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Scope
• Monday. Described how Backprop works 

• A way to run SGD efficiently 

• Today. The success of SGD relies on how you tune them! 

• No good theory, but some rule of thumbs



Source: Meta AI, “OPT: Open Pre-trained Transformer Language Models,” 2022.
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Activation function



Activation function



Sigmoids
• Sigmoids were popular! 

• Nice biological interpretation as a firing rate of a neuron 

• Became much less popular, due to three reasons



(1) Vanishing Gradients 

• Suppose that   

• Gradient is 

f(x) = σ(w ⋅ x)

∇w f(x) = σ′￼(w ⋅ x) ⋅ x



(1) Vanishing Gradients 

• Suppose that   

• Then, 

f(x) = σ(wL ⋅ σ(⋯σ(w1 ⋅ x)⋯)

∇w1
f(x) = σ′￼(wL ⋅ zL) ⋅ σ′￼(wL−1zL−1) ⋅ ⋯ ⋅ σ′￼(w1 ⋅ x) ⋅ x

Q. What happens if ?x ≈ 0

Q. What happens if ?x ≫ 1

Q. What happens if ?x ≪ − 1



(2) Not zero-centered

• Suppose that   

• Gradients are 

f(x) = σ (w⊤x)
∇wi

f(x) = σ′￼(w⊤x) ⋅ xi

positive, if also sigmoid outputspositive



(2) Not zero-centered

• Suppose that   

• Gradients are  

• This means loss gradients are always all-positive or all-negative 

• Results in undesirable zigzag paths 

• Mitigated when  are normalized!

f(x) = σ (w⊤x)
∇wi

f(x) = σ′￼(w⊤x) ⋅ xi

xi



(3) Efficiency

• Inference. Need to compute  

• Training. Need to compute  
                 Need to store the computed outputs for backprop.

σ(t) = 1/(1 + exp(−t))

σ′￼(t) = σ(t)(1 − σ(t))



Tanh
• ✅ Zero-centered! 

• ❌ also experiences vanishing gradient. 

• ❌ computationally inefficient



ReLU
• ✅ Computationally efficient! 

• ✅ Converges faster in practice (e.g., 6x) 

• ❌ Still not zero-centered. (normalize!) 

• ❌ “Dead neurons”



Dying ReLU
• Some neurons never activate 

• Sometimes up to 40% 

• A trick. Use small but positive 
biases (e.g., 0.01)



Leaky ReLU / Parametric ReLU
• ✅ No dead neurons!



Modern Choices
• Practitioners who train giant models love GeLU / SwiGLU 

• Quantization people loves ReLU6



Data Preprocessing



Recall
• Recall that we have “zigzags” when the neuron inputs are all-positive. 

• Suppose that   

• Gradients are  

• Idea. Force data to have different signs

f(x) = σ (w⊤x)
∇wi

f(x) = σ′￼(w⊤x) ⋅ xi

positive…?positive



Preprocessing
• Centering. Makes the data have zero-mean.



Preprocessing
• Decorrelate. Makes the axes have no correlation. 

(many cases, skipped—e.g., image)



Preprocessing
• Whitening. Makes the each dimension have unit variance / range. 

(also often skipped)



Remarks
• In some cases, also perform dimensionality reduction. 

• In many practical cases (esp. images), only perform centering 

• For CIFAR-10… 

• AlexNet -> subtract the mean image ([32,32,3] tensor) 

• VGG -> subtract the mean along RGB channels (3-dim)



Batch Normalization



Idea
• Performing centering + scaling, but in intermediate layers! 

unit variancezero-mean



Idea

• Consider a batch of activations at some layer:   ( : batch size) 

• Each activation has  channels:  

• For each dimension, apply: 

 

• This is a differentiable function!

z1, …, zB B

d zi = (z(1)
i , …, z(d)

i )

̂z( j) =
̂z( j) − 𝔼[z( j)]

Var(z( j))



Where to normalize?
• Mostly placed at… 

• after each Conv/FC layers 

• before activation 

• But doing BNs at all layers may be harmful— 

• Normalizing pre-sigmoids puts it in 
a linear region.



Cure
• We actually add one more linear operation: 

 

   (this can even be identity mappings!) 

• At Inference. Don’t really take data as a batch… 

• Cure. Takes a running average of mean/var during training, 
           and use these values at test time. 
           (these can usually be merged into FC/Conv layers)

ŷ( j) = γ( j)x̂( j) + β( j), j ∈ [d]



Effect
• ✅ Improves the gradient flow during the training. 

• ✅ Allows higher learning rates. 

• ✅ Reduces the initialization sensitivity. 

• ❌ Often, undesired side effects and instability…



Weight Initialization



Question
• What happens if all weights are initialized to the same constant?



Random initialization

• First Idea. Initialize all weights with  

• Problem. Works okay for shallow nets, but not for deeper models… 

• Example. 10-layer network with 

• 500 neurons in each layer 

• tanh nonlinearities

w ∼ N(0,0.12)



All activations become zero…
Question. If activations are zero, 

what would the gradients be?



If weights are ∼ N(0,102)
Neurons are saturated, making 

gradients near-zero!



Xavier Init. Draw weights from , 

where  

(assumes linear activation for mathematical derivation)

N(0,σ2)

σ =
2

(input dim) + (output dim)



Xavier Init. Sometimes, does not work well with ReLU!



He init. Draw weights from σ =
2

(input dim)



Remarks
• There are many research on how to initialize 

• Has been mostly okay with BNs, but BNs are getting faded away… 

• Many unmentioned: 

• Orthogonal initialization 

• Identity initialization 

• Zero initialization…



Cheers

• Next up. Part 2


