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Notice

- Get ready for attendance checks & assignments!



Big Picture

ML = Model

(optimization) (system)

Data =

(signal)

 Linear Algebra. Vectors and Matrices formalize both Data and Model
» Matrix Calculus. Needed for optimization of models
« Probability. Formalizes uncertainty in data and optimization

« Today. Start formally studying ML!



Supervised Learning:
The basic framework




Setup

» Goal. Build a nice predictor—

 Predict some output Y given a (jointly distributed) input X.

* Image source: HuggingFace
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Setup

Goal. Build a nice predictor—

- Predict some output Y given a (jointly distributed) input X.

Inputs Output

Detailed description
a herd of giraffes and zebras

Image-to-Text grazing in a field
Model
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Setup

» Goal. Build a nice predictor—

- Predict some output Y given a (jointly distributed) input X.

Inputs Output
Input
Darth Vader is surfing on the waves.
Text-to-Video
Model

* Image source: HuggingFace



Setup

. Find a predictor f( - ) such that f(X) =~ Y

« Can rewrite as

minimize E [I/ﬂ(f(X), Y)], ... over a good set of candidate f( - )

for some nice “loss” function £( -, - ).

. Problem. Don’t know the joint distribution Py



Setup

- Dataset. Instead, we can use the training dataset.

- The dataset consists of many input-output pairs.

D = {(xl,yl), e, (xn,yn)}

« We call this scenario supervised—
someone already inspected the data x; and annotated with y,



Example “Labeled” dataset: ImageNet

n02097047 (196) n01682714 (40)
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'tench, Tinca tinca',
'goldfish, Carassius auratus',
'great white shark, white shark, man-eater, ma
'tiger shark, Galeocerdo cuvieri',
"hammerhead, hammerhead shark',
'electric ray, crampfish, numbfish, torpedo',
'stingray’',
'cock',
"hen',
'ostrich, Struthio camelus',
'brambling, Fringilla montifringilla',
'goldfinch, Carduelis carduelis’',
'house finch, linnet, Carpodacus mexicanus',
'junco, snowbird',
'indigo bunting, indigo finch, indigo bird, P
'robin, American robin, Turdus migratorius',
'"bulbul',
‘Jay',
'magpie’,
'chickadee',



Learning Algorithm

« Summing up, supervised learning is simply doing

D = {(x19y1)9°-°9(xn’yn)} ->m-> £(-)

with some algorithm.

- Q. What algorithm?



Learning Algorithm

» Typically consist of two elements:

« A bag of functions

9:{3@”}

« An optimizer—the training method

« (approximately) solves Empirical Risk Minimization (ERM)
n

min l ¢ (Yi»f (xi))

feEF n

=1



Learning Algorithm

. Intuition. Empirical Risk &~ True Risk (Population Risk)

1 n
—Zg(X,-) — E[g(X)]
i

%g f(yz'af(xi)) — E[Z(Y, /(X))]



Testing

- We hope that —[f(Y,f(X))] is small, but how do we know?

. Usually have a test dataset D'**' = {(X, V), ..., (X, V,) }.

« We validate the smallness of
1 & .
= 2, {0, 5)
i=1

- Typically splits train/val*/test into 8:1:1 (or 7:1:2 in the past).



Learning algorithm
vs Learning algorithm




Which algorithm should we use?

« Some considerations:

- Model Size (= Richness of Hypothesis Space)

. If too small, even the best f( - ) cannot fit the reality.

Linearly separable Not linearly separable
A linear decision boundary that No linear decision boundary that separates
separates the two classes exists Nonlinear the two classes perfectly exists

Linear
boundary




Which algorithm should we use?

« Some considerations:

- Model Size (= Richness of Hypothesis Space)

. |f too large, can the training data + large inference cost
Degree 1 Degree 4 Degree 15
MSE = 4.08e-01(+/- 4.25e-01) MSE = 4.32e-02(+/- 7.08e-02) MSE = 1.82e+08(+/- 5.46e+08)
— Model — Model — Model

- True function » - True function ‘ - True function
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Which algorithm should we use?

« Some considerations:

« Optimization (= difficulty of solving ERM)

« Often highly customized for each “model.”
» For highly complicated, non-linear models...
- Explicit solution not available.

- Takes a long time to compute the optimum
(high training cost)



Which algorithm should we use?

« Some considerations:

- Loss function / Regularizer
 Affects how difficult the optimization is.
. Affects overfitting.

« Affects desirable properties (robustness, sparsity)...



Throughout the course...

« We study popular ML models one-by-one.
« Which “hypothesis space” it uses.
« Which “optimizer” it uses.
« Which “loss/regularizer” it uses.

- This and Next Class. Linear models, Naive Bayes, Nearest Neighbors

Note. Many of these choices are heavily dependent on task.




Linear Regression



Regression

» Regression ~ Predict continuous y € |

housing prices

- Example. House price prediction.

f(area) = price 900

Living area (feet?) | Price (1000%s) )
2104 400 g o

1600 330 € 50

2400 369 5 o]

1416 232 sl

3000 540 N

l | 1 1
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
square feet



Linear Regression

We use linear model f( - ).

fx € Randy € R,

JfxX)=w-x+0b, weR,ceR

fx € Riandy € R, o

AX) =w'x + b, weRHheER o e R
fx € R’andy € R™,
fx)=Wx+b, WeR"™hHheR"




Linear Regression

- Reflects a belief that the data-generating
distribution may look like:

X ~ P(X)
Y~w!X+e¢
where € is some (zero-mean) noise.

 Fun fact. If X, Y are jointly Gaussian,
MMSE estimator is always linear!



Linear Regression: Ordinary Least Squares

. We use squared 7, loss  £(y,y) = ||y — )AfH%

. Foradataset D = {(x;,y;)}'_;, we solve

1 « 2
min — (yl-—(w-xi+b))
w,b n , —
=1 ]
« Why least squared? o

- easy to solve (quadratic)

60
500

price (in $1000)

» nice interpretation (maximum likelihood solution e
under linear model + Gaussian noise) N




Solving the
Linear Regression



1D, bias-free case

 Since this is a quadratic function,
the minimum is where derivatives are zero

6]() 0
— (W) =
ow



1D, bias-free case

0J
ow
=27 (inz) = Zyl-xi
2. VX,
X7

» Explicit solution can be characterized by math

1 n
ni=1

= W =

- No real gradient computation needed

- Need several multiplications and summations for optimization.



Solving the minimization: Multivariate

. Consider a slightly more general case of X & RY.

1 2
min — (yl- —w'x; + b)
weRYpbeR! 2n -

» This looks messy, so we want to simplify a bit...



Solving the minimization: Multivariate

1 < 2
min — (yl-— WTXl--l-b)
weRYpeR! 2n P
e Trick #1.
. Ix - [w
. Definex = [1],6’— [b]

IR RO
J(e)_zngf(y 07%)2.



Solving the minimization: Multivariate

e Trick #2.

%, Y1
Define X = ||, y=|"].

1
J(0) = —1|ly — XO||*.
n



Solving the minimization: Multivariate

|
J(0) = —1|ly — X0||*
n

« We examine the critical point—where gradient is zero.

1 T
V.J(6) = z—nV(<y X0)'(y - X0))

1
2n

l
(29TXTX 2yTX) 0
2n

v (yTy +0TXTX0 — 2yTX9)



Solving the minimization: Multivariate

« Thus, critical point is the @ that satisfies:
X'X0=X'"y
. If the matrix X' X is invertible, we have a unique solution:

9=X"X)"XTy

e Fun exercise. Count the number of FLOPs?



Solving the minimization: Multivariate

« Thus, critical point is the @ that satisfies:
X'X9=X"y
o If not, there are infinite critical points &

. Solution. The above takes the form A@ = b

— simply use QR decomposition

. Gives you Moore-Penrose pseudoinverse (X 'X)T,

which is a minimum norm solution among all possible 6.



Solving differently—
Gradient Descent



Gradient Descent

« Repeat taking steps in the downward direction.




Gradient Descent

. Pick a random 8, and use gradient to update 81, 8%, . ..

J(w) I Initial W Gradient
We|ght \ III/
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;ll
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/
/
/
/

Global cost minimum
(w)

4

= Jmin




Gradient Descent

. Pick a random 8, and use gradient to update 81, 8%, . ..

e ldea. Gradient = direction of fastest increase.
— Negative Gradient = direction of fastest decrease.

O+ = g _p . ¥ 5 J(OW)

e Plug in the previous gradient formula:

00— E(XTXH _ XTy)

n



Computational Remarks

0 — 0— E(XTXH _ XTy)
n
« How computation-heavy?
. You can pre-compute and re-use A := EXTX and b := EXTy
n n

for every GD iteration.
00— A-A)fd—-Db

 The pre-computing cost is almost same as solving explicitly
(except QR decomposition part).



Additional Remarks

e You don’t need full data for GD—
using a randomly drawn subset of kK samples works (k << n).

Called “mini-batch GD.”
o Useful for small RAM!

— Batch gradient descent
— Mini-batch gradient Descent
— Stochastic gradient descent




Cheers

» Next up. Naive Bayes, Logistic Regression, Nearest Neighbors




