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Disclaimer

• Use this slide as a guide for self-study!

• Reference.


• MML book: Chapter 1 — Chapter 6


• Dive into Deep Learning: Sec 2.3.—2.6.


• Stanford CS229 
https://cs229.stanford.edu/lectures-spring2022/cs229-linear_algebra_review.pdf


• 3Blue1Brown Youtube “Linear Algebra” 
https://www.3blue1brown.com/topics/linear-algebra

https://cs229.stanford.edu/lectures-spring2022/cs229-linear_algebra_review.pdf
https://www.3blue1brown.com/topics/linear-algebra


Why Linear Algebra?

• We use matrices to model the relationship between 
multi-dimensional input and multi-dimensional output.
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Vectors and Matrices









Quiz # 1

Let there be a vector  (we use boldcase, usually) 
This is …

x ∈ ℝn

(a) (b)

x =

x1
x2
⋯
xn

x = [x1 x2 ⋯ xn]



Answer

Let there be a vector . 
This is …

x ∈ ℝn

(a) (b)

x =

x1
x2
⋯
xn

x⊤ = [x1 x2 ⋯ xn]

We call this “  transposed”x



Quiz # 2

Let there be a matrix . (bold uppercase) 
This is …

A ∈ ℝm×n

(a) (b)

A =

a11 a12 ⋯ a1n
a21 a22 ⋯ a1n

⋯
am1 am2 ⋯ xmn

A =

a11 a21 ⋯ am1
a12 a22 ⋯ am2

⋯
a1n a2n ⋯ xmn



Answer

Let there be a matrix . (bold uppercase) 
This is …

A ∈ ℝm×n

(a)

A =

a11 a12 ⋯ a1n
a21 a22 ⋯ a1n

⋯
am1 am2 ⋯ xmn

 rows and  columns…m n

A =
| |

a1 ⋯ an

| |

A =
− a⊤

1 −
⋯

− a⊤
m −



Multiplications



Vector products

• Two types: Inner / Outer.

Inner product (a.k.a. dot product)

x⊤y =
n

∑
i=1

xiyi

⟨x, y⟩

alternate notation 
(only called inner, more general)

Outer product

xy⊤ = [
x1y1 ⋯ x1yn

⋯
xmy1 ⋯ xmyn]

Not very frequent though.



Matrix-Vector Multiplications

• Performing many inner products with row vectors.


• or, we are summing many column vectors

Wx =
− w⊤

1 −
⋯

− w⊤
m −

x =
w⊤

1 x
⋯

w⊤
mx



Matrix-Vector Multiplications

Wx =
| |

w1 ⋯ wn

| |
x = x1w1 + ⋯ + xnwn

• Performing many inner products with row vectors.


• or, a weighted sum of column vectors



Physical Meaning … System perspective
The matrix  can be viewed as axis transformationA ∈ ℝm×n
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Matrix-Matrix Multiplications

• Let  and .


• Performing  inner products

A ∈ ℝm×n B = ℝn×p

m × p

AB =
− a⊤

1 −
⋯

− a⊤
m −

| |
b1 ⋯ bp

| |
=

a⊤
1 b1 ⋯ a⊤

1 bp
⋯ ⋯ ⋯

a⊤
mb1 ⋯ a⊤

mbp



Matrix-Matrix Multiplications

• Let  and .


• Performing  inner products


• or performing  outer products

A ∈ ℝm×n B = ℝn×p

m × p

n

AB =
| |

a1 ⋯ an

| |

− b1 −
⋯

− bn −
= a1b⊤

1 + ⋯ + anb⊤
n



Matrix-Matrix Multiplications

• Equivalently written as matrix-vector muliplications

AB =
| |

Ab1 ⋯ Abp

| |
=

− a⊤
1 B −
⋯

− a⊤
mB −



Quiz # 3

To multiply  and ,

how many scalar multiplications do we need?

A ∈ ℝm×n B = ℝn×p



Answer

To multiply  and ,

how many scalar multiplications do we need?

A ∈ ℝm×n B = ℝn×p

Answer. . 
               Because we do  inner prods, 
               and each inner prod requires  multiplications.

m × n × p
m × p

n



Norms



Norm

• A measure of “length”:     (: )


• Defined by the following properties:


• Nonnegative:                          


• Definite:                                   iff 


• Absolute homogeneity:        


• Triangle inequality:                

∥ ⋅ ∥ ℝn → ℝ

∥x∥ ≥ 0

∥x∥ = 0 x = 0
∥cx∥ = |c | ⋅ ∥x∥

∥x∥ + ∥y∥ ≥ ∥x + y∥



Norm

• For a vector :


• The  norm:      


• The  norm:      


• The  norm:      


• The  norm:     

x ∈ ℝn

ℓ2 ∥x∥2 = x2
1 + ⋯ + x2

n

ℓ1 ∥x∥1 = |x1 | + ⋯ + |xn |

ℓp ∥x∥p = ( |x1 |p + ⋯ + |xn |p )1/p

ℓ∞ ∥x∥∞ = max
i∈{1,…,n}

|xi |



Column/Row/Null Space



Linear Independence

• Linear combination.





• The vectors  are linearly independent whenever


        iff        


• i.e., no vector is a linear combination of remainders.

λ1x1 + ⋯ + λkxk

x1, ⋯, xk

λ1x1 + ⋯ + λkxk = 0 λ1 = ⋯ = λk = 0



Span

• The set (space) of all linear combinations





• example.  is spanned by 


span({x1, …, xk}) = {λ1x1 + ⋯ + λkxk λi ∈ ℝ, ∀i ∈ [n]}
ℝ2

{[0
1], [1

0]}



Basis

• A minimal set  that spans the 

            vector space .


• example. (one of the) the bases of  is





• property. basis is linearly independent, and adding any 
                 element breaks the independence.

A = {x1, …, xk}
V

ℝ2

{[1
3], [4

1]}



Column space

• The column space of  is the space spanned by 
column vectors of :


    


• One can also write:




physical meaning: the set of outputs you can get from a model

A ∈ ℝm×n

A

C(A) = {λ1a1 + ⋯ + λnan λi ∈ ℝ, ∀i ∈ [n]} ⊆ ℝm

C(A) = {Ax | x ∈ ℝn}

Wx =
| |

w1 ⋯ wn

| |
x = x1w1 + ⋯ + xnwn

recall p.15



Row space

• Similarly, the row space is:


    


*unfortunately, no clean “physical meaning” as column space… 
except that one-to-one correspondence holds between  and 

R(A) = {A⊤x | x ∈ ℝm} ⊆ ℝn

R(A) C(A)



Null space

• The null space of a matrix  is





physical meaning: the set of inputs that you get  as an output


• The left null space is defined as     

A ∈ ℝm×n

N(A) = {x Ax = 0, x ∈ ℝn}
0

N(A⊤) ∈ ℝm





Rank

• The rank of a matrix  is…


• the number of linearly independent columns


• the number of linearly independent rows


• Properties.


• 


• 


•

A ∈ ℝm×n

rank(A) ≤ min{m, n}

rank(AB) ≤ min{rank(A), rank(B)}

rank(A + B) ≤ rank(A) + rank(B)



Inverse

• For a square matrix , the inverse matrix  is a 
matrix such that





(not always invertible—called singular matrix)


• Properties.


• The inverse exists iff      (call this “non-singular”)


• ,    ,    

A ∈ ℝn×n A−1 ∈ ℝn×n

A−1A = AA−1 = In

rank(A) = n

(A−1)−1 = A (AB)−1 = B−1A−1 (A⊤)−1 = (A−1)⊤



Special Matrices



Identity Matrix




• Acts as “1” in the space of matrices




(the system where the input is equal to the output)

In =

1 0 ⋯ 0 0
0 1 ⋯ 0 0

⋯
0 0 ⋯ 1 0
0 0 ⋯ 0 1

AIn = ImA = A



Diagonal Matrix




(the system where each output is a scaled version of input)

D =

d1 0 ⋯ 0 0
0 d2 ⋯ 0 0

⋯
0 0 ⋯ dn−1 0
0 0 ⋯ 0 dn



Orthogonal/Orthonormal Matrix

• A matrix  is orthogonal when the columns are 
orthogonal to each other, i.e., 





• Orthonormal when we further have





• Then, we have 

A ∈ ℝn×n

a⊤
i aj = 0, ∀i ≠ j

∥ai∥2 = 1, ∀i ∈ [n]

A⊤A = AA⊤ = In



Property of an orthonormal matrix

• If  is orthonormal,


• 


• The matrix preserves the norm, i.e., .

Proof. We proceed as


              


A ∈ ℝn×n

A⊤A = AA⊤ = In

∥Ax∥2 = ∥x∥2

∥Ax∥2 = (Ax)⊤Ax = x⊤A⊤Ax = x⊤x = ∥x∥2



Symmetric Matrix

• A matrix  is symmetric if





• Properties. Real-valued symmetric matrices have


• real eigenvalues


• orthogonal eigenvectors 
(useful for SVD)

A ∈ ℝn×n

A⊤ = A



Definite Matrix

• Positive-semidefinite.   For any ,      .


• Positive-definite.            For any ,      .


(similar for negative)

x ≠ 0 x⊤Ax ≥ 0

x ≠ 0 x⊤Ax > 0



Eigenvalues / Eigenvectors



Eigenvalues & Eigenvectors

• A non-zero vector  is an eigenvector of  when





    holds for some  (the eigenvalue).

physical meaning. output is the same direction as input


• Determinant .    Product of all eigenvalues.


• Trace .              Sum of all eigenvalues.

x ∈ ℝn A ∈ ℝn×n

Ax = λx

λ

|A |

Tr(A)



Eigen-decomposition

• Build a column matrix of all (unit norm) eigenvectors,  
(and  a diagonal matrix of respective eigenvalues)


• Then, we have


.


• Sometimes,  is invertible (diagonalizable) and we can do


.

X
Λ

AX = XΛ

X

A = XΛX−1






• When this is possible, the “model”  is sequentially performing:


•    = send input to another space.


•        = do entrywise scaling


•        = pull back to original space.


• Homework. Watch https://www.3blue1brown.com/lessons/eigenvalues 
                      for visual insights.

A = XΛX−1

A

X−1

Λ

X

Eigen-decomposition

https://www.3blue1brown.com/lessons/eigenvalues


• SVD decomposes a matrix  into





•  with 


•  with 


•  is a diagonal matrix (with zero paddings).

A ∈ ℝm×n

A = UΣV⊤

U ∈ ℝm×m U⊤U = UU⊤ = Im

V ∈ ℝn×n V⊤V = VV⊤ = In

Σ

Singular Value Decomposition





• How?


• Construct  with eigenvectors of .


•  is real symmetric, and thus have orthogonal eigenvectors.


• Construct  with eigenvectors of .


• Compute  with the square-root of eigenvalues of .

A = UΣV⊤

U AA⊤

AA⊤

V A⊤A

Σ A⊤A

Singular Value Decomposition



Singular Value Decomposition



Cheers

• Next up. Gram-Schmidt, Matrix Calculus, Basic Probability.


