
15. Backpropagation

2023 Fall, Jaeho Lee

EECE454 Introduction to 
Machine Learning Systems

Optimizing Neural Networks
• Today. How to optimize the parameters of neural networks.

• Here, the parameters are weights & biases:

• Again, the goal is to minimize the empirical risk:

fθ(x) = WLσ(WL−1σ(⋯σ(W1x + b1)⋯ + bL−1) + bL

θ = {(Wl, bl)}L
l=1

L(θ) =
1
n

n

∑
i=1

ℓ(yi, fθ(xi))

Problem

• The loss landscape is too irregular!L(θ)

Image source: Li et al., “Visualizing the Loss Landscape of Neural Nets,” NeurIPS 2018

Recap: Gradient Descent

Gradient Descent
• Fortunately, simply performing gradient descent works well.

• Idea. Iteratively update in a direction the loss decreases.
θ

θ(t+1) = θ(t) − η ⋅ ∇θL(θ)
Step size (a.k.a., learning rate) Direction of fastest increase

SGD

• Computing is expensive!

• Need to look at the whole dataset

• Requires computation of the per-sample gradient

∇θL(θ)

D = {(xi, yi)}n
i=1

∇θL(θ) =
1
n

n

∑
i=1

∇θ(ℓ(yi, fθ(xi)))

∇θ(ℓ(y, fθ(x))) =
∂ℓ(y, z)

∂z
(fθ(x)) ⋅ ∇θ fθ(x)

derivative of loss function, evaluated at prediction fθ(x) Prediction gradient (heavy!)

Recall the chain rule: 
∂
∂x

g(f(x)) = g′￼(f(x)) ⋅ f′￼(x)

SGD
• Stochastic GD. Reduces this cost by looking at small number of

randomly drawn samples at each time step.

• SGD (narrow). Single sample at a time.

• Mini-Batch GD. A batch of samples.

Computing ∇θ fθ(x)

Gradient computation

• Goal. Compute for some …… but how?

• The parameter is high-dimensional (billions~trillions)

• The function is very irregular (continuous but nonconvex)

∇θ fθ(x) x, θ

θ

fθ(x)

Method 1. Numerical Method
• Idea. The gradient is defined as a collection of derivatives:

 Each derivative can be numerically computed as

.

∇θg(θ) = [∂
∂θ1

g(θ), …,
∂

∂θd
g(θ)]

∂
∂x

g(x) = lim
ϵ→0

g(x + ϵ) − g(x)
ϵ

Method 1. Numerical Method

Method 1. Numerical Method

Method 1. Numerical Method

Method 1. Numerical Method
• Pros.

• Easy to implement.

• Cons.

• Is only approximate

• Cannot send , due to finite precision.

• Very slow

• Requires at least evaluations of for .

ϵ → 0

d + 1 fθ(x) θ ∈ ℝd

Method 2. Analytic Method
• Idea. Derive an analytic expression of the gradient.

• For example, if

we know that the gradient will be

(how? we’ll see more soon)

g(x) = sin(5 ⋅ exp(x))

g′￼(x) = 5 ⋅ cos(5 ⋅ exp(x)) ⋅ exp(x)

Method 2. Analytic Method
• Pros.

• Exact.

• Fast.

• Cons.

• Needs careful implementation for complicated functions.

• Need to check the correctness, using the numerical method
(called gradient check)

Backpropagation

Chain rule

• Q. How to analytically derive for complicated functions?
∇θ fθ(x)

fθ(x) = WLσ(WL−1σ(⋯σ(W1x + b1)⋯ + bL−1) + bL

Chain rule

• Q. How to analytically derive for complicated functions?

• A. View this as a composition of elementary operations

• Derivatives of elementary operations can be hard-coded.

• We can use chain rule to combine these.

∇θ fθ(x)

fθ(x) = WLσ(WL−1σ(⋯σ(W1x + b1)⋯ + bL−1) + bL

fθ(x) = fbL
∘ fWL

∘ fσL
∘ ⋯ ∘ fW1

(x)

Chain rule: Example
• Consider a function

• This can be viewed as a composition of two elementary operations:

• Addition:

• Multiplication: .

g(x, y, z) = (x + y) ⋅ z

g(x, y, z) = g2(g1(x, y), z)

g1(a, b) = a + b

g2(a, b) = a ⋅ b g1

g2

Chain rule: Example
• Each elementary operation has easy-to-write gradients:

• ,

• ,

∂g1

∂a
= 1

∂g1

∂b
= 1

∂g2

∂a
= b

∂g1

∂b
= a

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1

Chain rule: Example
• Chain rule tells you that:

∂g
∂x

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂a
(x, y)

= 1= z

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1

Chain rule: Example
• Chain rule tells you that:

∂g
∂y

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂b
(x, y)

= 1= z

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1

Chain rule: Example
• Chain rule tells you that:

∂g
∂z

(x, y, z) =
∂g2

∂b
(g1(x, y), z)

= g1(x, y)

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1

Chain rule: Example
• Chain rule tells you that:

∂g
∂z

(x, y, z) =
∂g2

∂b
(g1(x, y), z)

= g1(x, y)

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1

Observation. Computing gradients
requires intermediate values of the
composite function.

Idea. We first compute all
intermediate values, and then
combine them to get gradients.

Neural Network Training
• Iteratively applies three steps:

• (1) Forward Pass. Compute the function output, 
 storing all intermediate values on memory.

• From input to output.

g1

g2

5

3

2

Neural Network Training
• Iteratively applies three steps:

• (1) Forward Pass. Compute the function output, 
 storing all intermediate values on memory.

• From input to output.

g1

g2

5

3

2

g1(5,3) = 8

Neural Network Training
• Iteratively applies three steps:

• (1) Forward Pass. Compute the function output, 
 storing all intermediate values on memory.

• From input to output.

g1

g2

5

3

2

8

g2(8,2) = 16

Neural Network Training
• Iteratively applies three steps:

• (2) Backward Pass. Compute the gradient using stored values.

• From output to input.

g1

g2

5

3

2

8

16
∂g2

∂a
= b = 2

∂g
∂z

=
∂g2

∂b
= a = 8

Neural Network Training
• Iteratively applies three steps:

• (2) Backward Pass. Compute the gradient using stored values.

• From output to input.

g1

g2

5

3

2

8

16
2

8

∂g1

∂a
= 1

∂g1

∂b
= 1

Neural Network Training
• Iteratively applies three steps:

• (2) Backward Pass. Compute the gradient using stored values.

• From output to input.

g1

g2

5

3

2

8

16
2

8

∂g
∂x

=
∂g2

∂g1

∂g1

∂x
= 2 ⋅ 1 = 2

2 ⋅ 1 = 2

Neural Network Training
• Iteratively applies three steps:

• (3) GD. Update the parameters.

x ← x − η ⋅ 2, y ← y − η ⋅ 2, z ← z − η ⋅ 8

g1

g2

5

3

2

8

16
2

8

2

2

Another example
• Consider a function

fw(x) =
1

1 + exp(− (w0x0 + w1x1 + w2))

Another example
• Consider a function

fw(x) =
1

1 + exp(− (w0x0 + w1x1 + w2))

Another example
• Consider a function

fw(x) =
1

1 + exp(− (w0x0 + w1x1 + w2))

Another example
• Consider a function

fw(x) =
1

1 + exp(− (w0x0 + w1x1 + w2))

∂(1/a)
∂a

= − 1/a2

Another example
• Consider a function

fw(x) =
1

1 + exp(− (w0x0 + w1x1 + w2))

Another example
• Consider a function

fw(x) =
1

1 + exp(− (w0x0 + w1x1 + w2))

∂ exp
∂a

= exp(a)

Another example
• Consider a function

fw(x) =
1

1 + exp(− (w0x0 + w1x1 + w2))

Computation Graphs of NNs
• For simple neural networks, the computation graph will be like:

Computation Graphs of NNs
• For larger models the computation graph will be:

• But still, they will be DAG (directed acyclic graphs)

Concluding Remarks
• Training neural networks require a lot of memory!

• Rule of thumb. Additional memory (model size)

• Gradient checkpointing. Re-compute activations when needed.

• Gradients of some activations are cheaper to compute/store.

• ReLU. has 0/1 gradient… very cheap to store and compute.

• If interested, ask “Automatic Differentiation” to GPT.

• or this paper: https://arxiv.org/abs/1502.05767

≈ 2 ⋅

https://arxiv.org/abs/1502.05767

Cheers

• Next up. Strategies for Neural Network Training

