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Scope

» Monday. Described how Backprop works
« A way to run SGD efficiently
« Today. The success of SGD relies on how you tune them!

» No good theory, but some rule of thumbs
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Source: Meta Al, “OPT: Open Pre-trained Transformer Language Models,” 2022.

2.5 Training Processes

Here we describe significant training process ad-
justments that arose during OPT-175B pre-training.

Hardware Failures We faced a significant num-
ber of hardware failures in our compute cluster
while training OPT-175B. In total, hardware fail-
ures contributed to at least 35 manual restarts and
the cycling of over 100 hosts over the course of 2
months. During manual restarts, the training run
was paused, and a series of diagnostics tests were
conducted to detect problematic nodes. Flagged
nodes were then cordoned off and training was re-
sumed from the last saved checkpoint. Given the
difference between the number of hosts cycled out
and the number of manual restarts, we estimate 70+
automatic restarts due to hardware failures.

Loss Divergences Loss divergences were also an
i1ssue in our training run. When the loss diverged,
we found that lowering the learning rate and restart-
ing from an earlier checkpoint allowed for the job
to recover and continue training. We noticed a cor-
relation between loss divergence, our dynamic loss

scalar crashing to 0, and the /*-norm of the activa-
tions of the final layer spiking. These observations
led us to pick restart points for which our dynamic
loss scalar was still in a “healthy” state (> 1.0),
and after which our activation norms would trend
downward instead of growing unboundedly. Our
empirical LR schedule 1s shown in Figure 1. Early
in training, we also noticed that lowering gradient
clipping from 1.0 to 0.3 helped with stability; see
our released logbook for exact details. Figure 2
shows our validation loss with respect to training
iterations.

Other Mid-flight Changes We conducted a
number of other experimental mid-flight changes
to handle loss divergences. These included: switch-
ing to vanilla SGD (optimization plateaued quickly,
and we reverted back to AdamW); resetting the dy-
namic loss scalar (this helped recover some but not
all divergences); and switching to a newer version
of Megatron (this reduced pressure on activation
norms and improved throughput).
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Activation function




Activation function
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Sigmoids

» Sigmoids were popular!

» Nice biological interpretation as a firing rate of a neuron

« Became much less popular, due to three reasons

Sigmoid
o(x) 1+é—w




(1) Vanishing Gradients

. Suppose that f(x) = o(w - x)

. Gradientis V f(x) =c'(w-x)-x

m— SIgMOId 10 -
- derivative
0.8 -
0.6 -
0/
0.2 -

0.0 -




(1) Vanishing Gradients

. Suppose that f(x) = o(w; - 6(---0(w; - x)--*)
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(2) Not zero-centered

. Suppose that f(x) = o (WTX)

. Gradients are Vwi AX) =|o'(w'x) | X;
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(2) Not zero-centered

» This means loss gradients are always all-positive or all-negative

 Results in undesirable zigzag paths : lloved
gradient
- . update
- Mitigated when x; are normalized! directions
w1
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(3) Efficiency

. Inference. Need to compute o(f) = 1/(1 + exp(—1))

. Training. Need to compute 6'(¢) = o(?)(1 — o(¢))
Need to store the computed outputs for backprop.




Tanh

. W4 Zero-centered!
. X also experiences vanishing gradient.

. X computationally inefficient

- tanh
- derivative

-1.0%



RelLU

Computationally efficient!
Converges faster in practice (e.g., 6x)

X Still not zero-centered. (normalize!)

X “Dead neurons”

RelLU activation function Derivative




Dying RelLU

« Some neurons never activate
« Sometimes up to 40%

A trick. Use small but positive

dead RelLU
will never activate
=> never update



Leaky ReLU / Parametric ReLU

. No dead neurons!

Leaky RelLU: y=0.01x
/',



Modern Choices

 Practitioners who train giant models love GelLU / SwiGLU

- Quantization people loves ReLU6

Nonlinearities
RelLU6()

- 2 - 1 0 1 2 Input



Data Preprocessing



Recall

- Recall that we have “zigzags” when the neuron inputs are all-positive.

. Suppose that f(x) = o (WTX)

: W3
. Gradients are V , f(x) =|¢'(W'X) -|x; allowed
: gradient
positive - update
positive...? directions

- ldea. Force data to have different signs 7ig zag path

allowed

gradient

update

directions
hypothetical
optimal w

vector



Preprocessing

- Centering. Makes the data have zero-mean.
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Preprocessing

« Decorrelate. Makes the axes have no correlation.
(many cases, skipped—e.g., image)

Centered Data
Red:Eigen Vectors

Decorrelated Data




Preprocessing

- Whitening. Makes the each dimension have unit variance / range.
(also often skipped)
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Remarks

« |[n some cases, also perform dimensionality reduction.

 |In many practical cases (esp. images), only perform centering
- For CIFAR-10...
- AlexNet -> subtract the mean image ([32,32,3] tensor)

» VGG -> subtract the mean along RGB channels (3-dim)



Batch Normalization




Idea

» Performing|centering +|scaling, but in intermediate layers!

Zero-mean unit variance
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Idea

- Consider a batch of activations at some layer: Z,, ..., Zp

. Each activation has d channels: z; = (zgl), e ng))

» For each dimension, apply:

20) — E[z9)

\/ Var(zV))

« This is a differentiable function!

7)) —



Where to normalize?

« Mostly placed at...

. after each Conv/FC layers

 before activation

» But doing BNs at all layers may be harmful—

- Normalizing pre-sigmoids puts it in

a linear region. -

FC
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tanh
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Cure

- We actually add one more linear operation:

)A,(j) — J,(j)f((j) n 'g(j), je [d]

- At Inference. Don't really take data as a batch...

» Cure. Takes a running average of mean/var during training,
and use these values at test time.



Effect

Improves the gradient flow during the training.
Allows higher learning rates.

Reduces the initialization sensitivity.

X Often, undesired side effects and instability...
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Weight Initialization
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- What happens if all weights are initialized to the same constant?



Random initialization

. First Idea. Initialize all weights with w ~ N(0,0.1°)

- Problem. Works okay for shallow nets, but not for deeper moadels...
« Example. 10-layer network with
« 500 neurons in each layer

« tanh nonlinearities



All activations become zero...

input layer had mean 0.000927 and std ©.998388
hidden layer 1 had mean -0.000117 and std 0.213081
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If weights are ~ N(0,107)

input layer had mean 0.001800 and std 1.001311
hidden layer 1 had mean -0.000430 and std ©.981879
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input layer had mean 0.001800 and std 1.001311

hidden
hidden
hidden
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hidden
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0.001198 and std 0.627953
-0.000175 and std 0.486051
0.000055 and std 0.407723
-0.000306 and std ©.357108
0.000142 and std 0.320917
-0.000389 and std 0.292116
-0.000228 and std 0.273387
-0.000291 and std 0.254935
0.000361 and std 0.239266

© had mean 0.000139 and std 0.228008

ayer mean

Xavier Init. Draw weights from N((),O"z),

where o =

(assumes linear activation for mathematical derivation)
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layer std




input layer had mean 0.000501 and std 0.999444

hidden layer 1 had mean 0.398623 and std 0.582273
hidden layer 2 had mean 0.272352 and std 0.403795
hidden layer 3 had mean 0.186076 and std 0.276912
hidden layer 4 had mean 0.136442 and std 0.198685 Xavier Ini metim N W I’k W || Wi h Rel U!
hidden layer 5 had mean 0.099568 and std 0.140299 avie L. Somet €S, does not wo € t eLU’
hidden layer 6 had mean 0.072234 and std 0.103280
hidden layer 7 had mean 0.049775 and std 0.072748
hidden layer 8 had mean 0.035138 and std 0.051572
hidden layer 9 had mean 0.025404 and std 0.038583
hidden layer 10 had mean 0.018408 and std 0.026076
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input layer had mean 0.000501 and std ©0.999444

hidden layer 1 had mean 0.562488 and std 0.825232
hidden layer 2 had mean 0.553614 and std 0.827835
hidden layer 3 had mean 0.545867 and std 0.813855
hidden layer 4 had mean 0.565396 and std 0.826902
hidden layer 5 had mean 0.547678 and std 0.834092
hidden layer 6 had mean 0.587103 and std 0.860035
hidden layer 7 had mean 0.596867 and std 0.870610
hidden layer 8 had mean 0.623214 and std 0.889348
hidden layer 9 had mean 0.567498 and std 0.845357
hidden layer 10 had mean 0.552531 and std 0.844523
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Remarks

- There are many research on how to initialize
- Has been mostly okay with BNs, but BNs are getting faded away...
- Many unmentioned:
» Orthogonal initialization
. |dentity initialization

« Zero initialization...



« Next up. Part 2



