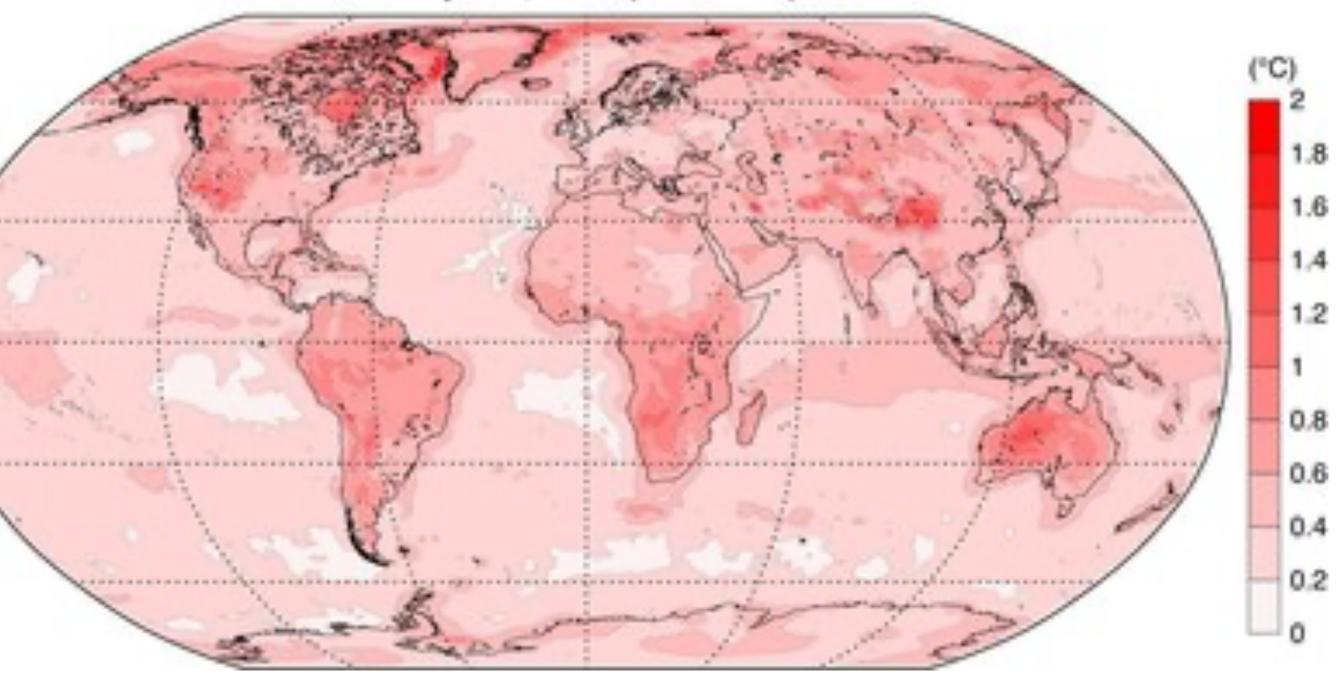
8. K-Means Clustering EECE454 Introduction to Machine Learning Systems

2023 Fall, Jaeho Lee

Recap: Supervised Learning

- What we have. A labeled dataset $D = \{(\mathbf{x}_i, y_i)\}_{i=1}^n$
- Want to do. Learn $f(\cdot)$ such that $f(\mathbf{x}) \approx y$.
 - *Example*. ERA5 dataset
 - **x**: time & location
 - y: temperature.
 - \Rightarrow Train a model for temperature prediction

ERA5 January 2016, Mean Spread in Temperature



Unsupervised Learning

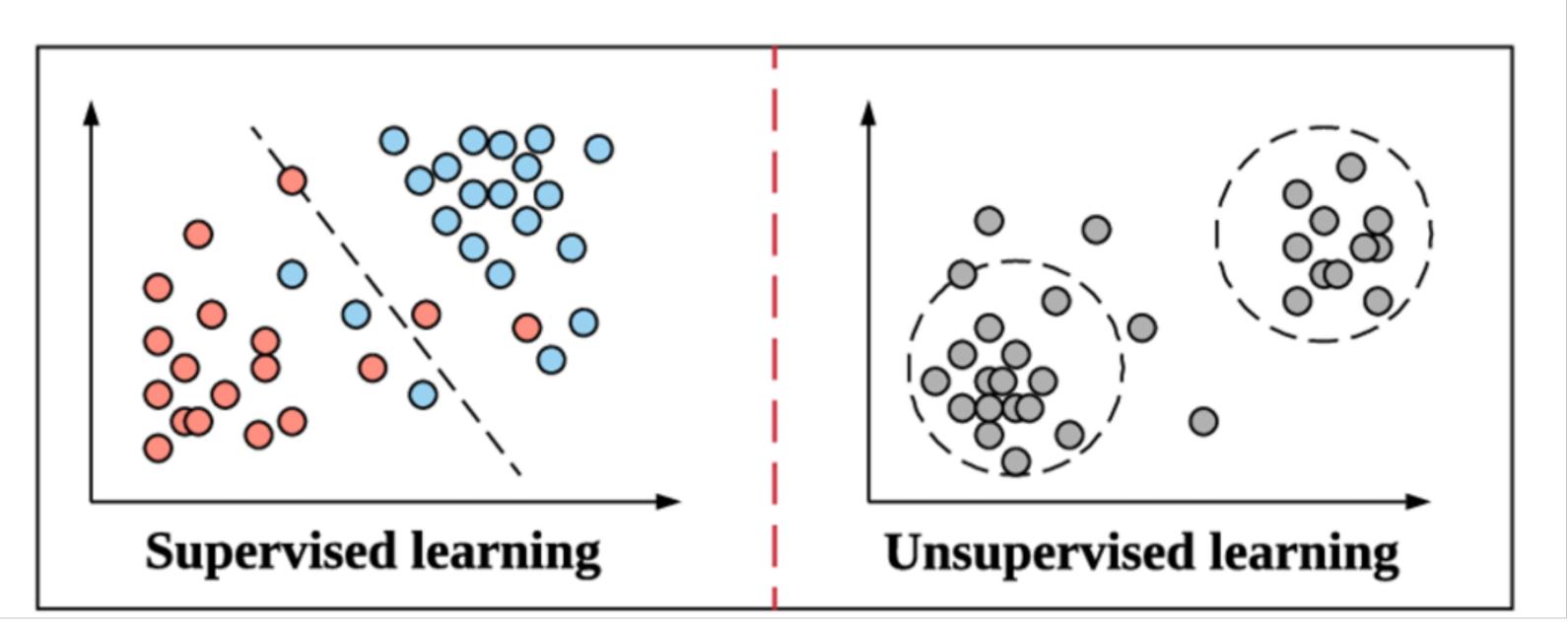
Unsupervised Learning

- What we have. An unlabeled dataset $D = {\mathbf{x}_i}_{i=1}^n$
 - No labeling cost—typically very large!
 - Example. Common Crawl petabytes of web-crawled sentences.
 - ⇒ Most Language Models trained on these!

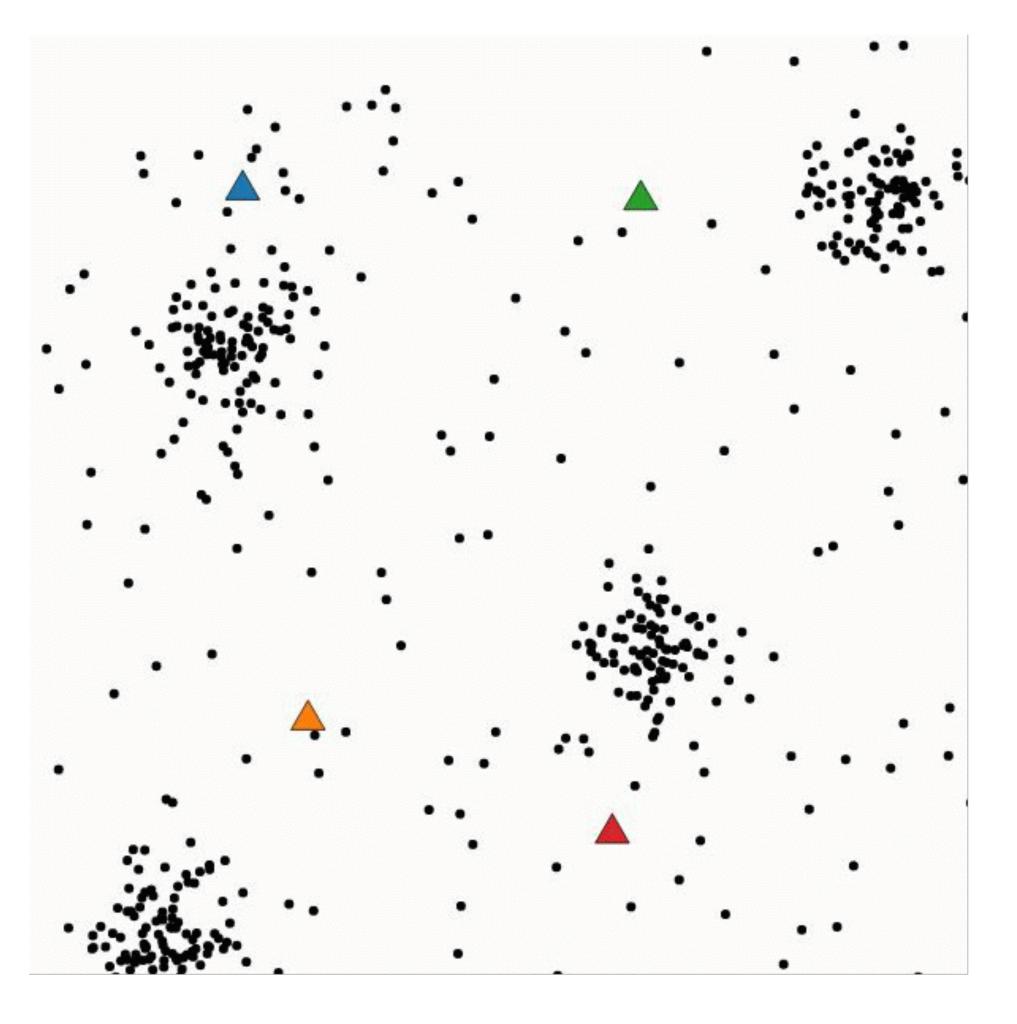
ommon Crawl

Unsupervised Learning

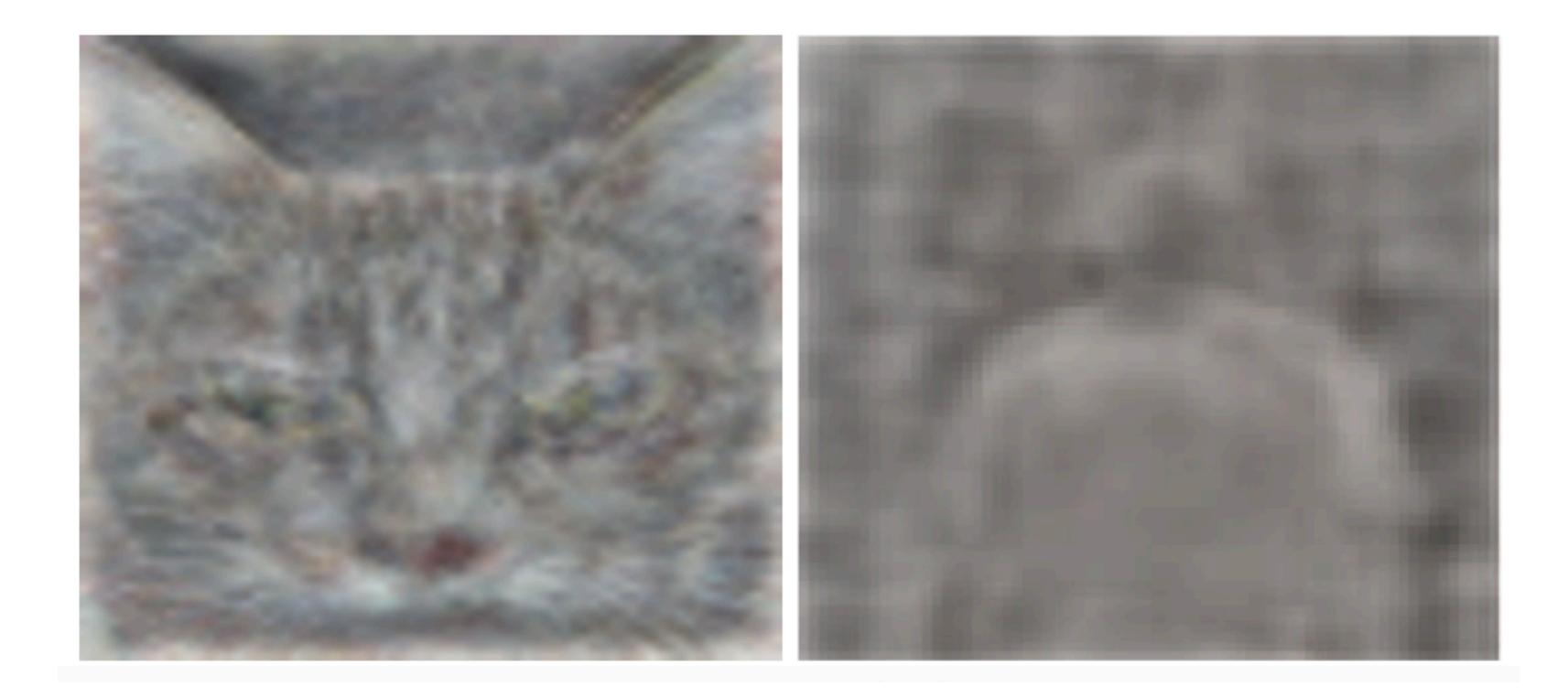
- Want to do. Get insights from data, by discovering underlying structure, cause, or statistical relation
 - Learned structure can be used for supervised learning tasks. (e.g., learning a feature map $\Phi(\;\cdot\;)$)



• 1957. People were clustering many data points.

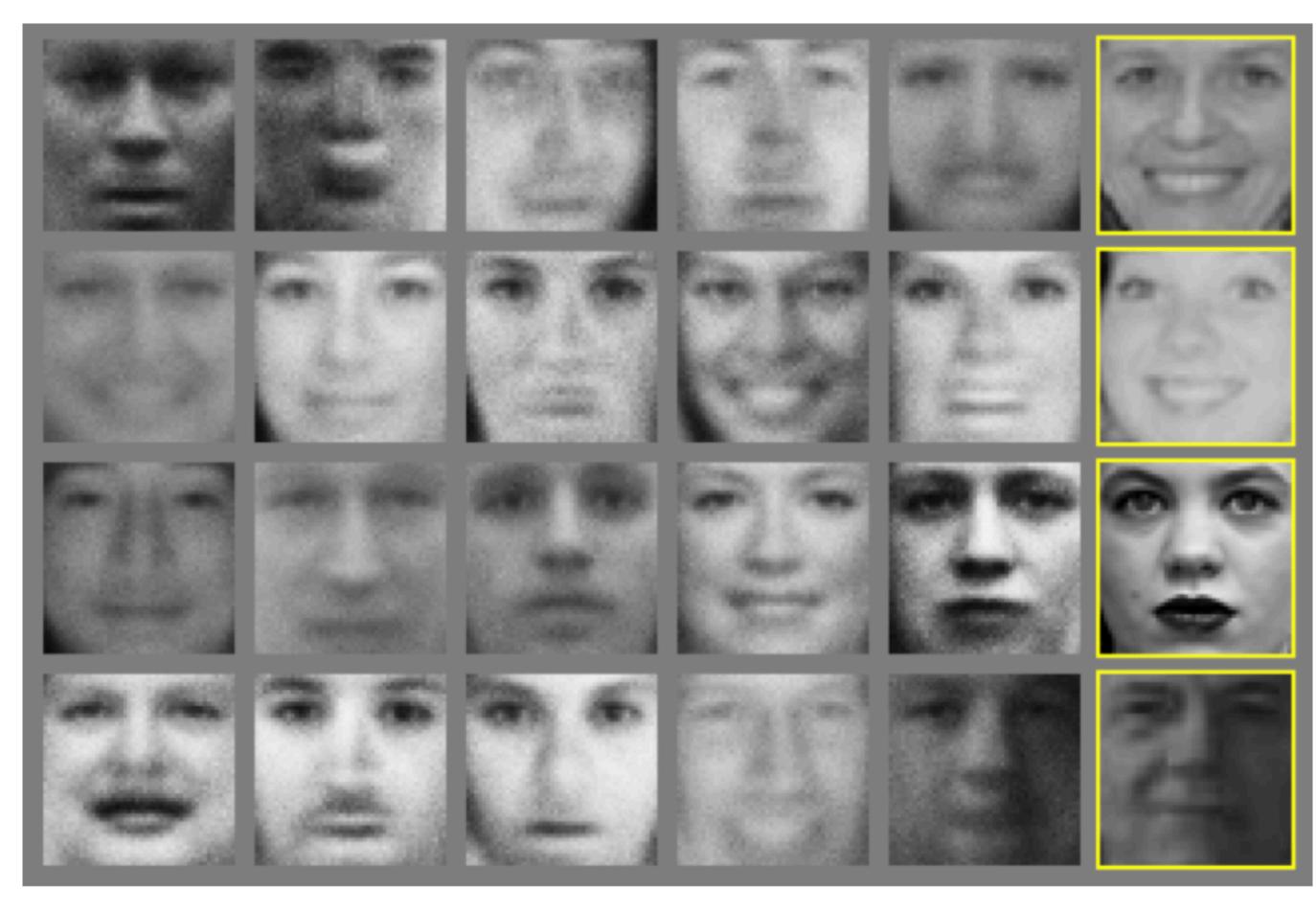


• 2012. Youtube videos (w/o labels) can be used to discover useful patterns for classification.



Q. V. Le "Building High-Level Features Using Large Scale Unsupervised Learning," ICASSP 2013

• **2014.** People used face images to generate realistic(?) new faces.



Goodfellow et al., "Generative Adversarial Nets" NeurIPS 2014

• 2023. People are training awesome chatbots.

JA

can you write a python script for performin

Sure, I can provide a basic example of perf Python. This script will make use of the `pa learn` library for PCA.

In this example, I will use the Iris dataset w

python
two cash we also a complete
import pandas as pd
<pre>import numpy as np</pre>
<pre>from sklearn.decomposition import </pre>
<pre>from sklearn.preprocessing import \$</pre>
<pre>from sklearn.datasets import load_:</pre>

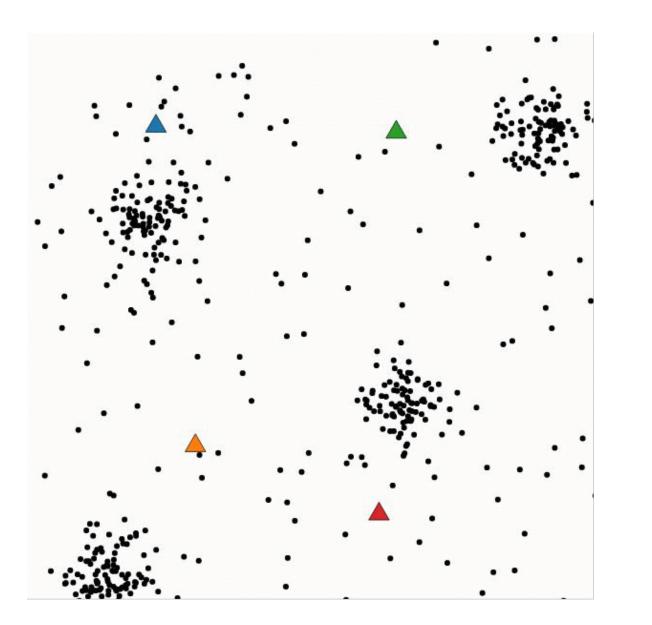
+⁺ GPT-4

ng principal component analysis?
orming Principal Component Analysis (PCA) using 📋 🖒 🖓
hich is built into scikit-learn for demonstration.
Copy code
PCA StandardScaler iris

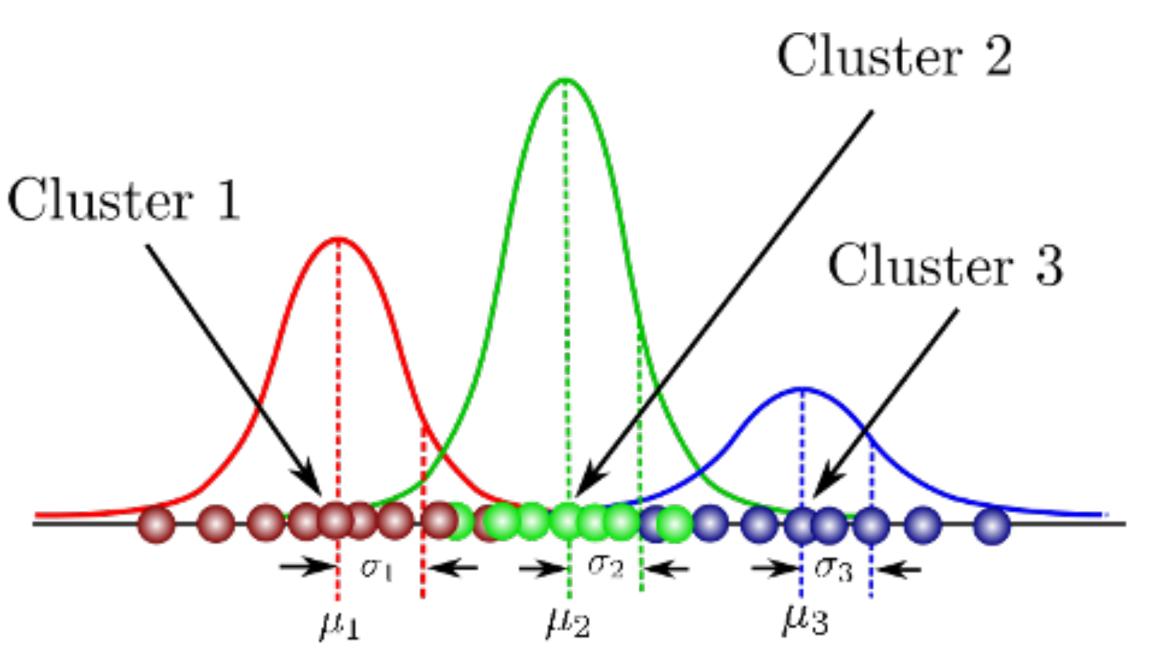
K-means clustering

Clustering

- Partitioning a set of unlabeled data points into pre-specified #groups
 - K-means, Gaussian mixture models, Hierarchical, Spectral, ...
 - Implicitly assumes some notion of "similarity"



https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html



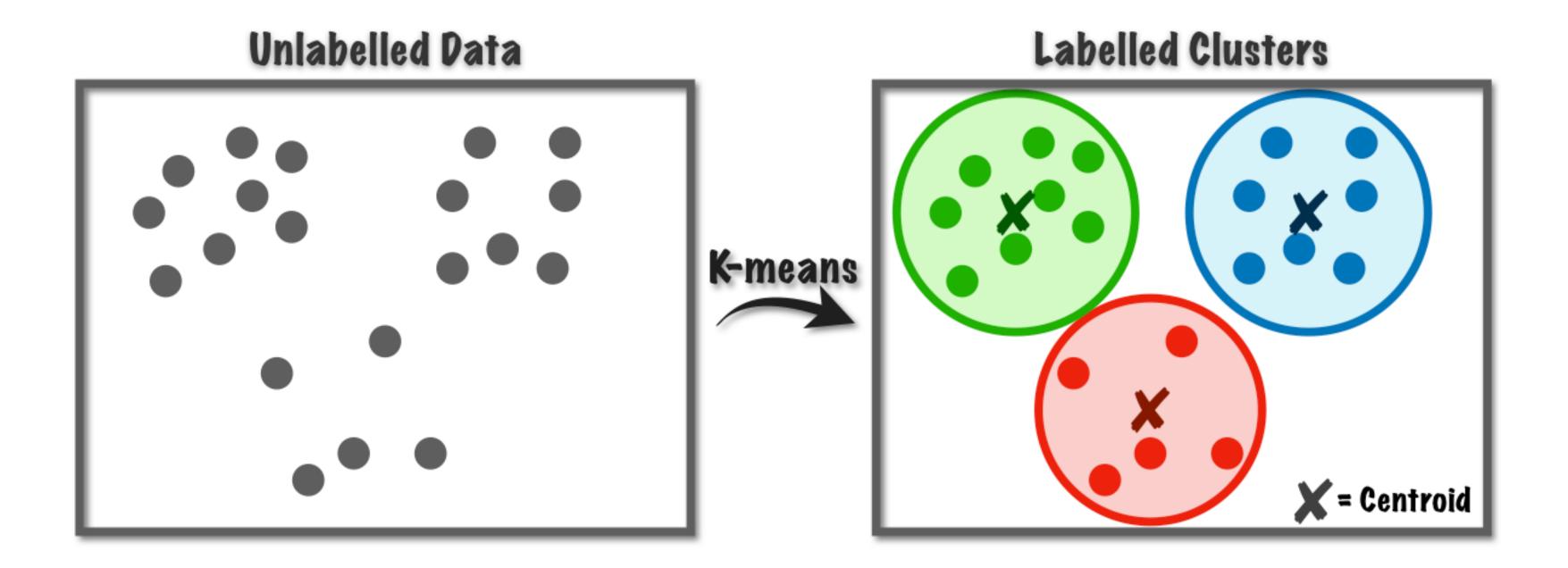


https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html



K-Means

- Assign each data point to one of K clusters.
 - Each cluster is represented by a single point, called centroid.
 - The loss is measured by the distance(data,centroid).



K-Means

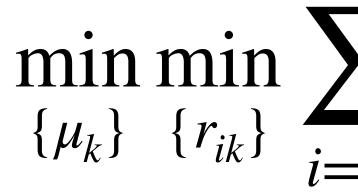
- Suppose that we have a dataset $D = {\mathbf{x}_i}_{i=1}^n$, $\mathbf{x}_i \in \mathbb{R}^d$.
- We make **two decisions**:
 - We make K clusters.
 - We decide the corresponding centroids $\mu_1, \ldots, \mu_K \in \mathbb{R}^d$.
 - We assign each data to clusters.

 $(r_{ik} = 1 \text{ means } \mathbf{x}_i \text{ belongs to } k \text{-th cluster})$

We decide the assignment $r_{ik} \in \{0,1\}$, $\sum r_{ik} = 1$ k=1

K-Means

 We want to choose nice {µ_k} and {r_{ik}} so that we can minimize the mean squared distance from data point to the centroid, i.e.,



(One can use other distances instead of $\|\cdot\|_2^2$)

How do we solve this optimization problem?

$$\sum_{k=1}^{n} r_{ik} \| \mathbf{x}_{i} - \mu_{k} \|_{2}^{2}$$

Principle #1: Centroid -> Assignment

• Given the centroids, the optimal assignment is obvious:

$$r_{ik} = \begin{cases} 1 & \cdots \\ 0 & \cdots \end{cases}$$

"Always assign to a cluster with the closest centroid"

 $k = \operatorname{argmin}_k \|\mathbf{x}_i - \boldsymbol{\mu}_k\|_2^2$ otherwise

Principle #2: Assignment -> Centroid

"Select the average of assigned points as a centroid"

- Given the assignments, the optimal centroid is obvious:
 - If $\mathbf{x}_{(1)}, \ldots, \mathbf{x}_{(n_{k})}$ are the data assigned to k-th cluster,
 - $\mu_k = \operatorname{argmin}_{\mu_k}$

$$= \frac{1}{n_k} \sum_{i=1}^{n_k} \mathbf{x}$$

$$\sum_{k \in \mathbb{R}^d} \sum_{i=1}^{n_k} \|\mu - \mathbf{x}_{(i)}\|_2^2$$

(check!)

(i)

The Famous K-Means Algorithm

- The optimal solution should satisfy both principles:
 - P1: Data points are assigned to nearest centroids.
 - P2: Centroids should be the average of assigned points.

• Question. How do we find a solution that satisfies P1 and P2?

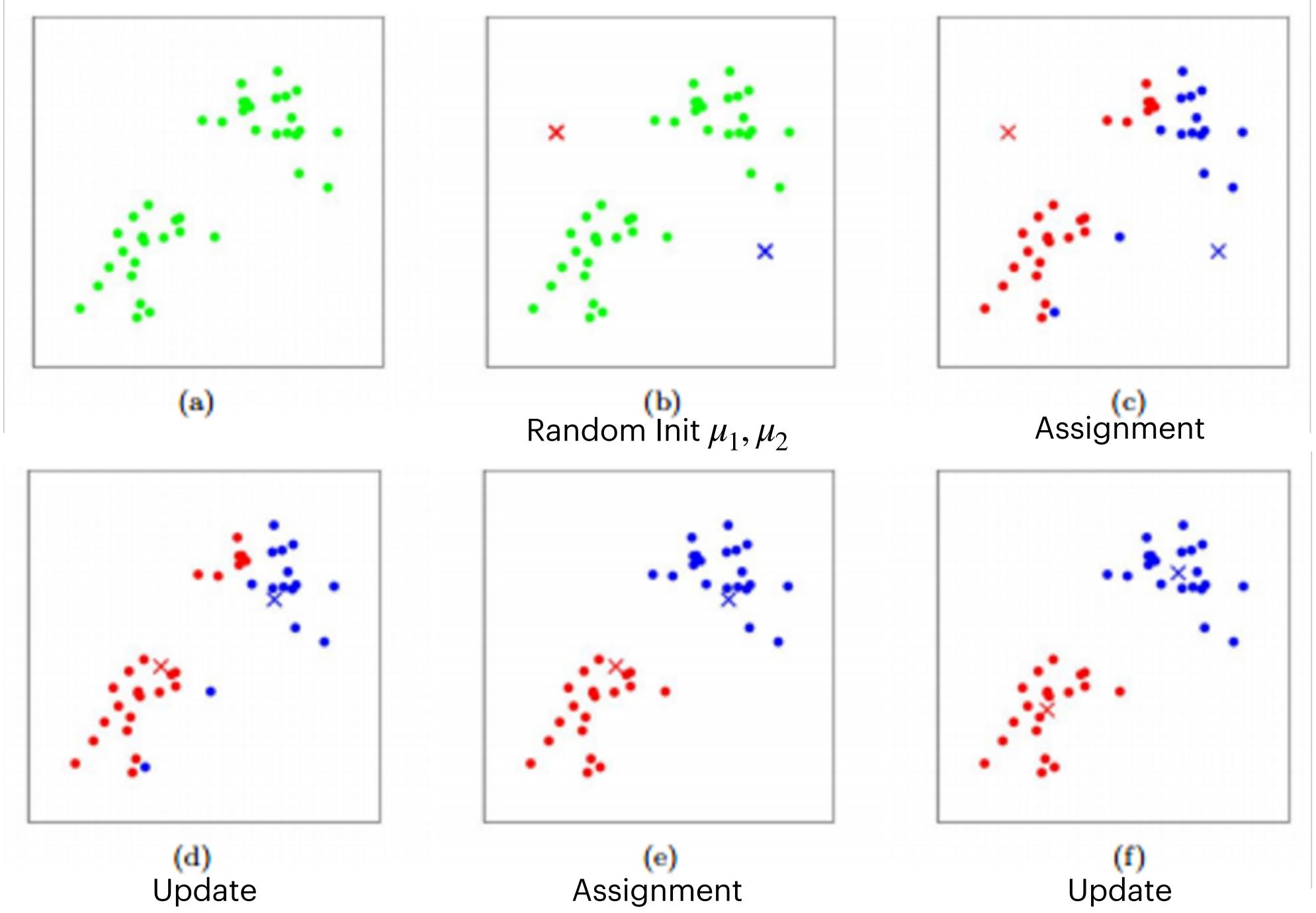
The Famous K-Means Algorithm

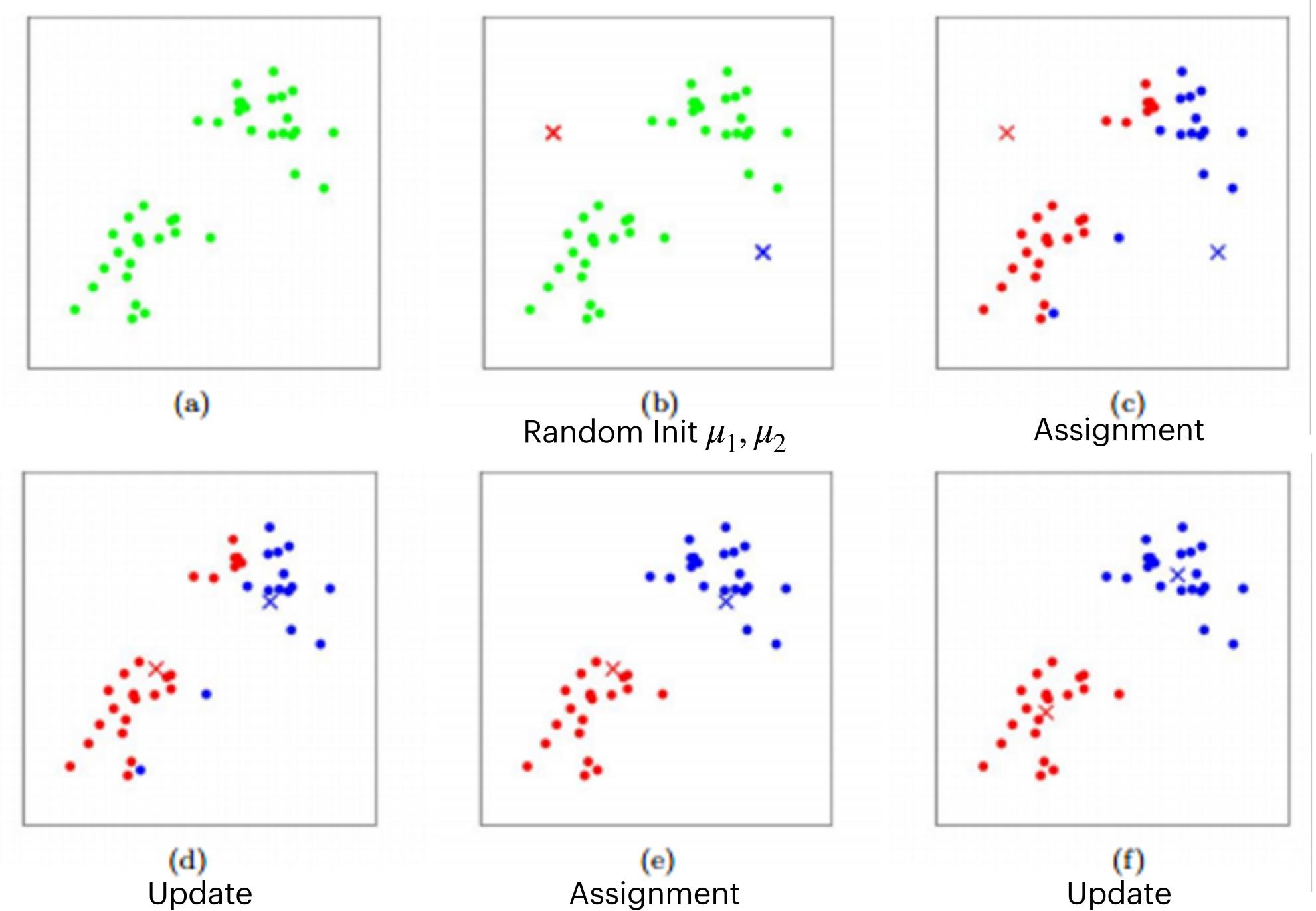
- A working way. Apply P1, Apply P2, Apply P1, ..., until convergence.
 - Assignment Step: Given $\{\mu_k\}$, find $\{r_{ik}\}$.
 - Update Step: Given $\{r_{ik}\}$, find $\{\mu_k\}$.

Algorithm 1 k-means algorithm

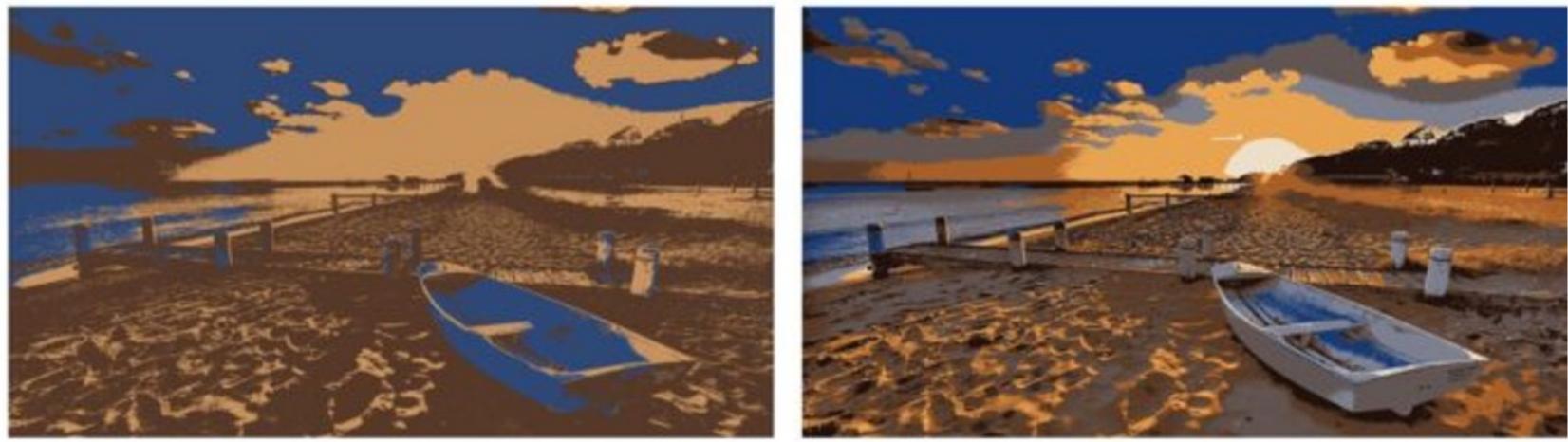
- 1: Specify the number k of clusters to assign.
- 2: Randomly initialize k centroids.
- 3: repeat
- **expectation:** Assign each point to its closest centroid. 4:
- 5:
- 6: **until** The centroid positions do not change.

maximization: Compute the new centroid (mean) of each cluster.



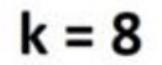


Original image



k = 13

k = 3



k = 20

k = 40

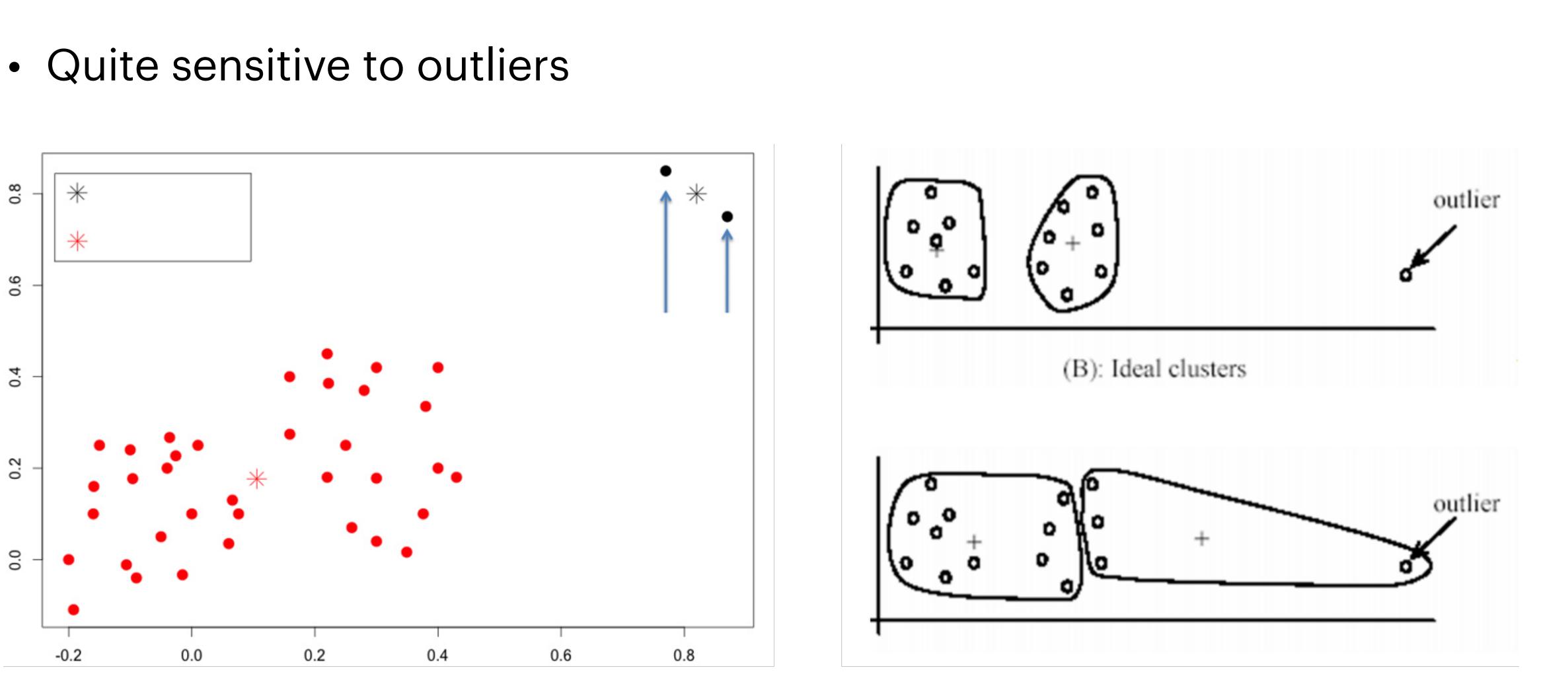
Data Point = Each Pixel's RGB

Properties of K-Means

- Local optimum is found.
 - Sensitive to initialization—use K-means++ for better results
- Convergence within finite number of iterations is guaranteed.
- Computational Complexity.
 - Assignment. $O(d \cdot k \cdot n)$
 - Update. $\mathcal{O}(n)$

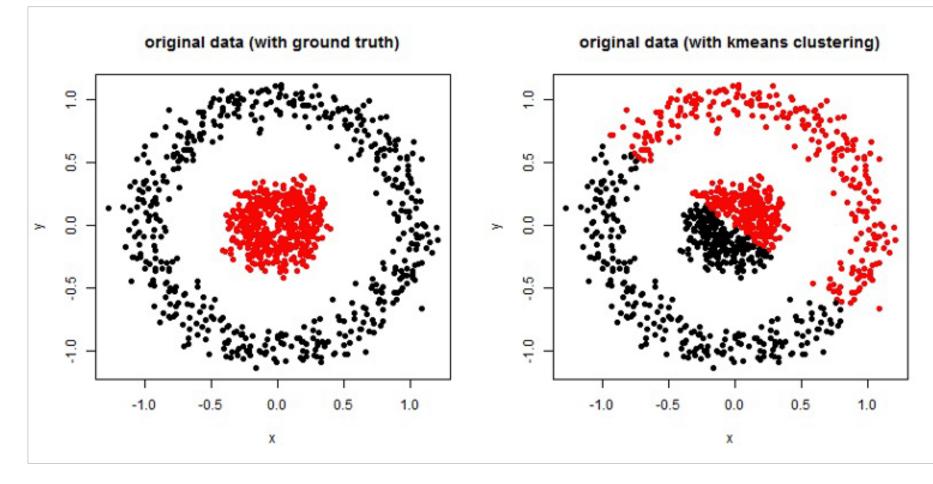
e K-means++ for better results er of iterations is guaranteed.

Limitations

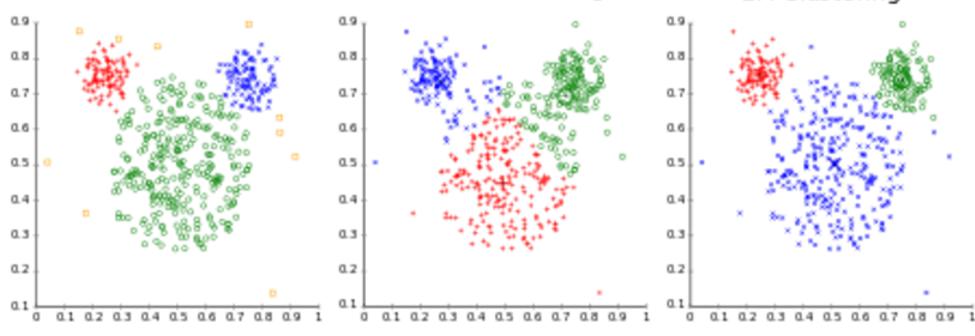


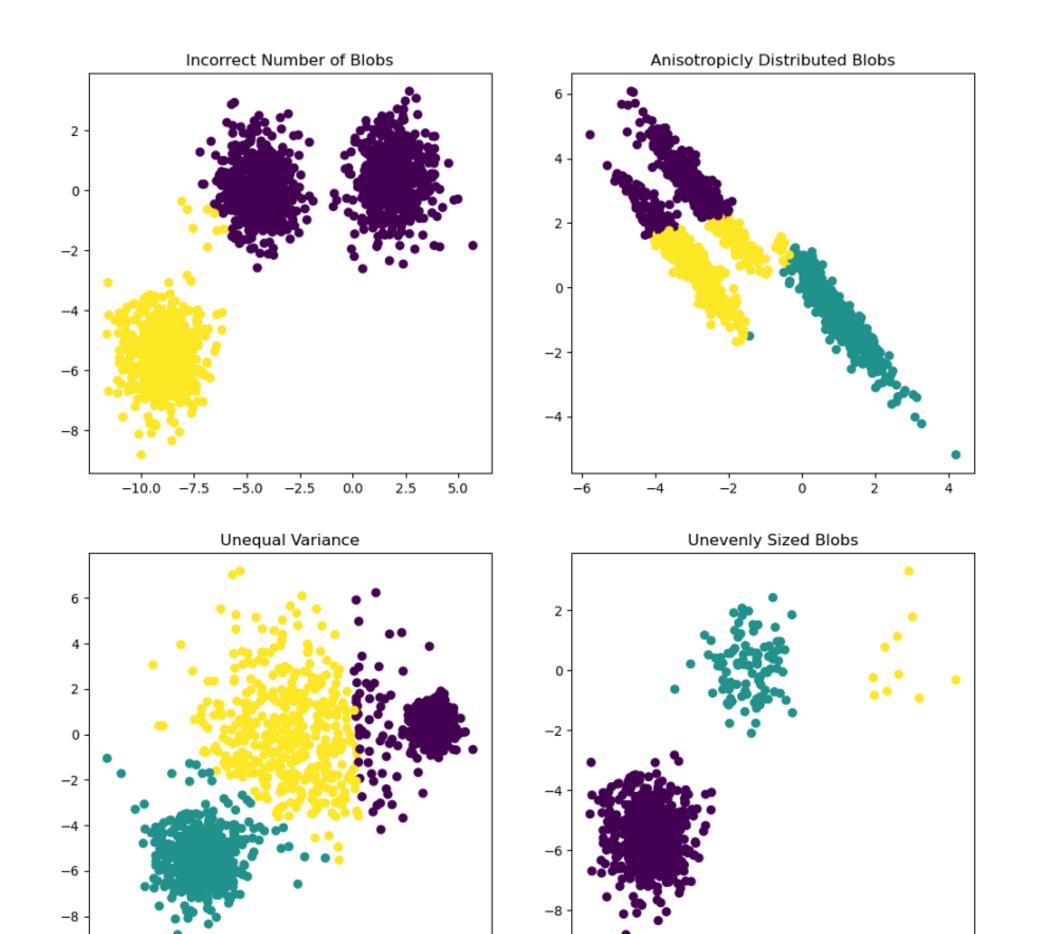
Limitations

May not work for certain datasets



Different cluster analysis results on "mouse" data set: Original Data k-Means Clustering EM Clustering





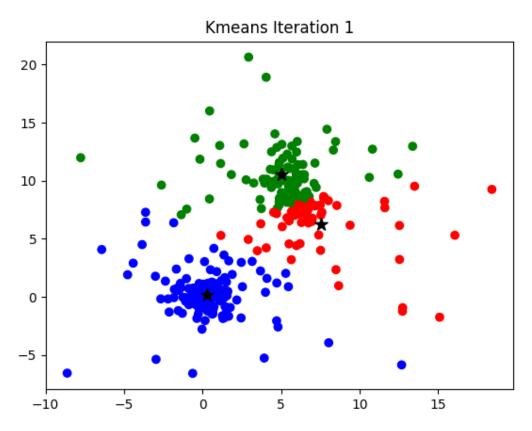
-10.0 -7.5 -5.0 -2.5 0.0 2.5 5.0

-12.5 -10.0 -7.5 -5.0 -2.5 0.0 2.5

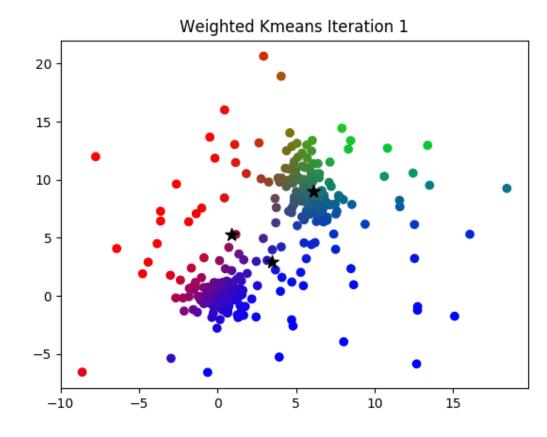
Soft Clustering

- Clustering, but the assignment is soft.
 Hard. A point 100% belongs to a specific cluster
 - $r_{ik} \in \{0\}$
 - Soft. A point may 90% belong to one, and 10% to another, ...
 - $r_{ik} \in [0]$

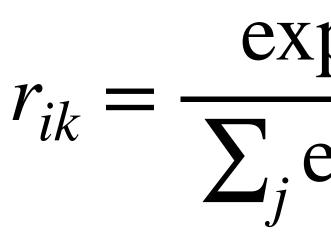
,1},
$$\sum_{k=1}^{K} r_{ik} = 1$$



(,1],
$$\sum_{k=1}^{K} r_{ik} = 1$$



The Soft K-Means Algorithm



Note. This becomes the hard assignment

if we let $\beta \to \infty$ (thus called softmax).

• Assignment. The larger "responsibility" for closer point, with some β .

 $r_{ik} = \frac{\exp(-\beta \|\mathbf{x}_i - \mu_k\|_2^2)}{\sum_{ij} \exp(-\beta \|\mathbf{x}_i - \mu_j\|_2^2)}$

 $r_{ik} = \begin{cases} 1 & \cdots & k = \operatorname{argmin}_{k} ||\mathbf{x}_{i} - \mu_{k}||_{2}^{2} \\ 0 & \cdots & \text{otherwise} \end{cases}$

The Soft K-Means Algorithm

the responsibility.

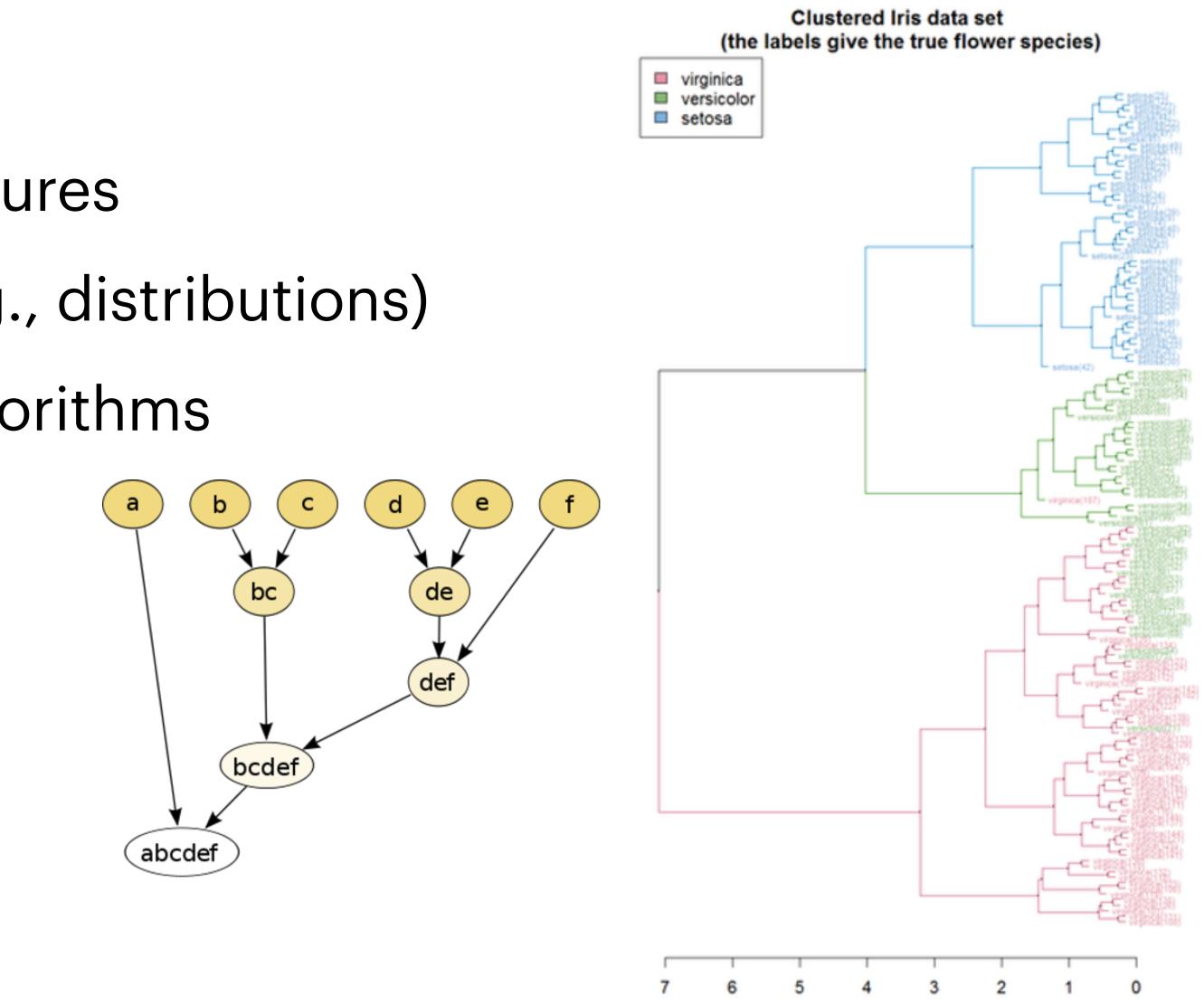
(can be derived similarity as in hard K-means)

• Update. A weighted average of data, where the weight comes from

 $\mu_k = \frac{\sum_i r_{ik} \mathbf{X}_i}{\sum_j r_{jk}}$

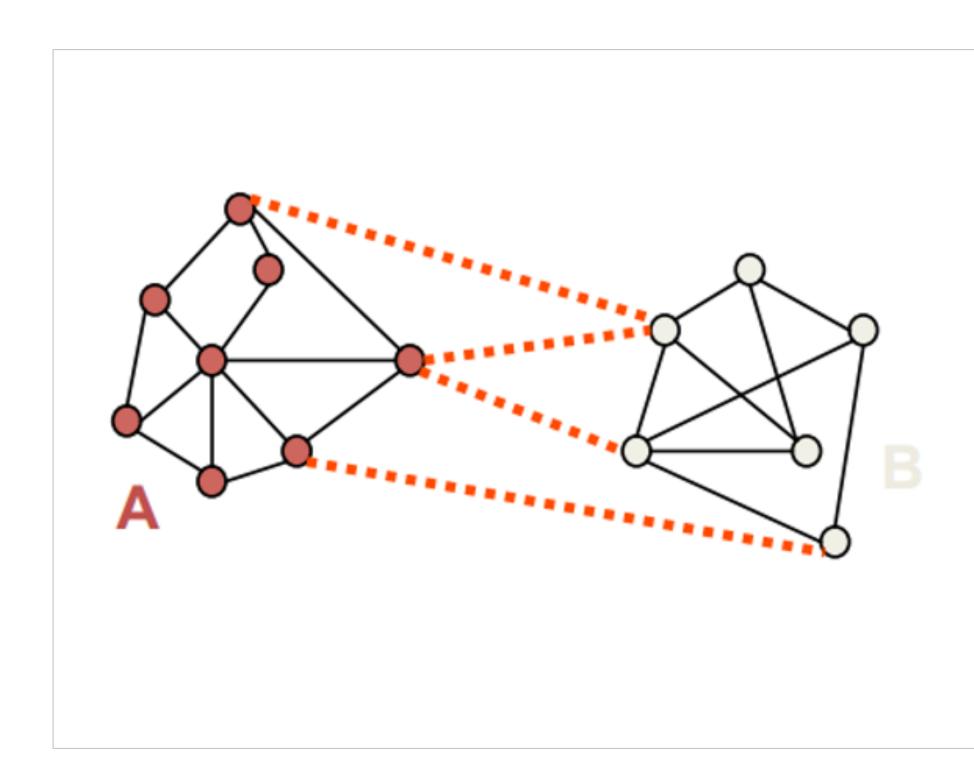
Hierarchical Clustering

- Clusters inside clusters
 - Discovers hierarchical structures
 - Relax strict assumptions (e.g., distributions)
 - Leverage faster heuristic algorithms
 - Waive strict decision of *K*.
- Two ways to construct—
 - Divisive: Top-Down
 - Agglomerative: Bottom-up.



Spectral Clustering

- Data lies on graph—similarity by distance on graph.
 - Solve via graph algorithms, e.g., min-cut





• <u>Next up.</u> Mixture models

