
16. Training your neural network

2023 Fall, Jaeho Lee

EECE454 Introduction to
Machine Learning Systems

Scope
• Monday. Described how Backprop works

• A way to run SGD efficiently

• Today. The success of SGD relies on how you tune them!

• No good theory, but some rule of thumbs

Source: Meta AI, “OPT: Open Pre-trained Transformer Language Models,” 2022.

Contents
• Part 1. Setting up training

• Activation functions

• Data pre-processing

• Batch normalization

• Weight initialization

• Part 2. Training Dynamics

• Learning rate

• Regularization

• Babysitting the
learning process

• Hyperparameter
optimization

Activation function

Activation function

Sigmoids
• Sigmoids were popular!

• Nice biological interpretation as a firing rate of a neuron

• Became much less popular, due to three reasons

(1) Vanishing Gradients

• Suppose that

• Gradient is

f(x) = σ(w ⋅ x)

∇w f(x) = σ′￼(w ⋅ x) ⋅ x

(1) Vanishing Gradients

• Suppose that

• Then,

f(x) = σ(wL ⋅ σ(⋯σ(w1 ⋅ x)⋯)

∇w1
f(x) = σ′￼(wL ⋅ zL) ⋅ σ′￼(wL−1zL−1) ⋅ ⋯ ⋅ σ′￼(w1 ⋅ x) ⋅ x

Q. What happens if ?x ≈ 0

Q. What happens if ?x ≫ 1

Q. What happens if ?x ≪ − 1

(2) Not zero-centered

• Suppose that

• Gradients are

f(x) = σ (w⊤x)
∇wi

f(x) = σ′￼(w⊤x) ⋅ xi

positive, if also sigmoid outputspositive

(2) Not zero-centered

• Suppose that

• Gradients are

• This means loss gradients are always all-positive or all-negative

• Results in undesirable zigzag paths

• Mitigated when are normalized!

f(x) = σ (w⊤x)
∇wi

f(x) = σ′￼(w⊤x) ⋅ xi

xi

(3) Efficiency

• Inference. Need to compute

• Training. Need to compute
 Need to store the computed outputs for backprop.

σ(t) = 1/(1 + exp(−t))

σ′￼(t) = σ(t)(1 − σ(t))

Tanh
• ✅ Zero-centered!

• ❌ also experiences vanishing gradient.

• ❌ computationally inefficient

ReLU
• ✅ Computationally efficient!

• ✅ Converges faster in practice (e.g., 6x)

• ❌ Still not zero-centered. (normalize!)

• ❌ “Dead neurons”

Dying ReLU
• Some neurons never activate

• Sometimes up to 40%

• A trick. Use small but positive
biases (e.g., 0.01)

Leaky ReLU / Parametric ReLU
• ✅ No dead neurons!

Modern Choices
• Practitioners who train giant models love GeLU / SwiGLU

• Quantization people loves ReLU6

Data Preprocessing

Recall
• Recall that we have “zigzags” when the neuron inputs are all-positive.

• Suppose that

• Gradients are

• Idea. Force data to have different signs

f(x) = σ (w⊤x)
∇wi

f(x) = σ′￼(w⊤x) ⋅ xi

positive…?positive

Preprocessing
• Centering. Makes the data have zero-mean.

Preprocessing
• Decorrelate. Makes the axes have no correlation.

(many cases, skipped—e.g., image)

Preprocessing
• Whitening. Makes the each dimension have unit variance / range.

(also often skipped)

Remarks
• In some cases, also perform dimensionality reduction.

• In many practical cases (esp. images), only perform centering

• For CIFAR-10…

• AlexNet -> subtract the mean image ([32,32,3] tensor)

• VGG -> subtract the mean along RGB channels (3-dim)

Batch Normalization

Idea
• Performing centering + scaling, but in intermediate layers!

unit variancezero-mean

Idea

• Consider a batch of activations at some layer: (: batch size)

• Each activation has channels:

• For each dimension, apply:

• This is a differentiable function!

z1, …, zB B

d zi = (z(1)
i , …, z(d)

i)

̂z(j) =
̂z(j) − 𝔼[z(j)]

Var(z(j))

Where to normalize?
• Mostly placed at…

• after each Conv/FC layers

• before activation

• But doing BNs at all layers may be harmful—

• Normalizing pre-sigmoids puts it in
a linear region.

Cure
• We actually add one more linear operation:

 (this can even be identity mappings!)

• At Inference. Don’t really take data as a batch…

• Cure. Takes a running average of mean/var during training,
 and use these values at test time.
 (these can usually be merged into FC/Conv layers)

ŷ(j) = γ(j)x̂(j) + β(j), j ∈ [d]

Effect
• ✅ Improves the gradient flow during the training.

• ✅ Allows higher learning rates.

• ✅ Reduces the initialization sensitivity.

• ❌ Often, undesired side effects and instability…

Weight Initialization

Question
• What happens if all weights are initialized to the same constant?

Random initialization

• First Idea. Initialize all weights with

• Problem. Works okay for shallow nets, but not for deeper models…

• Example. 10-layer network with

• 500 neurons in each layer

• tanh nonlinearities

w ∼ N(0,0.12)

All activations become zero…
Question. If activations are zero,

what would the gradients be?

If weights are ∼ N(0,102)
Neurons are saturated, making

gradients near-zero!

Xavier Init. Draw weights from ,

where

(assumes linear activation for mathematical derivation)

N(0,σ2)

σ =
2

(input dim) + (output dim)

Xavier Init. Sometimes, does not work well with ReLU!

He init. Draw weights from σ =
2

(input dim)

Remarks
• There are many research on how to initialize

• Has been mostly okay with BNs, but BNs are getting faded away…

• Many unmentioned:

• Orthogonal initialization

• Identity initialization

• Zero initialization…

Cheers

• Next up. Part 2

