build a nice predictor—

• Predict some output given a (jointly distributed) input .Y X

* image source: HuggingFace

Setup

• Goal. Build a nice predictor—

• Predict some output given a (jointly distributed) input .Y X

Setup

* image source: HuggingFace

• Goal. Build a nice predictor—

• Predict some output given a (jointly distributed) input .Y X

* image source: HuggingFace

Setup

• Goal. Build a nice predictor—

• Predict some output given a (jointly distributed) input .Y X

* image source: HuggingFace

Setup

• Goal. Build a nice predictor—

• Predict some output given a (jointly distributed) input .Y X

* image source: HuggingFace

Setup

• Find a predictor such that

• Can rewrite as

 … over a good set of candidate

 for some nice “loss” function .

• Problem. Don’t know the joint distribution  
 (if we knew, we can easily choose Bayes-optimal)

f(⋅) f(X) ≈ Y

minimize 𝔼[ℓ(f(X), Y)], f(⋅)

ℓ(⋅ , ⋅)

PXY
f

Setup

• Dataset. Instead, we can use the training dataset.

• The dataset consists of many input-output pairs. 
 (i.e., feature-label)

• We call this scenario supervised— 
someone already inspected the data and annotated with
(i.e., supervision for machine)

D = {(x1, y1), …, (xn, yn)}

xi yi

Setup

Example “Labeled” dataset: ImageNet

• Summing up, supervised learning is simply doing

Learning Algorithm

AlgoD = {(x1, y1), …, (xn, yn)} ̂f(⋅)

with some algorithm.

• Q. What algorithm?

• Typically consist of two elements:

• A bag of functions (hypothesis space)

• An optimizer—the training method

• (approximately) solves Empirical Risk Minimization (ERM)

 + regularizer

ℱ = {f1, f2, …}

min
f∈ℱ

1
n

n

∑
i=1

ℓ(yi, f(xi))

Learning Algorithm

• Intuition. Empirical Risk True Risk (Population Risk)

(Note 1. How fast? consult concentration inequalities)

(Note 2. Not 100% required—not all are born equal!)

≈
1
n

n

∑
i=1

g(Xi) ⟶ 𝔼[g(X)]

1
n

n

∑
i=1

ℓ(yi, f(xi)) ⟶ 𝔼[ℓ(Y, f(X))]

Xi

Learning Algorithm

Testing
• We hope that is small, but how do we know?

• Usually have a test dataset .

• We validate the smallness of

• Typically splits train/val*/test into 8:1:1 (or 7:1:2 in the past). 
(cross-validation if the dataset is small)

𝔼[ℓ(Y, ̂f(X))]

Dtest = {(x̃1, ỹ1), …, (x̃k, ỹk)}

1
k

k

∑
i=1

ℓ(̂f(x̃i), ỹi)

Learning algorithm 
vs Learning algorithm

• Some considerations:

• Model Size (= Richness of Hypothesis Space)

• If too small, even the best cannot fit the reality.̂f(⋅)

Which algorithm should we use?

• Some considerations:

• Model Size (= Richness of Hypothesis Space)

• If too large, can overfit the training data + large inference cost

Which algorithm should we use?

• Some considerations:

• Optimization (= difficulty of solving ERM)

• Often highly customized for each “model.”

• For highly complicated, non-linear models…

• Explicit solution not available.

• Takes a long time to compute the optimum 
(high training cost)

Which algorithm should we use?

• Some considerations:

• Loss function / Regularizer

• Affects how difficult the optimization is.

• Affects overfitting.

• Affects desirable properties (robustness, sparsity)…

Which algorithm should we use?

• We study popular ML models one-by-one.

• Which “hypothesis space” it uses.

• Which “optimizer” it uses.

• Which “loss/regularizer” it uses.

• This and Next Class. Linear models, Naïve Bayes, Nearest Neighbors

Note. Many of these choices are heavily dependent on task. 
 (regression vs. classification, image vs. text vs. tabular, …)

Throughout the course…

Linear Regression

• Regression Predict continuous .

• Example. House price prediction. 

≈ y ∈ ℝm

f(area) = price

Regression

• We use linear model .

• If and ,

• If and ,

• If and ,

f(⋅)

x ∈ ℝ y ∈ ℝ

f(x) = w ⋅ x + b, w ∈ ℝ, c ∈ ℝ

x ∈ ℝd y ∈ ℝ

f(x) = w⊤x + b, w ∈ ℝd, b ∈ ℝ

x ∈ ℝd y ∈ ℝm

f(x) = Wx + b, W ∈ ℝm×d, b ∈ ℝm

Linear Regression

• We use linear model .

• If and ,

• If and ,

• If and ,

f(⋅)

x ∈ ℝ y ∈ ℝ

f(x) = w ⋅ x + b, w ∈ ℝ, c ∈ ℝ

x ∈ ℝd y ∈ ℝ

f(x) = w⊤x + b, w ∈ ℝd, b ∈ ℝ

x ∈ ℝd y ∈ ℝm

f(x) = Wx + b, W ∈ ℝm×d, b ∈ ℝm

Linear Regression

• Reflects a belief that the data-generating
distribution may look like:

where is some (zero-mean) noise.

• Fun fact. If are jointly Gaussian,
MMSE estimator is always linear!

X ∼ P(X)

Y ∼ w⊤
* X + ϵ

ϵ

X, Y

• We use squared loss .

• For a dataset , we solve

• Why least squared?

• easy to solve (quadratic)

• nice interpretation (maximum likelihood solution 
under linear model + Gaussian noise)

ℓ2 ℓ(y, ŷ) = ∥y − ŷ∥2
2

D = {(xi, yi)}n
i=1

min
w,b

1
2n

n

∑
i=1

(yi − (w ⋅ xi + b))
2

Linear Regression: Ordinary Least Squares

Solving the 
Linear Regression

• Since this is a quadratic function, 
the minimum is where derivatives are zero (critical point)

min
w∈ℝ

1
2n

n

∑
i=1

(yi − (w ⋅ xi))
2

=:J(w)

∂J
∂w

(w) = 0

1D, bias-free case

• Explicit solution can be characterized by math (not always possible)

• No real gradient computation needed (we did math with our brain)

• Need several multiplications and summations for optimization.

∂J
∂w

=
1
n

n

∑
i=1

(w ⋅ xi − yi)xi = 0

⇒ w (∑ x2
i) = ∑ yixi

⇒ w =
∑ yixi

∑ x2
i

1D, bias-free case

• Consider a slightly more general case of .

• This looks messy, so we want to simplify a bit…

x ∈ ℝd

min
w∈ℝd,b∈ℝ1

1
2n

n

∑
i=1

(yi − w⊤xi + b)
2

Solving the minimization: Multivariate

• Trick #1.

• Define .

.

min
w∈ℝd,b∈ℝ1

1
2n

n

∑
i=1

(yi − w⊤xi + b)
2

x̃ = [x
1], θ = [w

b]

J(θ) =
1
2n

n

∑
i=1

(y − θ⊤x̃)2

Solving the minimization: Multivariate

• Trick #2.

•
Define .

.

min
θ∈ℝd+1

1
2n

n

∑
i=1

(y − θ⊤x̃)2

X =
x̃⊤

1
⋯
x̃⊤

n

, y = [
y1
⋯
yn]

J(θ) =
1
2n

∥y − Xθ∥2

Solving the minimization: Multivariate

• We examine the critical point—where gradient is zero.

J(θ) =
1
2n

∥y − Xθ∥2

∇J(θ) =
1

2n
∇((y − Xθ)⊤(y − Xθ))

=
1

2n
∇(y⊤y + θ⊤X⊤Xθ − 2y⊤Xθ)

=
1

2n (2θ⊤X⊤X − 2y⊤X) = 0

Solving the minimization: Multivariate

• Thus, critical point is the that satisfies:

• If the matrix is invertible, we have a unique solution:

• Fun exercise. Count the number of FLOPs?

θ

X⊤Xθ = X⊤y

X⊤X
̂θ = (X⊤X)−1X⊤y

Solving the minimization: Multivariate

• Thus, critical point is the that satisfies:

• If not, there are infinite critical points (sadly 😢)

• Solution. The above takes the form  
 simply use QR decomposition

• Gives you Moore-Penrose pseudoinverse , 
which is a minimum norm solution among all possible .

θ

X⊤Xθ = X⊤y

Aθ = b
⇒

(X⊤X)†

θ

Solving the minimization: Multivariate

Solving differently— 
Gradient Descent

Gradient Descent
• Repeat taking steps in the downward direction.

Gradient Descent

• Pick a random , and use gradient to update θ(0) θ(1), θ(2), …

Gradient Descent

• Pick a random , and use gradient to update

• Idea. Gradient = direction of fastest increase. 
 Negative Gradient = direction of fastest decrease.

• Plug in the previous gradient formula:

θ(0) θ(1), θ(2), …

⇒

θ(t+1) = θ(t) − η ⋅ ∇θJ(θ(t))

θ ← θ −
η
n (X⊤Xθ − X⊤y)

Computational Remarks

• How computation-heavy?

• You can pre-compute and re-use and  

for every GD iteration.

• The pre-computing cost is almost same as solving explicitly 
(except QR decomposition part).

θ ← θ −
η
n (X⊤Xθ − X⊤y)

A :=
η
n

X⊤X b :=
η
n

X⊤y

θ ← (I − A)θ − b

Additional Remarks
• You don’t need full data for GD— 

using a randomly drawn subset of samples works (). 
Called “mini-batch GD.” (or “stochastic GD” when).

• Useful for small RAM!

k k ≪ n
k = 1

Cheers

• Next up. Naïve Bayes, Logistic Regression, Nearest Neighbors

