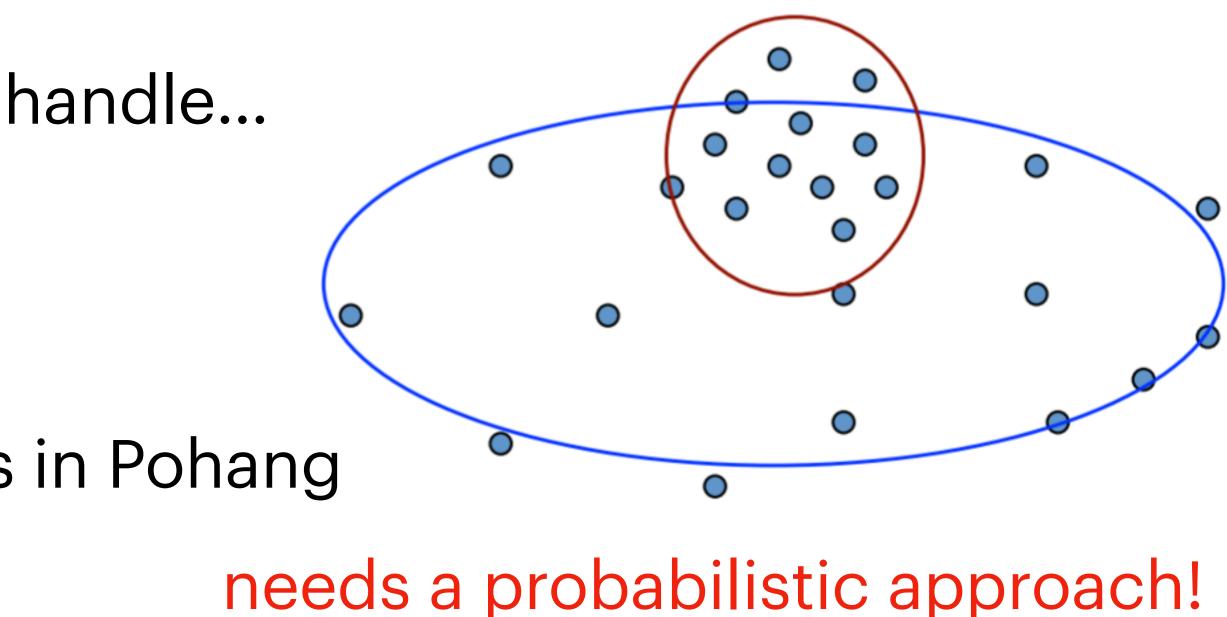
9. Gaussian Mixture Models EECE454 Introduction to Machine Learning Systems

2023 Fall, Jaeho Lee

Recap: Clustering by K-means

- **K-means.** Each cluster is represented by the centroid.
 - A datum belongs to the cluster with nearest centroid.

- Limitations. Plenty, e.g., cannot handle...
 - overlapping clusters
 - "wider" clusters
 - Example. Non-local residents in Pohang
 - POSCO or POSTECH?



Mixture models

- Idea. Take a generative approach, and fit parameters!
 - *Example*. the previous POSCO vs POSTECH.
 - We draw $Y \in \{0,1\} \sim \text{Bern}(p)$. (0: POSCO, 1: POSTECH)
 - If Y = 0, draw X from $\mathcal{N}(\mu_0, \sigma_0^2)$ • If Y = 1, draw X from $\mathcal{N}(\mu_1, \sigma_1^2)$ 0 0
 - Model the conditional distribution: Allows overlap & can account for wideness.

Mixture models

• Perk. If you have "learned" a nice probabilistic model from data,

(Note: Example below requires additional text conditioning...)

a nendoroid of a cute boy

a nendoroid of a cute girl

a penguin

- you can not only cluster, but also generate a new data.

 - a potted cactus plant

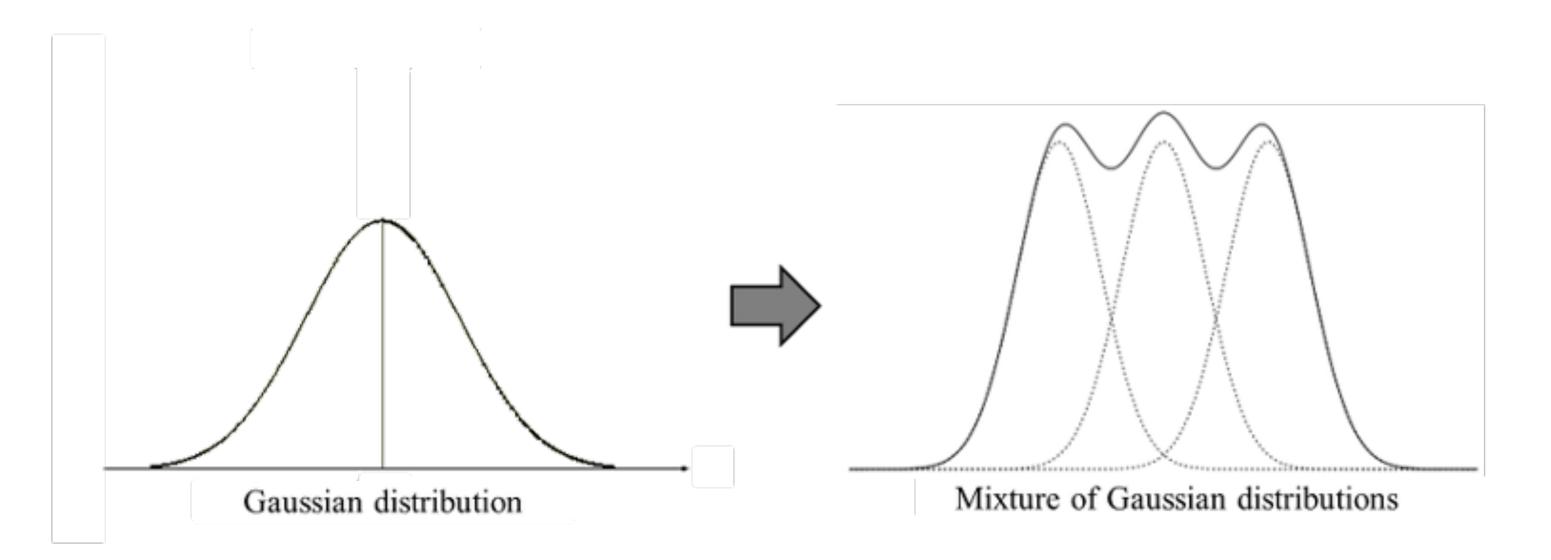
a 3D model of a fox

a 3D model of a soldier

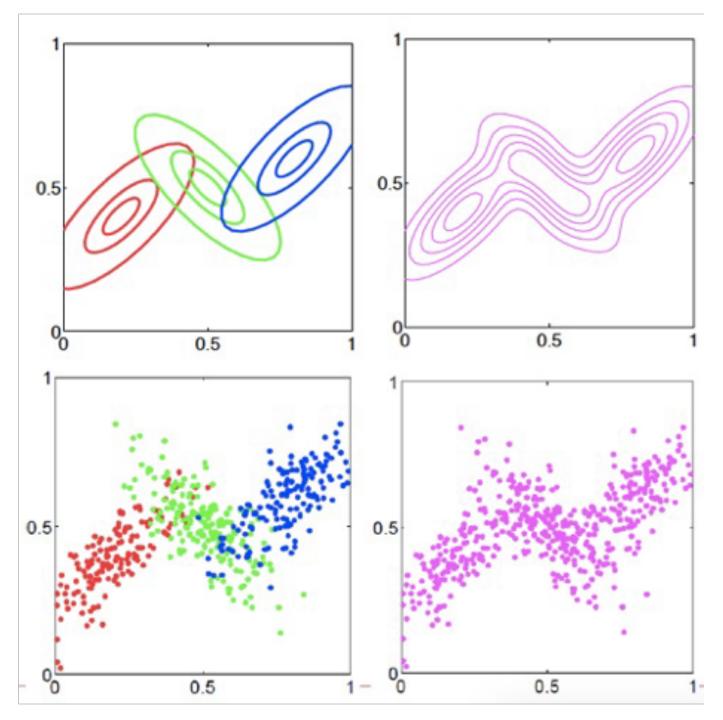
(finite) Mixture models

More generally we model the data-generating pdf with

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \cdot p_k(\mathbf{x}),$$

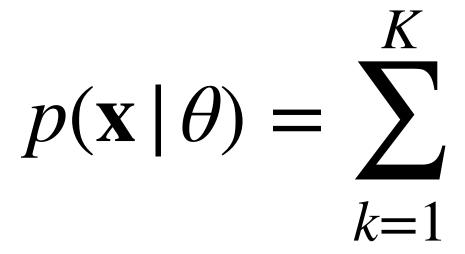


$$\pi_k \in [0,1], \sum \pi_k = 1.$$



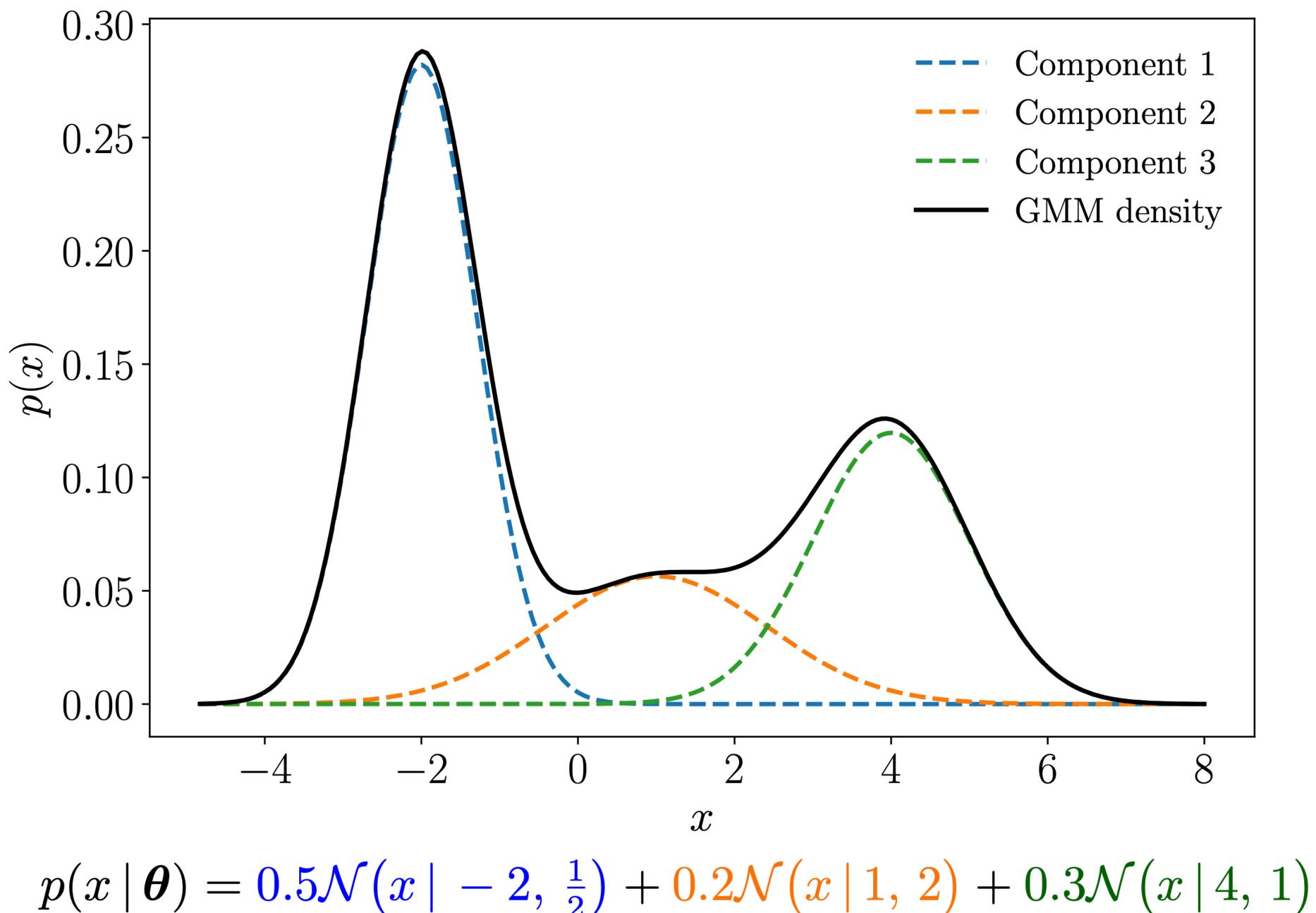
Gaussian mixture models

Each base distribution is a Gaussian distribution:



$$\pi_k \cdot \mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k),$$

where $\theta = (\mu_1, \Sigma_1, \dots, \mu_K, \Sigma_K, \pi_1, \dots, \pi_K)$ is the total parameter set.



Gaussian mixture models

Each base distribution is a Gaussian distribution:

- k=1where $\theta = (\mu_1, \Sigma_1, \dots, \mu_K, \Sigma_K, \pi_1, \dots, \pi_K)$ is the total parameter set.
- Question. How do we fit the parameters, given $\{x_1, \ldots, x_n\}$? Challenge. We do not know the true labels!

 $p(\mathbf{x} | \theta) = \sum \pi_k \cdot \mathcal{N}(\mathbf{x} | \mu_k, \Sigma_k),$

Maximum Likelihood

• Similar to what we learned in naïve Bayes, what we want to try is the maximum likelihood.

$$p(\mathbf{x}_{1:n} | \theta) = \prod_{i=1}^{n} p(\mathbf{x}_{1:n} | \theta)$$
$$= \prod_{i=1}^{n} \sum_{k=1}^{K} \pi$$

 \Rightarrow maximize this quantity by tuning $\theta = \{\mu_k, \Sigma_k, \pi_k \mid k \in [K]\}$

 $\mathbf{x}_i | \theta$)

 $\pi_k \cdot \mathcal{N}(\mathbf{X}_i | \mu_k, \Sigma_k)$

Maximum Log-Likelihood

• We do the usual log trick to make everything summation...

$$\mathscr{L} := \log p(\mathbf{x}_{1:n} | \theta) = \sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x}_i | \mu_k, \Sigma_k) \right)$$

- Normally, you would try to find the optimum by locating the critical point (i.e., gradient = 0)
 - Give it a try! (let me know if you succeed)

Expectation-Maximization

- Idea. Fix some variables and optimize others. Repeat ...

 - Similar to what we did in K-means!

Algorithm 1 k-means algorithm

- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- **expectation:** Assign each point to its closest centroid.
- 5:
- 6: **until** The centroid positions do not change.

Fix the optimized variables, and optimize the previously fixed.

• Generally, we call it expectation-maximization (EM) algorithm.

maximization: Compute the new centroid (mean) of each cluster.

Expectation-Maximization

- Recall that, in hard K-means...
 - Randomly initialize centroids $\{\mu_k\}$.
 - Fix the centroids $\{\mu_k\}$ and optimize the assignment $\{r_{ik}\}$.
 - Optimal, if nearest neighbor.
 - Fix the assignment $\{r_{ik}\}$ and optimize the centroid $\{\mu_k\}$.
 - Optimal, if mean of the assigned data.
 - Repeat.

Expectation-Maximization

- Similarly, what we want to do is...
 - Non-binary, as in soft K-means • Randomly initialize parameters $\theta = \{\mu_k, \Sigma_k, \pi_k\}$. • Fix the parameters θ and optimized the responsibility $\{r_{ik}\}$.
 - - Optimal, if?
 - Fixed the responsibility $\{r_{ik}\}$ and optimized the parameters θ .
 - Optimal, if?
- Let's think about the optimal conditions...

Recall: Multivariate Gaussian

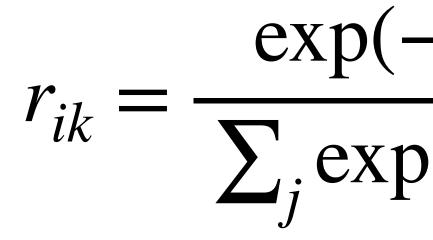
• Multivariate Gaussians:

$$\mathcal{N}(\mathbf{x} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) = \frac{1}{\sqrt{(2\pi)^d \mid \boldsymbol{\Sigma} \mid}} \cdot \exp\left(-\frac{1}{2}(\mathbf{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})\right)$$

• Take log, you get: $\log \mathcal{N}(\mathbf{x} | \mu, \Sigma) = -\frac{1}{2} \cdot \left(d \log(2\pi) + \log |\Sigma| + (\mathbf{x} - \mu)^{\mathsf{T}} \Sigma^{-1} (\mathbf{x} - \mu) \right)$

Recall: Responsibilities

• **Soft K-means.** The softmax value



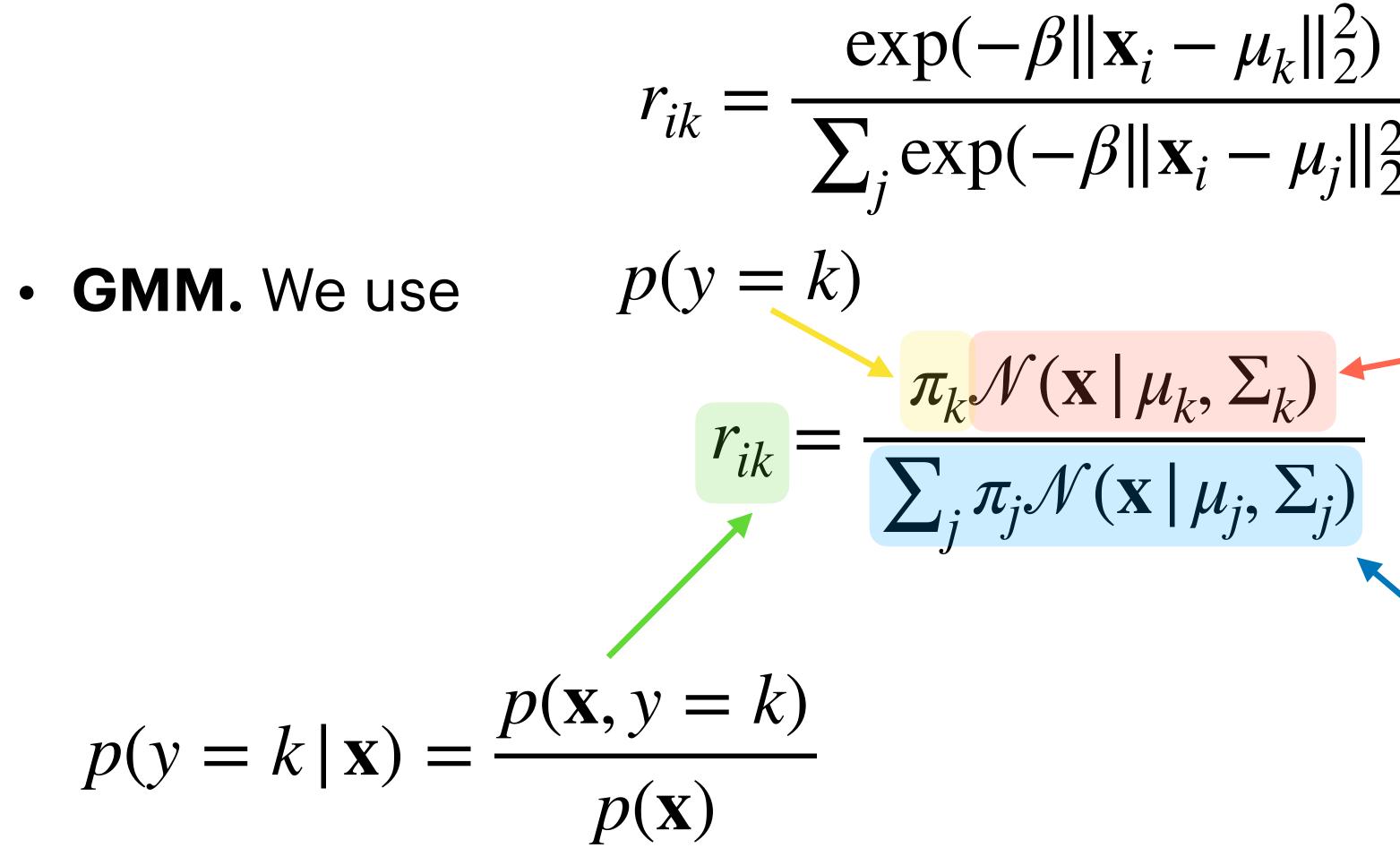
• GMM. We use

 $r_{ik} = \frac{\pi_k \mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k)}{\sum_j \pi_j \mathcal{N}(\mathbf{x} \mid \mu_j, \Sigma_j)}$

$$\begin{bmatrix} -\beta \| \mathbf{x}_i - \mu_k \|_2^2 \\ p(-\beta \| \mathbf{x}_i - \mu_j \|_2^2) \end{bmatrix}$$

Recall: Responsibilities

• **Soft K-means.** The softmax value



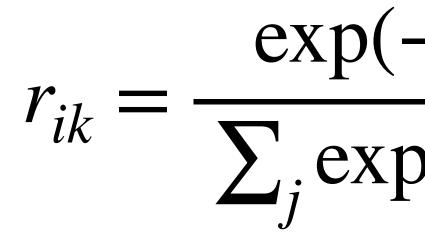
$$\frac{[-\beta \|\mathbf{x}_{i} - \mu_{k}\|_{2}^{2})}{p(-\beta \|\mathbf{x}_{i} - \mu_{j}\|_{2}^{2})}$$

 $p(\mathbf{x} \mid \mathbf{y} = k)$

 $p(\mathbf{x})$

Recall: Responsibilities

• **Soft K-means.** The softmax value



• GMM. We use

$$\begin{bmatrix} -\beta \| \mathbf{x}_i - \mu_k \|_2^2 \\ p(-\beta \| \mathbf{x}_i - \mu_j \|_2^2) \end{bmatrix}$$

$$r_{ik} = \frac{\pi_k \mathcal{N}(\mathbf{x} \mid \mu_k, \Sigma_k)}{\sum_j \pi_j \mathcal{N}(\mathbf{x} \mid \mu_j, \Sigma_j)}$$

Note. If $\pi_k = 1/K$, $\Sigma_k = \mathbf{I}/\beta$, then this is identical to soft K-means.

Optimality Condition: Mean

Recall that

$$\mathscr{L} := \log p(\mathbf{x}_{1:n} | \theta) = \int_{i=1}^{n} di$$

• Partial derivative w.r.t. μ_k is...

$$\nabla_{\mu_k} \mathscr{L} = \sum_{i=1}^n \frac{\pi_k \cdot \nabla_{\mu_k} \mathscr{N}(\mathbf{x} \mid \mu)}{\sum_{i=1}^n \pi_j \mathscr{N}(\mathbf{x}_i \mid \mu)}$$

 $\sum_{i=1}^{n} \log \left(\sum_{k=1}^{K} \pi_k \cdot \mathcal{N}(\mathbf{x}_i | \mu_k, \Sigma_k) \right)$

 $\frac{\mu_k, \Sigma_k}{\mu_j, \Sigma_j} = \sum_{i=1}^n r_{ik} (\mathbf{x}_i - \mu_k)^{\mathsf{T}} \Sigma_k^{-1} = \mathbf{0}$ $\sum_i r_{ik} \mathbf{x}_i$

 $\Rightarrow \mu_k = \frac{1}{\sum_i r_{ik}}$

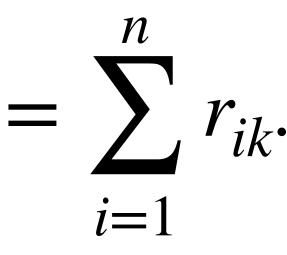
Optimality Condition: Variance

Do the similar thing, and you get

$$\Sigma_k = \frac{1}{n_k} \sum_{i=1}^n r_i$$

where we use the shorthand $n_k = \sum r_{ik}$.

 $T_{ik}(\mathbf{x}_i - \mu_k)(\mathbf{x}_i - \mu_k)^{\mathsf{T}}$



see section 11.2.3 of the main textbook

Optimality Condition: Mixture Weights

• Do the similar thing, and you get

- $\pi_k = \frac{n_k}{k}$ n
- see section 11.2.4 of the main textbook; this one is trickier as it's constrained—use Lagrange multipliers!

The full E-M

• Do the similar thing, and you get

- 1. Initialize $\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k, \pi_k$.
- rent parameters π_k, μ_k, Σ_k :

$$r_{nk} = \frac{\pi_k \mathcal{N}(\boldsymbol{x}_n \mid \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_j \pi_j \mathcal{N}(\boldsymbol{x}_n \mid \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}.$$
 (11.53)
parameters $\pi_k, \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k$ using the current responsi-
step):

3. M-step: Reestimate p bilities r_{nk} (from E-s

$$oldsymbol{\mu}_k = rac{1}{N_k} \sum_{n=1}^N r_{nk} oldsymbol{x}$$
 $oldsymbol{\Sigma}_k = rac{1}{N_k} \sum_{n=1}^N r_{nk} (oldsymbol{x})$
 $\pi_k = rac{N_k}{N}$.

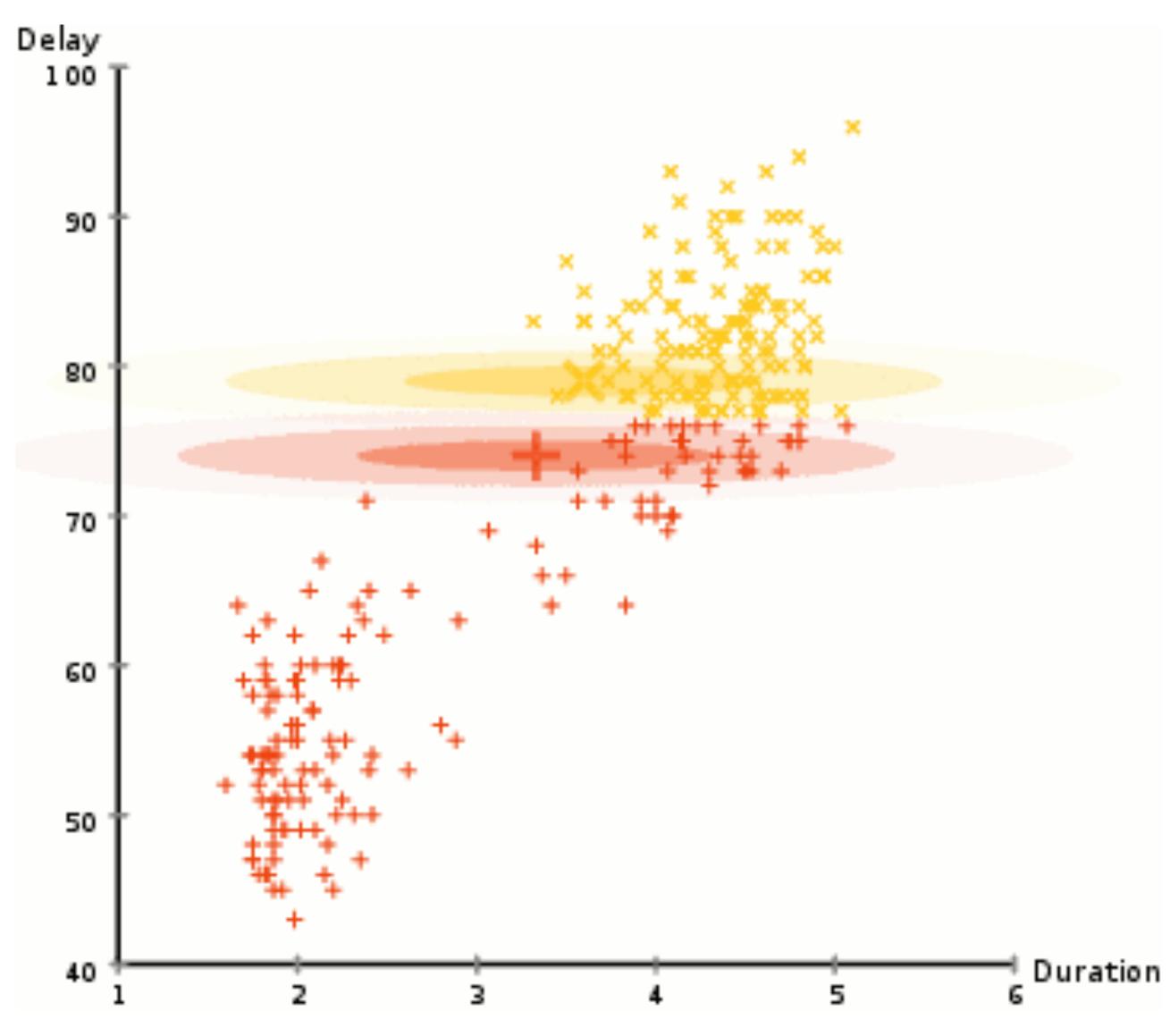
2. *E-step:* Evaluate responsibilities r_{nk} for every data point \boldsymbol{x}_n using cur-

(11.54)n,

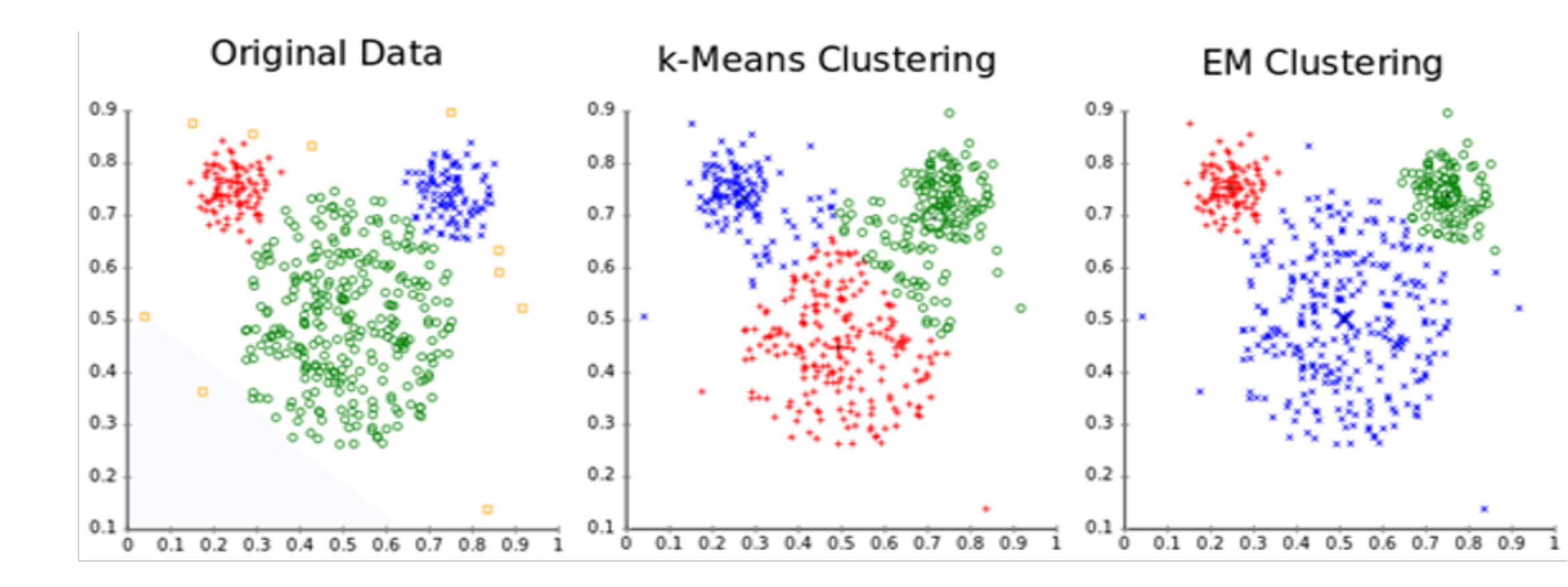
$$(\boldsymbol{x}_n - \boldsymbol{\mu}_k)(\boldsymbol{x}_n - \boldsymbol{\mu}_k)^{ op},$$
 (11.55)

(11.56)

The full E-M



The full E-M



• <u>Next up.</u> Trees, Random Forest, and Boosting

