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Notice
• Get ready for attendance checks & assignments!



Big Picture

• Linear Algebra. Vectors and Matrices formalize both Data and Model


• Matrix Calculus. Needed for optimization of models


• Probability. Formalizes uncertainty in data and optimization


• Today. Start formally studying ML!

ML 
(optimization)

Data 
(signal)

Model 
(system)

(optional) some feedback loop



Supervised Learning: 
The basic framework



• Goal. Build a nice predictor—


• Predict some output  given a (jointly distributed) input .Y X

* image source: HuggingFace
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• Find a predictor  such that  


• Can rewrite as


          … over a good set of candidate 


         for some nice “loss” function .


• Problem. Don’t know the joint distribution  
                  (if we knew, we can easily choose Bayes-optimal  )

f( ⋅ ) f(X) ≈ Y

minimize 𝔼[ℓ( f(X), Y)], f( ⋅ )

ℓ( ⋅ , ⋅ )

PXY
f

Setup



• Dataset. Instead, we can use the training dataset.


• The dataset consists of many input-output pairs. 
                                                                (i.e., feature-label)





• We call this scenario supervised— 
someone already inspected the data  and annotated with        
(i.e., supervision for machine)

D = {(x1, y1), …, (xn, yn)}

xi yi

Setup



Example “Labeled” dataset: ImageNet



• Summing up, supervised learning is simply doing

Learning Algorithm

AlgoD = {(x1, y1), …, (xn, yn)} ̂f( ⋅ )

with some algorithm.

• Q. What algorithm?



• Typically consist of two elements:


• A bag of functions (hypothesis space)





• An optimizer—the training method


• (approximately) solves Empirical Risk Minimization (ERM)


     + regularizer

ℱ = {f1, f2, …}

min
f∈ℱ

1
n

n

∑
i=1

ℓ(yi, f(xi))

Learning Algorithm



• Intuition. Empirical Risk  True Risk (Population Risk)








(Note 1. How fast? consult concentration inequalities)


(Note 2. Not 100% required—not all  are born equal!)

≈
1
n

n

∑
i=1

g(Xi) ⟶ 𝔼[g(X)]

1
n

n

∑
i=1

ℓ(yi, f(xi)) ⟶ 𝔼[ℓ(Y, f(X))]

Xi

Learning Algorithm



Testing
• We hope that  is small, but how do we know?


• Usually have a test dataset .


• We validate the smallness of





• Typically splits train/val*/test into 8:1:1 (or 7:1:2 in the past). 
(cross-validation if the dataset is small)

𝔼[ℓ(Y, ̂f(X))]

Dtest = {(x̃1, ỹ1), …, (x̃k, ỹk)}

1
k

k

∑
i=1

ℓ( ̂f(x̃i), ỹi)



Learning algorithm 
vs Learning algorithm



• Some considerations:


• Model Size (= Richness of Hypothesis Space)


• If too small, even the best  cannot fit the reality.̂f( ⋅ )

Which algorithm should we use?
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• Some considerations:


• Optimization (= difficulty of solving ERM)


• Often highly customized for each “model.”


• For highly complicated, non-linear models…


• Explicit solution not available.


• Takes a long time to compute the optimum 
(high training cost)

Which algorithm should we use?



• Some considerations:


• Loss function / Regularizer


• Affects how difficult the optimization is.


• Affects overfitting.


• Affects desirable properties (robustness, sparsity)…

Which algorithm should we use?



• We study popular ML models one-by-one.


• Which “hypothesis space” it uses.


• Which “optimizer” it uses.


• Which “loss/regularizer” it uses.


• This and Next Class. Linear models, Naïve Bayes, Nearest Neighbors


Note. Many of these choices are heavily dependent on task. 
          (regression vs. classification, image vs. text vs. tabular, …)

Throughout the course…



Linear Regression



• Regression  Predict continuous .


• Example. House price prediction. 
                  

≈ y ∈ ℝm

f(area) = price

Regression



• We use linear model .


• If  and ,





• If  and ,





• If  and ,


f( ⋅ )

x ∈ ℝ y ∈ ℝ

f(x) = w ⋅ x + b, w ∈ ℝ, c ∈ ℝ

x ∈ ℝd y ∈ ℝ

f(x) = w⊤x + b, w ∈ ℝd, b ∈ ℝ

x ∈ ℝd y ∈ ℝm

f(x) = Wx + b, W ∈ ℝm×d, b ∈ ℝm

Linear Regression
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Linear Regression

• Reflects a belief that the data-generating 
distribution may look like:








where  is some (zero-mean) noise.


• Fun fact. If  are jointly Gaussian, 
MMSE estimator is always linear!

X ∼ P(X)

Y ∼ w⊤
* X + ϵ

ϵ

X, Y



• We use squared  loss     .


• For a dataset , we solve





• Why least squared?

• easy to solve (quadratic)


• nice interpretation (maximum likelihood solution 
under linear model + Gaussian noise)

ℓ2 ℓ(y, ŷ) = ∥y − ŷ∥2
2

D = {(xi, yi)}n
i=1

min
w,b

1
2n

n

∑
i=1

(yi − (w ⋅ xi + b))
2

Linear Regression: Ordinary Least Squares



Solving the 
Linear Regression






• Since this is a quadratic function, 
the minimum is where derivatives are zero (critical point)


min
w∈ℝ

1
2n

n

∑
i=1

(yi − (w ⋅ xi))
2

=:J(w)

∂J
∂w

(w) = 0

1D, bias-free case






 


 


• Explicit solution can be characterized by math (not always possible)


• No real gradient computation needed (we did math with our brain)


• Need several multiplications and summations for optimization.

∂J
∂w

=
1
n

n

∑
i=1

(w ⋅ xi − yi)xi = 0

⇒ w (∑ x2
i ) = ∑ yixi

⇒ w =
∑ yixi

∑ x2
i

1D, bias-free case



• Consider a slightly more general case of .





• This looks messy, so we want to simplify a bit…

x ∈ ℝd

min
w∈ℝd,b∈ℝ1

1
2n

n

∑
i=1

(yi − w⊤xi + b)
2

Solving the minimization: Multivariate






• Trick #1.


• Define .


.

min
w∈ℝd,b∈ℝ1

1
2n

n

∑
i=1

(yi − w⊤xi + b)
2

x̃ = [x
1], θ = [w

b]

J(θ) =
1
2n

n

∑
i=1

(y − θ⊤x̃)2

Solving the minimization: Multivariate






• Trick #2.


•
Define .


.

min
θ∈ℝd+1

1
2n

n

∑
i=1

(y − θ⊤x̃)2

X =
x̃⊤

1
⋯
x̃⊤

n

, y = [
y1
⋯
yn]

J(θ) =
1
2n

∥y − Xθ∥2

Solving the minimization: Multivariate






• We examine the critical point—where gradient is zero.





                       


               

J(θ) =
1
2n

∥y − Xθ∥2

∇J(θ) =
1

2n
∇((y − Xθ)⊤(y − Xθ))

=
1

2n
∇(y⊤y + θ⊤X⊤Xθ − 2y⊤Xθ)

=
1

2n (2θ⊤X⊤X − 2y⊤X) = 0

Solving the minimization: Multivariate



• Thus, critical point is the  that satisfies:





• If the matrix  is invertible, we have a unique solution:





• Fun exercise. Count the number of FLOPs?

θ

X⊤Xθ = X⊤y

X⊤X
̂θ = (X⊤X)−1X⊤y

Solving the minimization: Multivariate



• Thus, critical point is the  that satisfies:





• If not, there are infinite critical points (sadly 😢)


• Solution. The above takes the form  
                   simply use QR decomposition


• Gives you Moore-Penrose pseudoinverse , 
which is a minimum norm solution among all possible .

θ

X⊤Xθ = X⊤y

Aθ = b
⇒

(X⊤X)†

θ

Solving the minimization: Multivariate



Solving differently— 
Gradient Descent



Gradient Descent
• Repeat taking steps in the downward direction.



Gradient Descent

• Pick a random , and use gradient to update θ(0) θ(1), θ(2), …



Gradient Descent

• Pick a random , and use gradient to update 


• Idea. Gradient = direction of fastest increase. 
           Negative Gradient = direction of fastest decrease.





• Plug in the previous gradient formula:


θ(0) θ(1), θ(2), …

⇒

θ(t+1) = θ(t) − η ⋅ ∇θJ(θ(t))

θ ← θ −
η
n (X⊤Xθ − X⊤y)



Computational Remarks




• How computation-heavy?


• You can pre-compute and re-use  and  

for every GD iteration.





• The pre-computing cost is almost same as solving explicitly 
(except QR decomposition part).

θ ← θ −
η
n (X⊤Xθ − X⊤y)

A :=
η
n

X⊤X b :=
η
n

X⊤y

θ ← (I − A)θ − b



Additional Remarks
• You don’t need full data for GD— 

using a randomly drawn subset of  samples works ( ). 
Called “mini-batch GD.” (or “stochastic GD” when ).


• Useful for small RAM!

k k ≪ n
k = 1



Cheers

• Next up. Naïve Bayes, Logistic Regression, Nearest Neighbors


