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Optimizing Neural Networks
• Today. How to optimize the parameters of neural networks.





• Here, the parameters are weights & biases:





• Again, the goal is to minimize the empirical risk:


fθ(x) = WLσ(WL−1σ(⋯σ(W1x + b1)⋯ + bL−1) + bL

θ = {(Wl, bl)}L
l=1

L(θ) =
1
n

n

∑
i=1

ℓ(yi, fθ(xi))



Problem

• The loss landscape  is too irregular!L(θ)

Image source: Li et al., “Visualizing the Loss Landscape of Neural Nets,” NeurIPS 2018



Recap: Gradient Descent



Gradient Descent
• Fortunately, simply performing gradient descent works well.


• Idea. Iteratively update  in a direction the loss decreases.
θ

θ(t+1) = θ(t) − η ⋅ ∇θL(θ)
Step size (a.k.a., learning rate) Direction of fastest increase



SGD

• Computing  is expensive!


• Need to look at the whole dataset 





• Requires computation of the per-sample gradient


∇θL(θ)

D = {(xi, yi)}n
i=1

∇θL(θ) =
1
n

n

∑
i=1

∇θ(ℓ(yi, fθ(xi)))

∇θ(ℓ(y, fθ(x))) =
∂ℓ(y, z)

∂z
( fθ(x)) ⋅ ∇θ fθ(x)

derivative of loss function, evaluated at prediction fθ(x) Prediction gradient (heavy!)

Recall the chain rule: 
∂
∂x

g( f(x)) = g′￼( f(x)) ⋅ f′￼(x)



SGD
• Stochastic GD. Reduces this cost by looking at small number of 

randomly drawn samples at each time step.


• SGD (narrow). Single sample at a time.


• Mini-Batch GD. A batch of samples.



Computing ∇θ fθ(x)



Gradient computation

• Goal. Compute  for some …… but how?


• The parameter  is high-dimensional (billions~trillions)


• The function  is very irregular (continuous but nonconvex)

∇θ fθ(x) x, θ

θ

fθ(x)



Method 1. Numerical Method
• Idea. The gradient is defined as a collection of derivatives:





              Each derivative can be numerically computed as


.

∇θg(θ) = [ ∂
∂θ1

g(θ), …,
∂

∂θd
g(θ)]

∂
∂x

g(x) = lim
ϵ→0

g(x + ϵ) − g(x)
ϵ



Method 1. Numerical Method



Method 1. Numerical Method



Method 1. Numerical Method



Method 1. Numerical Method
• Pros.


• Easy to implement.


• Cons.


• Is only approximate


• Cannot send , due to finite precision.


• Very slow


• Requires at least  evaluations of  for .

ϵ → 0

d + 1 fθ(x) θ ∈ ℝd



Method 2. Analytic Method
• Idea. Derive an analytic expression of the gradient.


• For example, if





we know that the gradient will be





(how? we’ll see more soon)

g(x) = sin(5 ⋅ exp(x))

g′￼(x) = 5 ⋅ cos(5 ⋅ exp(x)) ⋅ exp(x)



Method 2. Analytic Method
• Pros.


• Exact.


• Fast.


• Cons.


• Needs careful implementation for complicated functions.


• Need to check the correctness, using the numerical method 
(called gradient check)



Backpropagation



Chain rule

• Q. How to analytically derive  for complicated functions?
∇θ fθ(x)

fθ(x) = WLσ(WL−1σ(⋯σ(W1x + b1)⋯ + bL−1) + bL



Chain rule

• Q. How to analytically derive  for complicated functions?





• A. View this as a composition of elementary operations





• Derivatives of elementary operations can be hard-coded.


• We can use chain rule to combine these.

∇θ fθ(x)

fθ(x) = WLσ(WL−1σ(⋯σ(W1x + b1)⋯ + bL−1) + bL

fθ(x) = fbL
∘ fWL

∘ fσL
∘ ⋯ ∘ fW1

(x)



Chain rule: Example
• Consider a function





• This can be viewed as a composition of two elementary operations:





• Addition:              


• Multiplication:     .

g(x, y, z) = (x + y) ⋅ z

g(x, y, z) = g2(g1(x, y), z)

g1(a, b) = a + b

g2(a, b) = a ⋅ b g1

g2



Chain rule: Example
• Each elementary operation has easy-to-write gradients:


• , 


• , 


∂g1

∂a
= 1

∂g1

∂b
= 1

∂g2

∂a
= b

∂g1

∂b
= a

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1



Chain rule: Example
• Chain rule tells you that:




∂g
∂x

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂a
(x, y)

= 1= z

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1



Chain rule: Example
• Chain rule tells you that:




∂g
∂y

(x, y, z) =
∂g2

∂a
(g1(x, y), z) ⋅

∂g1

∂b
(x, y)

= 1= z

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1



Chain rule: Example
• Chain rule tells you that:




∂g
∂z

(x, y, z) =
∂g2

∂b
(g1(x, y), z)

= g1(x, y)

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1



Chain rule: Example
• Chain rule tells you that:




∂g
∂z

(x, y, z) =
∂g2

∂b
(g1(x, y), z)

= g1(x, y)

g1

g2

∂g2

∂a
= b

∂g2

∂b
= a

∂g1

∂a
= 1

∂g1

∂b
= 1

Observation. Computing gradients 
requires intermediate values of the 
composite function.

Idea. We first compute all 
intermediate values, and then 
combine them to get gradients.



Neural Network Training
• Iteratively applies three steps:


• (1) Forward Pass. Compute the function output, 
                               storing all intermediate values on memory.


• From input to output.

g1

g2

5

3

2



Neural Network Training
• Iteratively applies three steps:


• (1) Forward Pass. Compute the function output, 
                               storing all intermediate values on memory.


• From input to output.

g1

g2

5

3

2

g1(5,3) = 8



Neural Network Training
• Iteratively applies three steps:


• (1) Forward Pass. Compute the function output, 
                               storing all intermediate values on memory.


• From input to output.

g1

g2

5

3

2

8

g2(8,2) = 16



Neural Network Training
• Iteratively applies three steps:


• (2) Backward Pass. Compute the gradient using stored values.


• From output to input.

g1

g2

5

3

2

8

16
∂g2

∂a
= b = 2

∂g
∂z

=
∂g2

∂b
= a = 8



Neural Network Training
• Iteratively applies three steps:


• (2) Backward Pass. Compute the gradient using stored values.


• From output to input.

g1

g2

5

3

2

8

16
2

8

∂g1

∂a
= 1

∂g1

∂b
= 1



Neural Network Training
• Iteratively applies three steps:


• (2) Backward Pass. Compute the gradient using stored values.


• From output to input.

g1

g2

5

3

2

8

16
2

8

∂g
∂x

=
∂g2

∂g1

∂g1

∂x
= 2 ⋅ 1 = 2

2 ⋅ 1 = 2



Neural Network Training
• Iteratively applies three steps:


• (3) GD. Update the parameters.


x ← x − η ⋅ 2, y ← y − η ⋅ 2, z ← z − η ⋅ 8

g1

g2

5

3

2

8

16
2

8

2

2



Another example
• Consider a function


fw(x) =
1

1 + exp( − (w0x0 + w1x1 + w2))



Another example
• Consider a function


fw(x) =
1

1 + exp( − (w0x0 + w1x1 + w2))



Another example
• Consider a function


fw(x) =
1

1 + exp( − (w0x0 + w1x1 + w2))



Another example
• Consider a function


fw(x) =
1

1 + exp( − (w0x0 + w1x1 + w2))

∂(1/a)
∂a

= − 1/a2



Another example
• Consider a function


fw(x) =
1

1 + exp( − (w0x0 + w1x1 + w2))



Another example
• Consider a function


fw(x) =
1

1 + exp( − (w0x0 + w1x1 + w2))

∂ exp
∂a

= exp(a)



Another example
• Consider a function


fw(x) =
1

1 + exp( − (w0x0 + w1x1 + w2))



Computation Graphs of NNs
• For simple neural networks, the computation graph will be like:



Computation Graphs of NNs
• For larger models the computation graph will be:


• But still, they will be DAG (directed acyclic graphs)



Concluding Remarks
• Training neural networks require a lot of memory!


• Rule of thumb. Additional memory (model size)


• Gradient checkpointing. Re-compute activations when needed.


• Gradients of some activations are cheaper to compute/store.


• ReLU. has 0/1 gradient… very cheap to store and compute.


• If interested, ask “Automatic Differentiation” to GPT.


• or this paper: https://arxiv.org/abs/1502.05767

≈ 2 ⋅

https://arxiv.org/abs/1502.05767


Cheers

• Next up. Strategies for Neural Network Training


