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• Maximum Likelihood Estimate (MLE) & Maximum A Posteriori (MAP) 
(for the last class) 
https://drive.google.com/file/d/
1iRh9aBHeDSafr0hHnKs06W9b0xtlzNNJ/view 

• Optimization Basics + Linear Algebra 
(for today!) 
https://alex.smola.org/teaching/10-701-2015/slides/
5_Math_and_Optimization.pdf 

• Probability 
https://alex.smola.org/teaching/10-701-2015/slides/2_Statistics.pdf

Additional Materials

https://drive.google.com/file/d/1iRh9aBHeDSafr0hHnKs06W9b0xtlzNNJ/view
https://drive.google.com/file/d/1iRh9aBHeDSafr0hHnKs06W9b0xtlzNNJ/view
https://alex.smola.org/teaching/10-701-2015/slides/5_Math_and_Optimization.pdf
https://alex.smola.org/teaching/10-701-2015/slides/5_Math_and_Optimization.pdf
https://alex.smola.org/teaching/10-701-2015/slides/2_Statistics.pdf








Max Margin Classifiers & 
Hard SVM



Linearly Separable Data



Linear Separators



Large Margin Classifier

Linear Function 
f(x) = w⊤x + b

w⊤x + b ≥ 1w⊤x + b ≤ − 1

w⊤x + b = 0



Large Margin Classifier

w⊤x + b = 1w⊤x + b = − 1

w

(x+ − x−)⊤w
2∥w∥

=
1

∥w∥  “Margin”⇐



Max Margin Classifier

• We solve the problem: 

maximizew,b
1

∥w∥
subject to yi(w⊤xi + b) ≥ 1

(we are using , instead of )yi ∈ {−1, + 1} {0,1}



• Slightly re-phrased, we are solving 

 

• Difficult to solve, due to the constraint. 

• Solution. We consider the Lagrangian dual. 
                  (the original problem is called “primal”) 

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℒ(w, b, α) =
∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

Solving the Optimization: Dual Problem



 

• We know that 

 

• Wait, but why? 
(see also — the additional materials on “optimization basics”)

ℒ(w, b, α) =
∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

ℓ* = min
w,b

max
α⪰0

ℒ(w, b, α)

Solving the Optimization: Dual Problem



Primal:    

Dual:        

• Adversary will gauge the quantity  

• If                          infeasible for primal,  for dual 

• If                                                              primal = dual 

• If           any constant…                                     primal = dual

ℓ* = min
w,b

∥w∥2

2
subject to yi(w⊤xi + b) ≥ 1

ℓ* = min
w,b

max
α⪰0

∥w∥2

2
+

n

∑
i=1

αi(1 − yi(w⊤xi + b))

1 − yi(w⊤xi + b)

> 0 ⋯ αi → ∞ ∞

< 0 ⋯ αi = 0

= 0 ⋯

 Find the saddle point! 
(see also — the additional materials)
⇒



Minimax Problems

Find the saddle point! 

(which is the critical point)



                     

• We need these be zero at saddle point, i.e., 

                     

• Plugging  back into Lagrangian, we get: 

∇wℒ = w −
n

∑
i=1

αiyixi ∇bℒ = −
n

∑
i=1

αiyi

w* =
n

∑
i=1

αiyixi 0 =
n

∑
i=1

αiyi

w*

ℒ = −
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi

Solving the Optimization: Dual Problem



• Summing up, we are solving: 

 

 

                                     

max
α

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi

subject to ∑
i

αiyi = 0

αi ≥ 0

Solving the Optimization: Dual Problem



• Neat form as a quadratic program over a convex polytope. 

 

 

                               

• Solution @ critical point or extreme point (many solvers)

max
α (−

1
2

α⊤Zα + 1⊤α)
subject to α⊤y = 0

α ⪰ 0

Solving the Optimization: Dual Problem



Solving the Optimization: Dual Problem

w* =
n

∑
i=1

α*i yixi

Nonzero, only for 
points on margin 
(support vectors)

Quiz. How to find ?b*



Soft(-margin) SVM



Linear Separators

w⊤x + b ≥ 1w⊤x + b ≤ − 1

w⊤x + b = 0

No Linear Separator Exists
Worse, finding a minimum error 
separating hyperplane is NP-hard. 
(Minsky & Papert, 1969)



Solution: Add Slack Variables

w⊤x + b ≥ 1−ξw⊤x + b ≤ − 1+ξ

w⊤x + b = 0

We can then minimize 
the “slack” ξ



Formulation
• We are solving 

 

 

• We know that the problem is always feasible 
(i.e., constraints can be met, no matter the minimand) 

• Let , , .

ℓ* = min
w,b,ξ

∥w∥2

2
+ C ⋅ ∑

i

ξi

subject to yi(w⊤xi + b) ≥ 1 − ξi, ξi ≥ 0

w = 0 b = 0 ξi = 1



Dual Formulation
• As a dual, we solve 

 

• The optimal  is at the saddle point with  

• Derivatives for  need to vanish!

min
w,b,ξ

max
α,η ( ∥w∥2

2
+ C∑

i

ξi − ∑
i

αi(yi(x⊤
i w + b) + ξi − 1) − ∑

i

ηiξi)
(w, b, ξ) (α, η)

(w, b, ξ)



Derivatives
  

              

       

• Doing the similar thing, we get the Lagrangian 

  

∇wℒ = w − ∑ αiyixi = 0

∇bℒ = ∑ αiyi = 0

∇ξi
ℒ = C − αi − ηi = 0

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj + ∑

i

αi −∑
i

αiξi + C∑
i

ξi − ∑
i

ηiξi

= −
1
2 ∑

i,j

αiαjyiyjx⊤
i xj + ∑

i

αi



• Summing up, we are solving: 

 

 

                                     

max
α

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi

subject to ∑
i

αiyi = 0

0 ≤ αi ≤ C

Solving the Optimization: Dual Problem

















 

         

• If the problem is small-scale (thousands of variables), 
we can use off-the-shelf solvers (cvxopt, cplex, ooqp, loqo) 

• For large-scale problems, use the fact that only SVs matter 
and solve in blocks (active set method)

max
α

−
1
2 ∑

i,j

αiαjyiyjx⊤
i xj +

n

∑
i=1

αi

subject to ∑
i

αiyi = 0 0 ≤ αi ≤ C

Solving the Optimization



Cheers

• Next up. Kernel Tricks.


