16. Training your neural network

EECEA454 Introduction to
Machine Learning Systems

2023 Fall, Jaeho Lee

Scope

» Monday. Described how Backprop works
« A way to run SGD efficiently
« Today. The success of SGD relies on how you tune them!

» No good theory, but some rule of thumbs

09 Sh-apsh@ot Enserrfble Ly

04 Cyclic LR Schedule - [/\/\

0.5~ .S__ingle Model o

034 AN 034

024 024
LAY

0.1

2024

1 A |
| 1/} -
| v
) \ | 4 _ .
<& \ AN LW .
XL AAL 7772
. e — 7 '
- J
-
/

S —04sle
50 50

» _0.3 ~

Source: Meta Al, “OPT: Open Pre-trained Transformer Language Models,” 2022.

2.5 Training Processes

Here we describe significant training process ad-
justments that arose during OPT-175B pre-training.

Hardware Failures We faced a significant num-
ber of hardware failures in our compute cluster
while training OPT-175B. In total, hardware fail-
ures contributed to at least 35 manual restarts and
the cycling of over 100 hosts over the course of 2
months. During manual restarts, the training run
was paused, and a series of diagnostics tests were
conducted to detect problematic nodes. Flagged
nodes were then cordoned off and training was re-
sumed from the last saved checkpoint. Given the
difference between the number of hosts cycled out
and the number of manual restarts, we estimate 70+
automatic restarts due to hardware failures.

Loss Divergences Loss divergences were also an
i1ssue in our training run. When the loss diverged,
we found that lowering the learning rate and restart-
ing from an earlier checkpoint allowed for the job
to recover and continue training. We noticed a cor-
relation between loss divergence, our dynamic loss

scalar crashing to 0, and the /*-norm of the activa-
tions of the final layer spiking. These observations
led us to pick restart points for which our dynamic
loss scalar was still in a “healthy” state (> 1.0),
and after which our activation norms would trend
downward instead of growing unboundedly. Our
empirical LR schedule 1s shown in Figure 1. Early
in training, we also noticed that lowering gradient
clipping from 1.0 to 0.3 helped with stability; see
our released logbook for exact details. Figure 2
shows our validation loss with respect to training
iterations.

Other Mid-flight Changes We conducted a
number of other experimental mid-flight changes
to handle loss divergences. These included: switch-
ing to vanilla SGD (optimization plateaued quickly,
and we reverted back to AdamW); resetting the dy-
namic loss scalar (this helped recover some but not
all divergences); and switching to a newer version
of Megatron (this reduced pressure on activation
norms and improved throughput).

Contents

 Part 1. Setting up training Part 2. Training Dynamics
 Activation functions » Learning rate
- Data pre-processing » Regularization

« Batch normalization « Babysitting the
learning process

- Weight initialization

« Hyperparameter
optimization

Activation function

Activation function
1' Leaky ReLU
max(0.1z, x)
Tanh 1' Maxout
tanh(z) - . max(wi x + by, wa T + by)
) ELU
2 7 2> ()
. f § ae®—-1) z<0 -a—rH o

Sigmoid

o(r) = 1+i—w

RelLU
max (0, x)

Sigmoids

» Sigmoids were popular!

» Nice biological interpretation as a firing rate of a neuron

« Became much less popular, due to three reasons

Sigmoid
o(x) 1+é—w

(1) Vanishing Gradients

. Suppose that f(x) = o(w - x)

. Gradientis V f(x) =c'(w-x)-x

m— SIgMOId 10 -
- derivative
0.8 -
0.6 -
0/
0.2 -

0.0 -

(1) Vanishing Gradients

. Suppose that f(x) = o(w; - 6(---0(w; - x)--*)

. Then, lef(x) — 0,(WL : ZL) : Gl(wL—lzL—l) e U,(Wl cX) - X

08 - Q. What happens if x &~ 07?

0.6 -

Q. What happens if x > 1?

0/ -

T3 Q. What happens if x << — 17

0.0 -

(2) Not zero-centered

. Suppose that f(x) = o (WTX)

. Gradients are Vwi AX) =|o'(w'x) | X;

ositive
P positive, if also sigmoid outputs
'CL.O wO — SIgMoOId 10 -
>. Synapse — derivative
axon from a neuron
woLo
cell body f (wa I b)
AP S wia+b | flo—
S "
- =6 output axon
activation
Wo To function
0.0

(2) Not zero-centered

» This means loss gradients are always all-positive or all-negative

 Results in undesirable zigzag paths : lloved
gradient
- . update
- Mitigated when x; are normalized! directions
w1

zig zag path
allowed
gradient

update
directions

hypothetical

optimal w
vector

(3) Efficiency

. Inference. Need to compute o(f) = 1/(1 + exp(—1))

. Training. Need to compute 6'(¢) = o(?)(1 — o(¢))
Need to store the computed outputs for backprop.

Tanh

. W4 Zero-centered!
. X also experiences vanishing gradient.

. X computationally inefficient

- tanh
- derivative

-1.0%

RelLU

Computationally efficient!
Converges faster in practice (e.g., 6x)

X Still not zero-centered. (normalize!)

X “Dead neurons”

RelLU activation function Derivative

Dying RelLU

« Some neurons never activate
« Sometimes up to 40%

A trick. Use small but positive

dead RelLU
will never activate
=> never update

Leaky ReLU / Parametric ReLU

. No dead neurons!

Leaky RelLU: y=0.01x
/',

Modern Choices

 Practitioners who train giant models love GelLU / SwiGLU

- Quantization people loves ReLU6

Nonlinearities
RelLU6()

- 2 - 1 0 1 2 Input

Data Preprocessing

Recall

- Recall that we have “zigzags” when the neuron inputs are all-positive.

. Suppose that f(x) = o (WTX)

: W3
. Gradients are V , f(x) =|¢'(W'X) -|x; allowed
: gradient
positive - update
positive...? directions

- ldea. Force data to have different signs 7ig zag path

allowed

gradient

update

directions
hypothetical
optimal w

vector

Preprocessing

- Centering. Makes the data have zero-mean.

A
y
+ +
+ 4t + + + *+
A Y . ++ + 5y #ﬁtL F +++++ ++ + 5y “#H’LWL #FL++ +
Original Data o+ T g oy Lo 4 o+ T +£F ¢+£ + +i#+
¥, Tt TR !f 7 Centered Data # i++ 4 + ﬁtg# I+¢
- +
AN

AN
Centering >

e ///
.///

Preprocessing

« Decorrelate. Makes the axes have no correlation.
(many cases, skipped—e.g., image)

Centered Data
Red:Eigen Vectors

Decorrelated Data

Preprocessing

- Whitening. Makes the each dimension have unit variance / range.
(also often skipped)

Decorrelated Data |

> # ,';;'1'-’ IR g
X B X :..“: |

Remarks

« |[n some cases, also perform dimensionality reduction.

 |In many practical cases (esp. images), only perform centering
- For CIFAR-10...
- AlexNet -> subtract the mean image ([32,32,3] tensor)

» VGG -> subtract the mean along RGB channels (3-dim)

Batch Normalization

Idea

» Performing|centering +|scaling, but in intermediate layers!

Zero-mean unit variance

Hidden Hidden
Hidden
»-

' Z “ F = F-
2 A OIS T 3
3 X X 3 > 3
D KK QX o
N N\ N v"\’,f’, N
D XX ® SNLL % ®
e &’)‘«"0 o yV,;v —
> SN =5 TR -3
2 AR, 2K 8
5 2R 88X 8
= c7/ >XXx €
— ~+ N
Fa v (Fa

[

Idea

- Consider a batch of activations at some layer: Z,, ..., Zp

. Each activation has d channels: z; = (zgl), e ng))

» For each dimension, apply:

20) — E[z9)

\/ Var(zV))

« This is a differentiable function!

7)) —

Where to normalize?

« Mostly placed at...

. after each Conv/FC layers

 before activation

» But doing BNs at all layers may be harmful—

- Normalizing pre-sigmoids puts it in

a linear region. -

FC

BN

tanh

FC

BN

tanh

Cure

- We actually add one more linear operation:

)A,(j) — J,(j)f((j) n 'g(j), je [d]

- At Inference. Don't really take data as a batch...

» Cure. Takes a running average of mean/var during training,
and use these values at test time.

Effect

Improves the gradient flow during the training.
Allows higher learning rates.

Reduces the initialization sensitivity.

X Often, undesired side effects and instability...

Batch Norm Layer Norm Instance Norm Group Norm

H, W

LI o

QW AL A TS
H, W

H, W

VAT T

QW AT

H, W

NN
VRN
W 57 7
LD R

) AT AW

)
T O R

Weight Initialization

L X
‘\’A‘« N

Py
0“

/

,
S

ﬂ"‘&‘
ORI X

\
/Q\

\

N\

X
o

\/

-

Y

Question

R
0/0 0//»\\0 4 (
/ O /
BRI nw/
\\A‘\} A\
“0 Q”QVQ
N7
V&\ XX
RPN

N7
N 4 ‘
LIRS
N\
.A.
/)
O 0O0OC

- What happens if all weights are initialized to the same constant?

Random initialization

. First Idea. Initialize all weights with w ~ N(0,0.1°)

- Problem. Works okay for shallow nets, but not for deeper moadels...
« Example. 10-layer network with
« 500 neurons in each layer

« tanh nonlinearities

All activations become zero...

input layer had mean 0.000927 and std ©.998388
hidden layer 1 had mean -0.000117 and std 0.213081
hidden layer 2 had mean -0.000001 and std 0.047551
hidden layer 3 had mean -0.000002 and std 0.010630 ° o o
hidden layer 4 had mean 0.000061 and std ©.002378 Question. If activations are zero
hidden layer 5 had mean 0.000002 and std 0.000532 /
hidden layer 6 had mean -0.000000 and std 0.000119 . ‘7>
hidden layer 7 had mean 0.000000 and std 0.000026 h Id h g d b
hidden layer 8 had mean -0.000000 and std 0.000006 W at WOu t e ra Ients e °
9 had mean 0.000000 and std 0.000001
10 had mean -0.000000 and std 0.000000

hidden layer
hidden layer

layer mean e layer std

4
........

.......
"

.......

If weights are ~ N(0,107)

input layer had mean 0.001800 and std 1.001311
hidden layer 1 had mean -0.000430 and std ©.981879

hidden layer 2 had mean -0.000849 and std ©.981649 N t t d k
hidden layer 3 had mean 0.000566 and std 0.981601 eu rOnS a re Sa U ra e / I I Ia Ing
hidden layer 4 had mean 0.000483 and std 0.981755
hidden layer 5 had mean -0.000682 and std ©.981614 rad ientS nea r ZerOI
hidden layer 6 had mean -0.000401 and std 0.981560 g -
hidden layer 7 had mean -0.000237 and std ©.981520 *
hidden layer 8 had mean -0.000448 and std ©.981913
hidden layer 9 had mean -0.000899 and std 0.981728
hidden layer 10 had mean 0.000584 and std ©.981736
_______ layer mean nnanse ¥9.815e~1 layer std
’ T vV UV
. {3 1 A
\ j En “)
90025 B
o 4
G 0 00020
) ‘ ~ Al 0001 o
000€ ; / : J o
." o
£ b . A
0008 N / | oocoos
o v

.......

.......

.......

.......

.......

.....

input layer had mean 0.001800 and std 1.001311

hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden
hidden

layer
Layer
lLayer
layer
Layer
layer
layer
layer
layer
layer

1

2
3
4
-
6
7
8
9
1

had
had
had
had
had
had
had
had
had

mean
mean
mean
mean
mean
mean
mean
mean
mean

0.001198 and std 0.627953
-0.000175 and std 0.486051
0.000055 and std 0.407723
-0.000306 and std ©.357108
0.000142 and std 0.320917
-0.000389 and std 0.292116
-0.000228 and std 0.273387
-0.000291 and std 0.254935
0.000361 and std 0.239266

© had mean 0.000139 and std 0.228008

ayer mean

Xavier Init. Draw weights from N((),O"z),

where o =

(assumes linear activation for mathematical derivation)

2

(input dim) + (output dim)

layer std

input layer had mean 0.000501 and std 0.999444

hidden layer 1 had mean 0.398623 and std 0.582273
hidden layer 2 had mean 0.272352 and std 0.403795
hidden layer 3 had mean 0.186076 and std 0.276912
hidden layer 4 had mean 0.136442 and std 0.198685 Xavier Ini metim N W I’k W || Wi h Rel U!
hidden layer 5 had mean 0.099568 and std 0.140299 avie L. Somet €S, does not wo € t eLU’
hidden layer 6 had mean 0.072234 and std 0.103280
hidden layer 7 had mean 0.049775 and std 0.072748
hidden layer 8 had mean 0.035138 and std 0.051572
hidden layer 9 had mean 0.025404 and std 0.038583
hidden layer 10 had mean 0.018408 and std 0.026076
i layer mean v layer std
v ey \.«'Jbli
0 3¢ '
05
030 .
04 .
025 N\
-
0.20 03 "_.
1S %
02 L
o0} e e
n. T 01 B
oS} = . 3. fac .-
000 i 00 S —
0 1 2 3) S (3 7 g 9 0 1 2 3 - S 6 7 8 9
300000 “ooq00 Ecaca: RIS A5aq00 ccaca: (LI ecaca: 1U® s 10" e Bl Leoq0l Se00
250000 250400 250400 300400 S0N00 e e il 03402 w0odos
. adas 350400 TORON —_
300400 N0
25000 250400
200000 200402 200400 : 300400
250400 250400 o andan
200400 200402 250400 o i
150000 1500000 150400 2000400 200400
girdkia endas 200400
- i 15000 150402 W S
100000 100000 100400 150000
100400 100400 el
i i i i 90990 10040 100402
S0000 50400 0400 0400 400 ks - |

0
000

$10152025300005101520253000051015202530000510152025300005101520253000051015202530000510152025300005101520253000051015202530000510152025%30

input layer had mean 0.000501 and std ©0.999444

hidden layer 1 had mean 0.562488 and std 0.825232
hidden layer 2 had mean 0.553614 and std 0.827835
hidden layer 3 had mean 0.545867 and std 0.813855
hidden layer 4 had mean 0.565396 and std 0.826902
hidden layer 5 had mean 0.547678 and std 0.834092
hidden layer 6 had mean 0.587103 and std 0.860035
hidden layer 7 had mean 0.596867 and std 0.870610
hidden layer 8 had mean 0.623214 and std 0.889348
hidden layer 9 had mean 0.567498 and std 0.845357
hidden layer 10 had mean 0.552531 and std 0.844523
063 layer mean

062

06l

0 60 “"\.

059 \"-.,.

058 ‘"'-.,\
057 \
0 5¢€ \

055 \"\\\

uo4 e | 2 3 - S & 7 g

e

250000

150000

100000

S0O300

0

)0

He init. Draw weights from ¢ =

2

(input dim)
layer std
089 z '
088 ‘
087
086 o
085 '
.
084 y
."
083
{- N o
082
2
ool C | 2 3 - S 7 8 S

250400

200400

}00

00

0051015202530

Remarks

- There are many research on how to initialize
- Has been mostly okay with BNs, but BNs are getting faded away...
- Many unmentioned:
» Orthogonal initialization
. |dentity initialization

« Zero initialization...

« Next up. Part 2

