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structure of the data, using unlabeled data.
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Dealing with high-dimensional data

- Many datasets are extremely high-dimensional, in its raw form.

« Suppose that you are an ML engineer at Google.
Then, you'd need to learn from these datasets:

YouTube Shorts
1920 x 1080 x 3 colors x 60 fps x 60 seconds
= 22.4 billion pixels (per video)

Gmail
1000s of words x sender info x receiver info x (images...)
= millions~billions real numbers (per mail)




Curse of Dimensionality

- Higher-dimensional data are nasty to do ML on.
- More computation.
» Higher chance of noise.

» Difficult to visualize (for human insight)

. Difficult to find meaningful patterns.
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Dimensionality: Nominal vs. True

- But do we really need all dimensions?

- Example. Handwritten Digit Recognition (MNIST, 28x28 image)

only looks like this ... and not like this

- That is, we may not need to fully utilize R28%28 — R784,



Dimensionality: Nominal vs. True

Hypothesis Y wie’ X e

There is a low-dimensional subspace » g,
(or submanifold) in the high-d space
where the real data lies on.

Important. Ignore small “noise” in each datum!

|
Dimensionality Reduction N
Finding these high-d -> low-d mapping. |
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Note. No need for labels!




Principal Component Analysis



Principal Component Analysis

- Dimensionality reduction using a affine subspace of the original space
« Invented by Karl Pearson (1909)

- Many aliases, e.g., Karhunen-Loéeve Transform




Suppose that we are given a 2D dataset—here, we want to find
a 1D subspace and a mapping, s.t. mapped data has nice properties.




mapping
simplify = only consider (orthogonal) projections to the subspace.




Suppose that we are given a 2D dataset—here, we want to find
a 1D subspace, s.t. the projected data has nice properties.




The Spirit

- We want to preserve the information as much as possible.

» Question. Which projection contains more information?




« Answer. Left!

A. Projected points are more widely spread.

B. Original points (@) are closer to their projections (e)



What PCA does, abstractly.

Suppose that we have the dataset X, ..., X, € RY,

Goal. Find the k-dimensional subspace U of R4 such that:

- The projections has the maximum variance:

max Var(z,(x,), ..., 1,(X,))
U

» The distortion from projection is minimized:

n
min ) [Ix; = 73113
=1




PCA as a Variance Maximization




Formalism: Affine Subspace

d

can be characterized by its

and an orthogonal biasb € R¢ as

- A k-dimensional affine subspace U C |
d

orthonormal basesuy, ..., u; € |

U={a1u1+'"+akllk+b ) CliEL }




Formalism: Projection

A projection of a vector X € R4 to an affine subspace U is

k
(X)) = ) (u/x)-u;+b
=1
y(X)
x_— . ;
........................ ( llTX) .u




Formalism: Projection

« This can be neatly written as a matrix form:

k
(X)) = ) (u/x)-u;+b
=1

— (iuiu?) x+b
i=1

—: Ux+Db

T

a d X d matrix with the rank &



Formalism: Projection
» The projection matrix has some useful properties.
. U'=U
- U 'U=U




Variance maximization as a quadratic opt.

» Now, let’s start looking into the variance maximization.

- We want to maximize the variance of the projected points, i.e.,

Var(le b, ...,an+b)

« Because a constant term does not affect variance, this is equal to

Var(UXI, ., an)



Variance maximization as a quadratic opt.

Var(UXI, e, an)

. The mean of the { Ux;} is UX, where X is the mean of {X.}.

- Thus, the variance is equal to

| |
— ) IUx-®l3==) (x,—%)U'U(x; - %)
& =1 & =1

] -« . )
= — Z (X; — X)TU(Xl- — X)
L



Variance maximization as a quadratic opt.

| ) )
— Z (X; — X)TU(XZ- — X)
L

. By definition of U, we can re-write the above as

—22<x - %) "wu(x; — %)

=1 j=I1

ZHJT( i(x — X)(X; —X)T) u;
j=1 =1

= sample covariance matrix S
(positive-semidefinite)



Variance maximization as a quadratic opt.

» Thus, PCA is solving the quadratic optimization

k
max Zu.Su-
U;.....U J J
& 2 k]=1

subject to the constraints

e
i 0 v 0]




Solving the quadratic optimization (k=1)

 Let us take a closer look at the problem.

k
max Z u Suj, subjectto  u, u; = 1{i =j}
ug,...,u,
J=1

. Consider the simplest case where k = 1, i.e.,

max u ' Su, subjectto  |[uf|, =1
u

. We see that the u should be the eigenvector of S corresponding to the
largest eigenvalue why?



Why principal component?

(Version 1) Routine answer

To solve the constrained optimization

T

max u ' Su, subjectto  ||u|[, =u'u=1,

u

consider the Lagrangian relaxation

maxu Su+ a(l —u'u).

The critical point is at the point Su = au holds (i.e., eigenvectors).

Choosing the principal coefficient maximizes the value of u'Su



Why principal component?

(Version 2) If you don't like Lagrangian... (difficult to extend to k=2)

Let (e, ..., €,) be the unit-norm eigenvectors of S,

with eigenvalues (44, ..., 1) in the descending order.

Any choice of u can be written as a mixture of eigenvectors
u= Wlel + - + Wded

with the weights W12 + .- + WC% = 1.



Why principal component?

The system S scales each eigenvectors, i.e.,
Su =S(w,e; + - +wee))
=w;Se; + -+ +w,Se,
= wiA€ + - +wyl e,
Thus, we have
u'Su=wid + - +wil,

Optimal choice. Assign all weights to wy, i.e., u = €.



The Next Component

. Now, consider the case where k = 2.

max ulTSul + ugSuz, subject to |[u;|| = [|u,]|| =1, u1Tu2 =0
u,U

 View this as a nested optimization problem

max (ulTSul +  max (u;Suz)).
g f|=1 [, ]|=1,0, Lu,

- Then, take a look at the inner maximization problem.

max (ug Suz)
[, ]|=1,0, Lu,



The Next Component

- The Lagrangian of the inner maximization becomes
w,Su, +a- (1 —wu,) —f-(uu,)

» The critical point condition is where:

Su, = au, + éul
2
. Multiplying ulT on both sides, we get
u, Su, = au,u, + g

=0 =0 ..and thus f =0



The Next Component

. Plugging in f = 0, we get
S“2 — 0(112
. Thus, we should also select u, as an eigenvector.

. Selecting uy, u, as eigenvectors for top-2 eigenvalues is optimal.



PCA, with & principal components

- Similarly, we can select the affine subspace spanned by

1€, ...,€.1},

where €4, ..., €, are k principal components of the sample covariance

1 n
matrix S = — Z (x; — X)(x, — X) .
It =1

» This can be done by performing SVD on the data matrix
X=[x—%X]| - | x,—X]=0ZV'

and selecting the columns of U for top-k singular values.



Cheers

« Next up. PCA as minimum reconstruction error, Kernel PCA, t-SNE, ...




