7. Kernel SVM
 EECE454 Introduction to
 Machine Learning Systems

Recap

- SVM, a linear classifier that maximizes margin.
- Hard. Data is linearly separable.
- Soft. NOT linearly separable.
- Both hard \& soft SVM are formulated as constrained optimization.
- Constraints can be made cleaner by the method of Lagrange multipliers, becoming a quadratic optimization.
- Can be solved by off-the-shelf solvers.
. Solution takes the form of $\mathbf{w}^{*}=\sum_{i} a_{i} \cdot \mathbf{x}_{i}$

Features for nonlinear data

Nonlinear data

- Suppose that we have a data that looks like XOR.
- Not linearly separable, and no satisfactory linear classifier exists.

$$
\left(x_{1}, x_{2}\right)
$$

Nonlinear data

- Suppose that we map it to a higher-dimensional space.
- Then, there exists a clean linear classifier!

$$
\left(x_{1}, x_{2}, x_{1} x_{2}\right)
$$

$$
f(\mathbf{x})=\operatorname{sign}\left(\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]\right)
$$

SVM with a polynomial Kernel visualization

Created by:
Udi Aharoni

More formally...

- We map the data to a high-dim feature $\Phi(\cdot): \mathbb{R}^{d} \rightarrow \mathbb{R}^{k}$.
- Typically $d<k$ (but not necessarily)
- Our predictor takes the form

$$
f(\mathbf{x})=\operatorname{sign}\left(\sum_{i=1}^{n} a_{i} \cdot\left\langle\Phi\left(\mathbf{x}_{i}\right), \Phi(\mathbf{x})\right\rangle+b\right)
$$

- Similar to original SVMs

$$
f(\mathbf{x})=\operatorname{sign}\left(\sum a_{i} \cdot\left\langle\mathbf{x}_{i}, \mathbf{x}\right\rangle+b\right)
$$

Choosing the feature

- Q. How to choose $\Phi(\cdot)$?
- Naïve. Just throw in many features-SVM will choose useful features.

$$
\Phi(\mathbf{x})=\left(x_{1}, \cdots, x_{d}, x_{1} x_{2}, \cdots, x_{d-1} x_{d}, \cdots, x_{k}^{100}\right)
$$

- This is a bad idea.
- Overfitting
- Computation
- for (1) computing features, and (2) inner products.

Choosing the feature

- Interestingly, some features admit easy computational shortcuts.
- Example. Recall the XOR case, and think of two features:

$$
\begin{gathered}
\Phi_{a}\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{1}, x_{2}, x_{1} x_{2}\right) \\
\Phi_{b}\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}\right)
\end{gathered}
$$

- Looks similar, but one is better than the other.

Choosing the feature

- Answer. Φ_{b} is better, computationally.

$$
\begin{gathered}
\Phi_{a}\left(\left(x_{1}, x_{2}\right)\right)=\left(x_{1}, x_{2}, x_{1} x_{2}\right) \\
\left\langle\Phi_{a}(\mathbf{x}), \Phi_{a}(\mathbf{y})\right\rangle=x_{1} y_{1}+x_{2} y_{2}+x_{1} x_{2} y_{1} y_{2}
\end{gathered}
$$

(1) Compute 3-d features $\phi_{\mathbf{x}}=\Phi_{a}(\mathbf{x})$

$$
\phi_{\mathbf{y}}=\Phi_{a}(\mathbf{y})
$$

(2) Compute 3-d inner product $\left\langle\phi_{\mathbf{x}}, \phi_{\mathbf{y}}\right\rangle$.

Choosing the feature

- Answer. Φ_{b} is better, computationally.

$$
\begin{aligned}
\Phi_{b}\left(\left(x_{1}, x_{2}\right)\right) & =\left(x_{1}^{2}, \sqrt{2} x_{1} x_{2}, x_{2}^{2}\right) \\
\left\langle\Phi_{b}(\mathbf{x}), \Phi_{b}(\mathbf{y})\right\rangle & =x_{1}^{2} y_{1}^{2}+x_{2}^{2} y_{2}^{2}+2 x_{1} x_{2} y_{1} y_{2} \\
& =(\langle\mathbf{x}, \mathbf{y}\rangle)^{2}
\end{aligned}
$$

(1) Perform 2d inner product $\langle\mathbf{x}, \mathbf{y}\rangle$.
(2) Square.
(less memory \& less computation, especially for higher-dim)

Kernel SVM

- Idea. Maybe we can do...
- Choose an easy-to-compute "similarity metric" $K(\cdot, \cdot)$.
- Construct predictors of form

$$
f(\mathbf{x})=\operatorname{sign}\left(\sum a_{i} \cdot K\left(\mathbf{x}_{i}, \mathbf{x}\right)+b\right)
$$

and fit a_{i}, b.

- Question. Is it equivalent to doing SVM with features?

Kernel SVM

- Answer. Yes, if $K(\cdot, \cdot)$ is a Mercer kernel.
- Definition. A real-valued function $K(\cdot, \cdot)$ is called a Mercer kernel if
- $K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=K\left(\mathbf{x}^{\prime}, \mathbf{x}\right)$
- $\lim _{n \rightarrow \infty} K\left(\mathbf{x}^{(n)}, \mathbf{x}\right) \rightarrow K\left(\lim _{n \rightarrow \infty} \mathbf{x}^{(n)}, \mathbf{x}\right)$
. $\sum_{i, j} \alpha_{i} \alpha_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right) \geq 0, \quad \forall \alpha_{i}, \alpha_{j}, \mathbf{x}_{i}, \mathbf{x}_{j}$
\# symmetric
\# continuous
\# positive-semidefinite

Kernel SVM

- Mercer's Theorem. For a Mercer kernel $K(\cdot, \cdot)$, there exists a corresponding $\Phi(\cdot)$ such that

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\Phi(\mathbf{x}), \Phi\left(\mathbf{x}^{\prime}\right)\right\rangle
$$

- That is, if we choose a nice enough $K(\cdot, \cdot)$, we are effectively doing SVM-like thing with some features.

Optimizing Kernel SVM

- In typical SVM, we solved

$$
\max _{\alpha}\left(-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i}^{\top} \mathbf{x}_{j}+\sum_{i=1}^{n} \alpha_{i}\right)
$$

- In kernel SVM, we solve

$$
\max _{\alpha}\left(-\frac{1}{2} \sum_{i, j} \alpha_{i} \alpha_{j} y_{i} y_{j} K\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)+\sum_{i=1}^{n} \alpha_{i}\right)
$$

Popular kernels

- Linear. $\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle$.
- Laplacian RBF. $\exp \left(-\lambda\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}\right)$
- Gaussian RBF. $\exp \left(-\lambda\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|_{2}^{2}\right)$
- Polynomial. $\left(\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle+c\right)^{d}$
- B-Spline

Linear Kernel

Laplacian Kernel

Gaussian Kernel

Polynomial of order 3

B_{3} Spline Kernel

Well Separable Case

Well Separable Case

Closer Call

Closer Call

With Outliers

Very Narrow Kernels

Very Wide Kernels

In Deep Learning Era

- In deep learning era, we find nice $\Phi(\cdot)$ using the data.
- Jointly train with classifier (supervised)
- Use nice augmentations to find a nice similarity metrics such that
- $\Phi(\mathbf{x})-\Phi\left(\mathbf{x}_{\text {aug }}\right)$ is smaller than $\Phi(\mathbf{x})-\Phi\left(\mathbf{x}^{\prime}\right)$

Cheers

- Next up. K-Means

